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Uptake of Li+ induced by the addition of proline to a cell suspension of Escherichia coli was detected using 
an Li+-selective electrode. This Li+ uptake was inhibited by L-azetidine 2-carboxylic acid, a competitive 
inhibitor of the proline transport system. Thus, direct evidence for Li+-proline cotransport via the proline 

transport system was obtained. Kinetic parameters of the Li+ uptake were determined. 
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1. INTRODUCTION 

The proton-motive force is the driving force for 
many active transport systems of sugars and amino 
acids in microorganisms [l]. In many such 
systems, H+-solute cotransport takes place. Recent 
studies, however, revealed that other monovalent 
cations such as Na+ and Li+ are utilized as coupl- 
ing cations in several systems [2-41. Na+-solute 
and Li+-solute cotransport mechanisms are found 
in microbial membranes as well as animal mem- 
branes [5,6]. 

20 mM glucose at 37°C as in [9]. Cells were 
harvested at late logarithmic growth phase, washed 
3 times with 0.1 M 4-morpholinepropanesulfonic 
acid (Mops) buffer adjusted to pH 7.0 with Tris, 
suspended in the same buffer to about 50 mg 
cellular protein/ml and kept in an ice bath until 
use. 

2.2. Assays 

Proline transport’ in Escherichia coli is 
stimulated by Li+ [7]. Based on this observation, 
one of the authors has postulated Lif-proline 
cotransport, and obtained results supporting this 
assumption [8]. We present here direct evidence 
for Li+-proline cotransport in E. coli. Using a pro- 
cedure we reported previously [9], we measured 
Li+ uptake induced by proline influx into cells. 
Some properties of the Li+-proline cotransport 
system are also described. 

An Li+-selective electrode was constructed, and 
uptake of Li+ induced by proline influx into cells 
was measured as in [9]. Protein was determined as 
in [lo]. 

3. RESULTS AND DISCUSSION 

2. MATERIALS AND METHODS 

2.1. Organism and growth 
E. coli strain W3133-2, a derivative of K12, was 

grown in a minimal salts medium supplemented 
either with 1% Bacto-tryptone (Difco) or with 

Li+ stimulated proline transport in E. coii [7], 
and an artificially imposed Li+ gradient across the 
membrane elicited proline uptake [8]. These results 
suggested the mechanism of Li+-proline cotrans- 
port. The V,, value for the proline transport has 
been reported to .be 20-40 nmol - min-’ - mg pro- 
tein-’ [l 11. If the Li+-proline cotransport me- 
chanism is present, and if the stoichiometry be- 
tween Li+ and proline is not far from 1, then trans- 
port of Li+ together with proline should be 
detected under appropriate conditions. Since there 
is no isotope of Li+ available for laboratory use, 
measurement of Li+ transport with an Li+-selec- 
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tive electrode is very useful [9]. 
The cell suspension was made anaerobic by gass- 

ing with Nz, and Li+ concentration measured with 
an Lit-selective electrode. When a small volume of 
anaerobic proline was added to cells, an immediate 
fall in Li+ concentration in the medium was 
observed (fig. l), indicating proline-induced Li+ 
uptake. This result provides direct evidence for 
Li+-proline cotransport. Proline-induced Li+ up- 
take was not observed when cells were prein- 
cubated with. proline or L-azetidine 2-carboxylic 
acid which is a competitive inhibitor of the proline 
transport system [12]. On the other hand, hydrox- 

a 

b--/ 

d 

e- 
Fig.1. Uptake of Li+ induced by addition of proline. 
Cells (10 mg protein/ml) were preincubated in 3 ml of 
0.1 M Mops-Tris buffer (PH 7.0) containing 50 ,uM 
LiCl under anaerobic conditions at 30°C. Then a 
solution (3 ~1) of 100 mM L-proline was added at points 
indicated by an arrow. Concentration of Li+ in the 
medium was measured with an Li+-selective electrode. 
An upward deflection indicates a fall in Li+ 
concentration in the assay medium. (a-d) Cells grown 
on tryptone. (a) Control, (b) cells preincubated with 
0.5 mM hydroxy-L-proline for 5 min, (c) cells 
preincubated with 0.5 mM L-azetidine 2-carboxylic 
acid, (d) cells preincubated with 0.5 mM L-proline, (e) 

cells grown on glucose. 
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yproline which is not a substrate of this system did 
not affect proline-induced Li+ uptake. The proline 
transport system is an inducible system [13,14], 
and proline transport activity in cells grown on 
glucose is very low. As expected, Li+ uptake in- 
duced by proline influx was much lower in cells 
grown on glucose than on tryptone (fig.1). These 
results strongly support the view that it is the pro- 
line transport system, most likely the proline 
porter I [ 141, which is responsible for Li+-proline 
cotransport. No proton-motive force was detected 
under these experimental conditions. Furthermore, 
essentially the same results were obtained when 
tetrachlorosalicylanilide, a potent proton conduc- 
tor, was added to the assay mixtures (not shown). 
Therefore, Li+ uptake was elicited by passive in- 
flux of proline. 

A stimulatory effect of Lif on proline transport 
has been reported to be temperature dependent [7]. 
Li+ strongly stimulated proline transport at 
temperatures above 34”C, whereas only weak 
stimulation was observed below this temperature 
[7]. It was of interest to test the effect of 
temperature on proline-induced Li+ uptake. Li+ 
uptake was observed at temperatures between 15 
and 44°C (fig.2). A temperature-dependent in- 
crease in velocity of Li+ uptake was observed bet- 
ween 15 and 30°C. A very small increase was 
observed at temperatures between 30 and 39°C. 
An Arrhenius plot of the data indicated that a 
transition point existed at 28°C (not shown). 

Because of the high sensitivity and rapid 
response of the Li+-selective electrode [9], kinetic 
analysis of Li+ uptake was possible. The initial 
velocity of Li+ uptake was measured at various 
concentrations of proline. A Lineweaver-Burk plot 
of proline-induced Li+ uptake showed that the Km 
for proline was 30 pM and the V,, was 2.3 ngion 
Li+ . min-’ .mg protein-’ (fig.3). Km values 
(0. l-l .O ,uM) for energy-dependent proline 
transport have been reported [l 11. The Km value 
obtained here (30,~M) is considerably higher than 
those reported in [ll]. It was difficult to observe 
Li+ uptake at proline concentrations lower than 
5 PM under our experimental conditions. 

The V,, o f Li+ uptake (2.3 ngion.min-’ -mg 
protein-‘) indicates that a considerable amount of 
Li+ is taken up during passive proline transport. 
Cotransport between H+ and proline has been sug- 
gested [l]. If this is the case, and if the 
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Fig.2. Effect of temperature on Li+ uptake. Uptake of 
Li+ was measured as described in fig.1 at various 

temperatures. 
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Fig.3. Lineweaver-Burk plot of Li+ uptake. Uptake of 
Li+ was measured as in fig. 1. L-Proline was added to the 
cell suspension at various concentrations to induce Li+ 

uptake. 

stoichiometry between H+ and proline is not far 
from 1, then H+ uptake induced by passive prohne 
influx should be detected. Thus, we tried to detect 
such H+ uptake but were unable to do so under our 
experimental conditions. As a positive control, H+ 
uptake induced by serine influx [15] was detected 
(not shown). Judging from the detection limit in 
our assay system, H+ uptake, if present, induced 
by proline influx (at saturating proline concentra- 
tion) is less than 0.02 ngion H+ - min-’ - mg 
protein-‘. This value is much less than the V,,, of 
Li+ uptake. Therefore, Li+-proline cotransport is 
predominant under our experimental conditions. 
However, we cannot exclude the possibility that 
H+-proline cotransport may take place under cer- 
tain conditions. 
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