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This study describes the changes which occur in intra- and extracellular asymmetric acetylcholinesterase 
(AChE) forms in rat gracilis muscle during postnatal development. Initially (day 7) these forms (12.5 S 
and 16 S AChE) were evenly distributed along the muscle and only present intraceilularly. With advancing 
age (days 7-28) they gradually became concentrated in endplate (vs non-endplate) muscle regions where 
a certain proportion of them was subsequently externalized. In contrast, no externalization was observed 
in the non-endplate regions. Our results support the view that AChE asymmetric forms are assembled 

within the muscle cell prior to their deposition on the extracellular synaptic compartment. 
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1. INTRODUCTION 

Mammalian skeletal muscles contain multiple 
molecular forms of AChE (acetylcholine 
acetylhydrolase, EC 3.1.1.7) Ill], one of which, 
with a 16 S sedimentation coefficient, has at- 
tracted much attention partly because its activity is 
regulated by the motor nerve [2,3]. In adult rat 
muscle most of the 16 S AChE form, which is 
composed of three catalytic tetramers and a 
collagen-like tail structure [4], is highly concen- 
trated at the motor endplates (+EP), although 
small amounts are also detected in non-endplate 
( - EP) regions [5,6]. This well defined localization 
is not present in neonate rats; the enzyme is initial- 
ly distributed evenly along muscle fibers and pro- 
gressively accumulates in the +EP regions until 
the adult pattern is reached at appro~mately 3-4 
weeks of age [5,7-91. At this age, a large propor- 
tion of the 16 S AChE exists extracellularly in 
association with the synaptic basal lamina [4]; 
however, the possible developmental changes in 
subcellular distribution leading to such localization 
have yet to be determined. 

distribution of AChE forms in both embryonic 
[ IO,1 1 J and adult [6] rat muscles can be determined 
by using cholinesterase inhibitors which differ in 
lipid solubility and hence in their ability to 
penetrate cell membranes. We have previously us- 
ed similar methods to distinguish intra- from ex- 
tracellular AChE forms in adult rat anterior 
gracilis muscles [ 121. This report documents the 
changes in subcellular distribution of asymmetric 
AChE forms which occur during postnatal 
development, 

2. MATERIALS AND METHODS 

Experiments were performed on obturator 
nerve-anterior gracilis muscle preparations [3] 
from littermate Sprague-Dawley rats (Sasco, 
Omaha, NE), 7-60 days old, anesthetized with Na- 
pentobarbital (36 mg/kg body wt; i.p., injection). 

2.1. Experiment~I treatments and extraction of 
AGE activity 

Recent studies have shown that the subcellular 

To distinguish between intra- and extracellular 
pools of AChE activity muscles were exposed in 
situ to one or a combination of AChE inhibitors. 
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To assay intracellular AChE the muscle’s surface 
enzyme was irreversibly inactivated by 2.5 PM 
echothiophate iodide (ECHO; water-soluble) ap- 
plied for 3 min, followed by six 30-s rinses with 
phosphate-buffered saline (PBS) which eliminated 
excess ECHO [12]. Extracellular AChE was 
assayed after: (i) exposure of the muscle to 70 PM 
BW284CSl dibromide (BW; water-soluble) in PBS 
for 30 s to reversibly inactivate the surface en- 
zyme; (ii) With the muscle still exposed to BW the 
remaining AChE was irreversibly inhibited by 
0.4 mM di-isopropylfluorophosphate (DFP; lipid- 
soluble) in PBS for 1 min, followed by three 15-s 
rinses with 70pM BW to remove unbound DFP; 
(iii) Subsequently, the surface enzyme was reac- 
tivated by eight I-min rinses with PBS to remove 
BW [12]. Prior to the aforementioned treatments 
contralateral control muscles were removed and 
rinsed with PBS for a total exposure time identical 
to that of the experimental muscles. 

Next, the muscles were separated into endplate 
(+EP) and non-endplate (-EP) regions (whole 
muscle weight = [ + EP] + [ -EP]) which were 
rapidly rinsed with PBS and weighed [3]. For 7-, 
lo-, 14-, 21-, 28-, 45- and 60-day-old rats the wet 
weights of + EP samples were, respectively, 1.2 k 
0.2, 2.2 f 0.4, 3.1 + 0.7, 3.7 f 0.4, 8.3 + 1.8, 
15.2 + 0.8 and 18.9 + 0.6, whereas those of the 
corresponding - EP samples were 1.2 + 0.2, 2.9 f 
0.3,4.1 rt 0.2, 5.2 + 0.4, 10.5 + 2.2,23.3 k 1.1 and 
35.8 + 1.2 mg (mean f SD, n = 12). Samples were 
then homogenized (1:35, w/v) in low ionic 
strength buffer (0.05 M Tris-HCl, 5 mM EDTA, 
1% lubrol-wx; pH 7.3; 4°C). After two sequential 
centrifugations (20000 x g, 30 min, 4°C) the 
pellets were pooled and resuspended in high ionic 
strength buffer (same as above, but with 1 M 
NaCl) to extract the asymmetric AChE forms [ 131. 

2.2. Velocity sedimentation 
AChE forms were separated in linear sucrose 

gradients (5-20%) containing high ionic strength 
buffer. Sedimentation was performed at 4°C and 
260000 x g,, (Beckman L8-70 ultracentrifuge; 
SW41Ti rotor) to an w2 value of 1.06 x 10” rad2/s 
(roughly 18 h 45 min). Approximately 60 fractions 
(200~1 each) were collected from each gradient 
and assayed for AChE activity. Sedimentation 
markers were &galactosidase (16.1 S) and catalase 
(11.3 S). AChE forms were quantified by adding 

148 

the enzymatic activities under each of the sedimen- 
tation profile peaks [13]. 

2.3. AChE assay 
AChE activity was measured as in [ 131, using 

[3H]acetylcholine iodide (90 mCi/mmol; 0.03 mM 
final concentration; New England Nuclear) as the 
substrate and 0.1 mM iso-OMPA (Sigma) as an in- 
hibitor of cholinesterase (ChE, EC 3.1.1.8). One 
unit of AChE activity is defined as 1 pmol of 
[3H]acetate formed per min. 

3. RESULTS 

At 7 days postnatal age, whole muscle AChE ac- 
tivity was 77.5 f 2.1 munits/mg wet wt (mean f 
SD, n = 6; 2.4 + 0.2 mg wet wt; 151.2 f 3.2 
munits/mg protein), whereas at 60 days it was 10.6 
+ 0.2 munits/mg wet wt (56.7 + 3.6 mg wet wt; 
83.1 + 2.0 munits/mg protein). Table 1 shows that 
this decay was less dramatic for the +EP 
(3.75-fold) than for the -EP (13.33-fold) muscle 
regions. Thus, with progressing age the relative 
proportion of whole muscle AChE activity con- 
tained in + EP regions became greater. For exam- 
ple, at day 7 both + EP and -EP regions con- 
tained approximately 50% of whole muscle AChE, 
while at day 60 this proportion had changed to ap- 
proximately 78% + EP and 22% - EP. 

Developmental changes in 16 S AChE activity 
were qualitatively similar to those described for 
total AChE. At day 7, whole muscle 16 S activity 

Table 1 

Total AChE activity in rat anterior gracilis muscles 
during postnatal development 

Age AChE activity (munits/mg wet wt) 
(days) 

+EP 070 -EP 070 

7 77.6 + 3.3 50.1 77.3 * 1.9 49.9 
10 76.4 k 4.2 59.2 52.7 + 4.1 40.8 
14 75.3 k 6.7 72.3 28.9 f 6.6 27.7 
21 60.2 f 3.7 80.4 14.7 + 2.1 19.6 
28 21.2 + 0.9 76.0 5.9 * 0.7 24.0 
45 21.1 + 1.0 78.7 5.8 + 0.7 21.3 
60 20.7 + 1.1 78.1 5.8 k 0.2 21.9 

Values are the means f SD of 6 experiments each run in 
triplicate. One munit of AChE activity is defined as 

1 pmol [3H]acetate formed per min x 10m3 
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was 54.8 st 3.2 munits/mg wet wt (n = 6) and 
declined to 5.0 + 0.8 munits/mg wet wt by the 60th 
day. Over the same period, +EP region 16 S 
AChE decreased from 27.7 + 2.3 munits/mg wet 
wt to 4.2 f 0.7 munits/mg wet wt, whereas that in 
- EP regions decayed from 27.1 + 2.1 munits/mg 
wet wt to 0.8 + 0.2 munits/mg wet wt. Fig.1 il- 
lustrates the temporal course of the changes in 16 S 
AChE activity from +EP and -EP regions. At 
day 7 this form’s activity was evenly distributed 
between both muscle regions. With advancing age 
the proportion of whole muscle 16 S AChE in 
+ EP regions increased (80% at day 28), while that 
proportion in - EP regions decreased (20% at day 
28). Beyond the 28th day, the above proportions 
did not change significantly, at least through day 
60 (+ EP, 84%; - EP, 16%). 

As previously described for the gracilis muscle 
preparation [ 121, under optimum inhibitor treat- 
ment conditions, the ECHO-inaccessible (in- 
tracellular) and the BW-protected (extracellular) 
AChE pools were for the most part mutually ex- 
clusive; i.e., the activity spared by ECHO- 
inactivation was completely inhibited by sequential 
treatment with BW and vice versa. As shown in 
fig.2, at day 7 the 12.5 S and 16 S form activities 
in +EP regions were localized entirely in- 
tracellularly. With advancing age, this intracellular 
pool of + EP asymmetric forms decreased, while 
there was a concomitant increase in the correspon- 
ding extracellular pool. Although the absolute ac- 
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Fig.1. Distribution of 16 S AChE in + EP and - EP 
regions of rat anterior gracilis muscle as a function of 
postnatal age (days). The enzyme was separated in 
sucrose gradients as described in section 2 and its activity 
is expressed in terms of total 16 S AChE obtained by 
adding that in the two muscle regions analyzed (vo of 
whole muscle 16 S AChE). Each point represents the 

mean + SD of 6 experiments. the mean f SD of 6 experiments. 

Fig.3. Distribution of internal (ECHO-inaccessible) and 
external (BW-protected) 16 S AChE activity (@/‘o of 
control) in +EP regions of rat anterior gracilis muscle 
as a function of postnatal age (days). AChE inhibitor 
treatments (ECHO and BW) and sedimentation analysis 
are as described in section 2. Activity of 16 S AChE in 
treated muscles is expressed in terms of that measured in 
the contralateral untreated control muscle. Each point is 
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Fig.2. Velocity sedimentation profiles of AChE 
asymmetric forms (12.5 S and 16 S AChE) in +EP and 
-EP regions of rat anterior gracilis muscle. Internal 
(ECHO-inaccessible) and external (BW-protected) 
enzymes were evaluated at postnatal ages of 7 (M), 
21 (o--o), and 28 (M) days. AChE inhibitor 
treatments, extraction, and sedimentation analysis, were 
performed as described in section 2. Sedimentation 
markers (arrows) are catalase (11.3 S) and /3- 
galactosidase (16.1 S). Enzymatic activity (munits) 
represents that portion of the sample-dependent AChE 
hydrolysis that is insensitive to 0.1 M iso-OMPA and 1 
munit corresponds to 1 pmol ‘H-labeled acetate formed 

per min X10e3. 

tivities of intracellular asymmetric forms in -EP 
regions also decreased as a function of age, there 
was no corresponding increase in the extracellular 
pool. In fact, no asymmetric form activity was 
detected extracellularly in - EP regions 
throughout the postnatal ages studied. Fig.3 shows 
that there was a clear correspondence between the 
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decrease of intracellular 16 S AChE in +EP 
regions and the increase of its extracellular 
counterpart. In turn, the intracellular pool of 16 S 
AChE in -EP regions, expressed as a percentage 
of total -EP 16 S AChE (intra- plus ex- 
tracellular), did not change significantly. 

4. DISCUSSION 

Our results show that rat anterior gracilis muscle 
AChE activity, expressed in terms of either tissue 
wet wt or total protein content, decreased as a 
function of postnatal age with a temporal course 
similar to that reported for other rat muscles [14]. 
Taking advantage of the fact that the gracilis in- 
nervation pattern permits an easy separation of 
+ EP from - EP regions [3,13], we also found that 
such an AChE decrease extended to both muscle 
regions. While in + EP the decay of enzymatic ac- 
tivity was not apparent until day 21, that in - EP 
was more dramatic and was detected as early as 10 
days after birth (table 1). Whether there is a causal 
relationship between the aforementioned en- 
zymatic changes and the disappearance of polyin- 
nervation [15], cannot be resolved by our ex- 
periments. Nonetheless, the important point to be 
stressed is that the AChE activity detected in + EP 
regions, expressed as a percentage of that in whole 
muscle, significantly increased during muscle 
maturation whereas that found in -EP actually 
decreased (table 1). 

Consistent with such changes in total AChE ac- 
tivity, during early postnatal development the 
asymmetric 16 S form was also evenly distributed 
along the gracilis muscle and with age its relative 
proportions in + EP v.s - EP regions progressively 
increased (fig.1). Analogous results have been 
previously reported for changes in the 
developmental distribution of 16 S AChE activity 
in rat diaphragm [5,7,9]. These findings may now 
be ascribed to the more prominent disappearance 
of 16 S AChE from -EP as opposed to +EP 
regions. While the possibility of a spatial 
developmental shift in the localization of the en- 
zyme cannot be discarded, further studies are 
necessary to resolve this point. In turn, our ex- 
periments also show that despite the noticeable 
localization of 16 S AChE activity in + EP regions 
observed by the end of the first month after birth, 
a small amount of this activity still persisted in the 
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-EP regions (fig.2). Other investigators have 
claimed that 16 S AChE is completely absent from 
-EP regions of adult rat diaphragm [5,7,9]; 
however, our results are in agreement with a more 
recent report showing detectable amounts of the 
enzyme in the - EP regions of this muscle [6]. Ac- 
cordingly, as has been suggested for human 
skeletal muscle [16], the 16 S AChE form in rat 
muscle cannot be entirely considered as an end- 
plate specific enzyme. 

The most important aspect of this study involves 
the developmental changes in the subcellular 
distribution of asymmetric AChE activities, par- 
ticularly the 16 S form. As mentioned earlier, the 
ECHO-inaccessible and BW-protected asymmetric 
AChE activities can be considered to represent, for 
the most part, intra- and extracellularly located en- 
zymes, respectively [6,10,11]. This conclusion is 
strongly supported by recent experiments showing 
that denervation of adult gracilis muscle causes in- 
tracellular 16 S AChE activity to decay earlier than 
its extracellular counterpart [ 121. The present 
results not only support the existence of such 
subcellular pools of asymmetric AChE forms, but 
more importantly they demonstrate that the activi- 
ty of these forms in intra- and extracellular com- 
partments undergo distinct changes during 
postnatal development. For example, there was a 
clear temporal correspondence between the observ- 
ed developmental decrease of intracellular 16 S 
AChE and its extracellular increase at muscle + EP 
regions (fig.3). We conclude, then, that with mus- 
cle maturation there is a gradual externalization of 
16 S AChE in +EP regions until the adult 
distribution (15% internal; 85 % external) is attain- 
ed approximately 1 month after birth. This +EP 
enzymatic externalization process does not extend 
to the -EP regions which, within the limits of 
resolution of our methods, did not show any detec- 
table amounts of extracellular asymmetric AChE 
throughout the muscle’s postnatal development. In 
this context, the extracellular 16 S AChE in rat 
gracilis muscle may be considered as an endplate 
specific enzyme, whereas that located intracellular- 
ly is present in both +EP and -EP regions. Our 
present and previous [12] findings, together with 
those showing that muscle cells are capable of pro- 
ducing 16 S AChE even in the absence of innerva- 
tion [ 171, are consistent with the view that 16 S 
AChE (as well as the 12.5 S form) is assembled 
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within muscle cells prior to its deposition on the 
synaptic basal lamina. 
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