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T&e ~te~ction betweet the B-form specific ligands netropsh (NE) and dis~m~e~n-3 (E&t-3) and DNA 
duplexes has been studied under conditions of salt concentration and low water activity that modify the 
polymer conformation into a non-B DNA form, putatively a Z-like form. Three polymers with strict 
alternating purine-pyrimidine sequences and GC content from 100-O% have been tested: 
poly(dG-dC)- poly(dG-K), poly(dA-dC)* poly(dG-dT) and poly(dA-dT)* poly(dA-dT). The titrations 
by NE and Dst-3 were followed by circular dichroism. Although specific binding of Nt to the Z-form of 
~~~~d~-d~~ _ ~ly(d~dC~ does not occur, Nt reverses this Z structure to the Btype conformations Dstd 
is, however, tota& inefficient. The presumed non-B or Z-like structure of poiy(~-dC)*paly(dG-dT~ is 
reversed to the B-form upon interaction with Nt; Dst-3 also induces this reversal but at higher ligand ratios. 
The modified B-structure of poly(dA-dT) 1 poly(dA-dT) in low water activity is efficiently reversed to the 

B-form by interaction with both Nt and Dst-3. 

The small ~r~v~-~~~d~~~ a~t~~~o~~~s Nt and 
Dst-3 (fig.11 selectiveiy interact with AsT base 
pairs in the right-handed B conformation of DNA 
[l-3]. These drugs show no significant binding af- 
finity towards double-stranded RNA [1,4-61, A- 
type DNA [f,7f or most RNA-DNA hybrids f8f. 
Botfi drugs can z&o induce reversal from the A to 
B form of DNA f9-111. We have shown that cer- 
tain synthetic RNA-DNA and 2 ’ -fluoro-2 ’ - 
deoxy . DNA hybrids may also undergo the A to B- 
typetransition upon interaction with Nt and Dst-3 
ff2,13]. The three po&mers po~~~d~-d~~ * poly- 
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Abbreviations: CD, circular dichroism; Nt, netropsin; 
Dst-3. distamycin-3 

(dG-de), poIy(dA-dC) - poIy(dC-dT) and p&y- 
@A-dT) - po~y~~-~T~ possess a ~~r~e-p~jrn~~ 
dine sequence which is a reqisite for the possibik 
ty of the B to Z transition. Under various ionic and 
solvent conditions, all of these polymers can be 
turned to different degree, to non-B DNA forms. 
Paly(dG-dC) - polyfdG-dC) adopts the left- 
handed Z-form under high iotic strength con&- 

Fig. 1. Chemical structure of netropsirr (Nt; n = 2) and 
distamycin3 (Dst-3; n = 3) lacking the left guanidinium 

group. 
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tions 114-211 or by interaction with spermine [15]. 
Poly(dA-dC) . poly(dG-dT) may also form a left- 
handed structure in fibres [15]. In solution, this 
latter polymer clearly differs from the B-form 
[22,23] although the existence of a Z-type structure 
has not yet been proven. Poly(dA-dT) - poly- 
(dA-dT) exhibits a conformation different from 
the normal B-form in high CsF concentrations 
[24]; however, a Z-type conformation has been 
ruled out for this so-called X-form [25]. 

The Z-form of poly(dG-dC) - poly(dG-dC), as 
well as the non-B DNA forms of poly- 
(dA-dC) . poly(dG-dT) and poly(dA-dT) a poly- 
(dA-dT) in reduced water activity conditions are 
all characterised by long wavelength negative CD 
bands. The Z to B transition can be therefore con- 
veniently monitored by CD. Here, we report the 
interaction of Nt and Dst-3 with the 3 polymers 
poly(dG-dC) - poly(dG-dC), poly(dA-dC) - poly- 
(dG-dT) and poly(dA-dT) - poly(dA-dT) under 
solvent and ionic conditions favouring the non-B 
DNA conformations; i.e., the Z-form for poly- 
(dG-dC) - poly(dG-dC) and the modified non-B- 
forms for the two other polymers. 

2. MATERIALS AND METHODS 

Nt hydrochloride was a crystalline product [4] 
kindly donated by H. Thrum (Jena). Dst-3 was ob- 
tained from Boehringer, Mannheim. Extinction 
coefficients (in M-’ . cm-‘) [26]: Nt, ~2% = 21500; 
Dst-3, 6303 = 33 000. Poly(dG-dC) - poly(dG-dC), 
poly(dA-dC) - poly(dG-dT) and poly(dA-dT) 
- poly(dA-dT) were purchased from Boehringer 
(Mannheim); the extinction coefficients [27] were 
6254 = 8400, 6260 = 6500 and 6258 = 

6800 M-r. cm-‘. The binding ratio, expressed as 
ligand/phosphate (r’), is used throughout. CD 
spectra were recorded on a Jobin-Yvon Dichro- 
graphe III using 1 cm cuvettes. 

3. RESULTS 

3.1. Poly(dG-dC) - poly(dG-dC) 
This polymer adopts the Z-form in 60% ethanol 

plus 1.5 mM CsCl [22]. The interaction of Nt and 
Dst-3 in these conditions can be followed by the 
change in the CD spectrum and is shown in fig.2. 
Interaction of Nt appears to be cooperative; at 
r’ = 0.8, when the titration reaches a plateau, the 
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Fig.2. CD spectra of poly(dG-dC) . poly(dG-dC) in the 
Z-form in 1.5 mM C&l, 60% ethanol with increasing 

amounts of Nt. The binding ratio r’ is indicated. 

CD band at 3 15 nm characteristic of the binding of 
Nt with a B-type structure is present. This suggests 
that a reversal from the Z to the B-type structure 
takes place under the action of Nt, even in the ac- 
tual ionic and low water activity conditions that 
promotes the Z-form, due to the preferential in- 
teraction of Nt with the B-form of DNA. 
However, in contrast to Nt, Dst-3 does not induce 
any significant change in the CD spectrum, even at 
r’ = 0.9. However, it should be noted that under 
low ionic conditions (such as 1 mM NaCl) where 
poly(dG-dC) . poly(dG-dC) exists as a B-type 
structure, Dst-3 interacts much better than Nt as 
judged from the intensity of the 320 nm band [28]. 
Increasing the ionic strength from 0.001-0.1 M 
nearly eliminates Dst-3 binding to B-form po- 
ly(dG-dC) * poly(dG-dC) (not shown). 

On the other hand, Nt did not interact with po- 
ly(br’dG-dC) + poly(br’dG-dC) which is always in 
the Z form [29] and whose low salt CD spectrum 
is close to that of poly(dG-dC)- poly(dG-dC) in 
60% ethanol (fig.2, r’ = 0). No amount of Nt 
would reverse its spectrum to that of the B-form. 

3.2. Poly(dA-dC).poly(dG-dT) 
In 60% ethanolic solution plus 1.5 mM CsCl 

and 0.02 mM Ca2’, an intense, negative, long- 
wavelength CD band characterizes the non-B DNA 
conformation of this duplex [22]. Fig.3 shows the 
ability of Nt to interact with poly(dA-dC) . poly- 
(dG-dT) in these conditions. Addition of Nt 
causes a gradual disappearance of the negative CD 
band at 278 nm; this effect is paralleled by the ap- 
pearance of the positive CD band around 315 nm, 
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Fig.3. CD spectra of poly(dA-dC) . poly(dG-dT) in Fig.4. CD spectra of poly(dA-dT) * poly(dA-dT) in 
1.5 mM CsCI, 60% ethanol, 0.02 mM Ca2+ with 1.5 mM CsCI, 60% ethanol, with increasing amounts of 
increasing amounts of Nt. Binding ratios r’ are Nt. Binding ratios r’ are indicated. 

indicated. 

characteristic of the binding of Nt to the B-form. 
Contrary to poly(dG-dC) * poly(dG-dC), Dst-3 
lowers also the negative band at 278 nm and in- 
duces the positive one at 320 nm; this requires, 
however, higher r’ values than Nt. The ligand- 
induced conformational reversal is different in 
6 M CsCl, a condition which also promotes the ap- 
pearance of a non-B DNA conformation for poly- 
(dA-dC) . poly(dG-dT) [22]. In 6 M CsCI, Nt 
does not interact with this duplex, in agreement 
with our findings that high [salt] dissociates Nt 
from poly(dA-dC) . poly(dG-dT) [30], whereas 
Dst-3 and Dst-5 show pronounced binding (not 
shown). 

narrow range of ligand concentration up to r’ = 
0.1. In contrast with the two previous duplexes, 
Dst-3 is as efficient as Nt to induce the reversion to 
the B-form (CD spectra not shown). 

4. DISCUSSION 

3.3. P~iy(dA-dT~.~o~(dA-dT~ 
The binding of Nt to this polymer in 60% 

ethanol is shown in fig.4. Under these conditions 
of decreased water activity this alternating duplex 
adopts also a modified conformation which is not 
a Z-type DNA and which differs from that at low 
ionic strength by an intense, negative, long- 
wavelength Cotton effect [24,25]. The progressive 
lowering of the negative CD band at 278 nm in- 
dicates that Nt reverses the low water form of 
poly(dA-dT).poly(dA-dT) to the B-form as a 
consequence of its stabilizing effect on the B- 
conformation. This reversal takes place within a 

Nt and Dst-3 are DNA binding ligands specific 
for the B-conformation [l-3]. These results show 
that these antibiotics can also reverse some alter- 
nating purine-p~imidine duplexes to the B-form 
even under conditions of high [salt] and low water 
activity that induces a non-B form or the Z-form 
[ 18-221. A reversal of the A to the B form has 
already been observed in DNA [ 1 I], and in some 
ribo-deoxy and 2’ -~uoro-containing hybrids 
[ 12,131. To compare easily the effects of Nt and 
Dst-3 on the 3 polymer duplexes studied one can 
examine the CD titrations monitored at two 
characteristic wavelengths (fig.5). The first 
positive CD peak at 315 and 328 nm for Nt and 
Dst-3, respectively, reflects the binding of the 
l&and to the duplex. The second wavelength cor- 
responds to the negative peak around 275 to 
288 nm which is characteristic for the Z form or at 
least of a non-standard B form [22-251 of 
poly(dA-dT) - poly(dA-dT) and poly(dA-dC) 
wpoly-(dG-dT). This wavelength allows one to 
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0.2 6.6 r’ 

Fig.5. CD titrations of poly(dG-dC) .poly(dG-dC) 
(left), poly(dA-dC)* poly(dG-dT) (center) and 
poly(dA-dT) . poly(dA-dT) (right) with Nt (0) and 
Dst-3 (m). Experimental conditions are those of fig.2-4. 

monitor the reversion of the non-B to the B-type 
CD spectrum (fig.5). 

The following conclusions can be drawn: 

(1) For a given antibiotic-polymer pair the titra- 
tions at the two wavelengths are always parallel. 
This strongly indicates that the binding of the an- 
tibiotic and the reversion to the B-form are con- 
comitant and that essentially no free B-type 
polymer is present as an intermediate. 

(2) An apparent inverse relationship exists bet- 
ween Nt binding and the ease of formation of non- 
B-like structures in alternating purine-pyrimidine 
duplexes. It is therefore not surprising that the 
easier a polymer binds Nt in low [salt], the more 
difficult it will be to turn it into the non-B forms 
and the more easily it will return to a B-form under 
the action of Nt. 

(3) In the search for the mechanism of the rever- 
sion from the non-B like forms to the B forms by 
Nt one has to take into account the large dif- 
ferences in the action of Nt and Dst-3. The effi- 
ciency of Dst-3 to reverse non-B forms decreases 
from poly(dA-dT) 9 poly(dA-dT) to PolY- 
(dA-dC) - poly(dG-dT). Dst-3 is totally inefficient 
on poly(dG-dC) - poly(dG-dC) in the Z-form 
(60% ethanol, 1.5 mM CsCl), while it binds effi- 
ciently in 0.1 M NaCl to this polymer in the B- 
form. 

Both Nt and Dst-3 are non-chiral molecules con- 
taining a plane of symmetry. Absence of binding 

of these molecules to the non-B-like or Z-form 
should therefore not be searched in the difference 
of handedness of such helices, but rather in the dif- 
ferences in their geometries. Nt binds to O2 of 
pyrimidines or N3 of purines in B-DNA, as well as 
to the phosphate sites [l-9]. The minor groove, 
where the distance between phosphate groups on 
opposite strands is -12 A, is most favourable for 
the interaction of both oligopeptides. In Z-DNA, 
however, the phosphate groups are much closer to 
each other [ 14-16,311 and N3 of the purines is in- 
accessible because of the syn conformation of the 
guanosine residues, while the pyrimidine O2 nearly 
touch the helix axis. The single groove of Z-DNA 
is very deep [14-16,311 so that interactions with 
phosphates and contacts with the bases are highly 
unfavoured. Nt thus induces a conversion to the B- 
form to which it binds with high efficiency. 

It has been suggested [ 131 that Nt could replace 
one of the two water shells of the hydration spine 
in the small groove of the B-structure of A * T (and 
I + C) polymers [32]. The efficient reversal of poly- 
(dA-dT)* poly(dA-dT) to the B-form by Nt and 
Dst-3 is probably accompanied by the replacement 
of the water spine by the antibiotics even under 
conditions of low water activity which do not 
favour the B-form. The absence of such a water 
spine in G .C pairs [32] greatly reduces binding, 
besides the steric hindrance by the 2-amino group 
of guanosine. 

Our data also agree with recent calculations on 
different DNA conformations by the group of 
Pullman [33-351 which showed that the elec- 
trostatic potential is highest in the minor groove of 
B-DNA and represents an additional important 
factor in the binding ability of Nt and Dst-3. In- 
teraction of both drugs with Z-DNA is elec- 
trostatically unfavoured [35]. 

In [21], reversal of the Z to B forms was observ- 
ed under the action of intercalating drugs. Their 
finding that Dst-3 was ineffective on the Z-form of 
poly(dG-dC) - poly(dG-dC) agrees with these data 
in ethanolic solutions (fig.2,5). 

Two points remain unclear and call for a deeper 
analysis of the Z to B reversal: the mechanism of 
the reversion by Nt and the inability of Dst-3 to 
reverse the Z-form of poly(dG-dC) - poly- 
(dG-dC), although the latter antibiotic binds bet- 
ter to the B-form than Nt [28]. Work is under way 
to clarify these questions. 

159 



Volume 154, number 1 FEBS LETTERS April 1983 

We have been informed recently by Professor 
C.W. Schmid (Univ. California, Davis) that poly- 
(dA-dC) - poly(dG-dT) from Boehringer contain- 
ed sequences different from those expected. This 
result, however, does not change our conclusion 
that a non-B DNA is returned to a B-type DNA 
under the influence of Nt and Dst-3. Whether this 
non-B form is in fact a Z-DNA (or any other po- 
ly(dA-dC) - poly(dG-dT) sample for that matter) 
will have to be resolved by other techniques and is 
under investigation. 
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