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Meiotic maturation of amphibian oocytes induced by progesterone is known to be regulated by protein

phosphorylation. To investigate a possible role for protein phosphatase-1 in this process, the effect of

phosphatase inhibitor-2 was determined on the in vivo rate of dephosphorylation of phosphorylase @ and

on the rate of oocyte maturation. Dephosphorylation of microinjected phosphorylase @ was inhibited up

to 40% in the presence of inhibitor-2, with half-maximal inhibition at an intracellular concentration of

0.6 #M. Inhibitor-2 also caused over a 3-fold increase in the half-time for maturation, suggesting a possible
role for protein phosphatase-1 in the regulation of meiosis.
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1. INTRODUCTION

As isolated from the ovary, ripe Xenopus oocytes
in first meiotic prophase are stimulated to com-
plete meiotic cell division by the addition of pro-
gesterone in vitro (review [1]). Hormone-stimulated
oocytes progress to the 2nd meiotic metaphase,
where they remain physiologically arrested until
fertilization or activation. These oocytes are very
large cells (1.4 mm diam.) and suitable for quanti-
tative microinjection. The use of microinjection
demonstrated that the signal releasing the oocyte
from the 1st meiotic arrest is a decrease in activity
of the cyclic AMP-dependent protein kinase. Thus,
studies which altered the intracellular level of the
free catalytic subunit [2] demonstrated that the ob-
served decrease in cyclic AMP with progesterone
was both necessary and sufficient to initiate the
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biological response [2—5]. As originally described
in [6], progesterone inhibits the plasma membrane
adenylate cyclase by a mechanism involving the
guanine nucleotide regulatory protein [6—8]. Re-
cent evidence from photoaffinity labelling studies
indicates that this inhibition of adenylate cyclase is
mediated by a steroid receptor on the plasma mem-
brane of the oocyte [9].

All of these findings support the hypothesis that
the prophase arrest of the ripe oocyte is maintained
by maturation inhibiting phosphoprotein(s), whose
phosphorylation state is controlled by the cyclic
AMP-dependent protein kinase [2]. Hence, fol-
lowing the progesterone-induced inhibition of this
enzyme, there would be a subsequent reduction in
the degree of phosphorylation of the putative
maturation-inhibiting protein(s) [2].

The phosphorylation state of any protein is a
balance between the protein kinase and protein
phosphatase activities. While it is clear that the
cyclic AMP-dependent protein kinase activity is
reduced by progesterone, almost nothing is known
about the possible involvement of protein phos-
phatases in the maturation process [1]. An impor-
tant question, for example, is whether progester-
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one might also increase the rate of dephosphoryla-
tion of the maturation-inhibiting protein(s) due to
an increase in protein phosphatase activity. This is
of particular interest due to the recent findings that
mammalian protein phosphatases appear to be
controlled by a variety of hormones [10—17]. En-
zymes of one class, termed protein phosphatase-1,
have been partially characterized with respect to
structure and substrate specificity, and are impli-
cated in the regulation of a number of metabolic
pathways. Protein phosphatase-1 is inhibited by
nM levels of two heat-stable proteins termed inhi-
bitor-1 and inhibitor-2 [10,20—24], while enzymes
in the phosphatase-2 class are unaffected by the in-
hibitors [10,11,18,19]. Inhibitor-1 is inhibitory
only when phosphorylated by the cyclic AMP-de-
pendent protein kinase [20—24], while inhibitor-2
does not require phosphorylation [23,24]. Inhibi-
tor-1 and inhibitor-2 have been shown to act as
specific inhibitors of protein phosphatase-1 in a va-
riety of mammalian tissue extracts [18—20], and
the phosphorylation state of inhibitor-1 is control-
led in vivo by both epinephrine [12—14] and insulin
[13]. However, a conclusive demonstration that
these proteins act as phosphatase inhibitors in vivo
has not been made, nor has it been determined in
a single cell what proportion of phosphorylase
phosphatase is accounted for by the protein phos-
phatase-1 class. Furthermore, several reports
[25-27] have led to the claim that protein
phosphatase-1 is not present in ‘fresh’ tissue ex-
tracts, suggesting that the enzyme is artifactually
generated by proteolysis during homogenization.
In this paper, studies with inhibitor-2 are presented
which suggest that protein phosphatase-1 is an acti-
ve phosphorylase phosphatase in both oocyte ex-
tracts and in vivo in the intact living oocyte.
Inhibitor-2 was also used as a probe to investigate
a possible role for protein phosphatase-1 in the
control of oocyte maturation. The results of these
experiments are discussed in relation to the activity
of protein phosphatase-1 in vivo.

2. MATERIALS AND METHODS

2.1. Isolation of oocytes and microinjection
Xenopus laevis females were primed with 35 TU
pregnant mare’s serum gonadotropin 3 days prior
to decapitation and removal of ovaries. Oocytes
were manually dissected from the ovarian follicle
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with watchmaker’s forceps. Detailed procedures
for isolation of oocytes, preparation and calibra-
tion of micropipets are described in [28].

2.2, Preparation of inhibitor-2 and phosphorylase a

Inhibitor-2 was prepared from rabbit skeletal
muscle and assayed as in [23]. Prior to microinjec-
tion, the inhibitor was diluted in buffer A (10 mM
Tris, 0.01% Brij 35, pH 7.0). Units of inhibitor-2
and protein phosphatase-1 activity are as in [23].
The purified material had spec. act. 83000
units/mg, corresponding to an 87% homogenous
preparation [23]. Assays confirmed the inhibitor-2
preparation was free of the heat-stable inhibitor of
the cyclic AMP-dependent protein kinase. All con-
centrations of inhibitor-2 inside the oocyte are
based on 1 xl cell water and assume homogenous
distribution of material after injection. 3?P-label-
led phosphorylase @ was prepared as in [29], and
stored at 0°C in 50 mM Tris—HCI, 1 mM EDTA,
100 mM NacCl, 20% ethanediol, 30 mM mercapto-
acetic acid (pH 7.4). [y-**P]ATP was synthesized
as in [30]. Protein was determined as in [31].

2.3. Oocyte maturation

Maturation was induced by exposure of oocytes
to progesterone (10 xg/ml) in medium OR2 [32]
followed by incubation at room temperature. A
maturation response was assessed by the frequency
of germinal vesicle breakdown as evidenced by a
white spot in the animal pole and confirmed by
manual dissection of oocytes fixed in 5% trichloro-
acetic acid.

2.4. Determination of phosphorylase phosphatase
activity in vitro

Thirty oocytes were dropped into 0.4 ml 250 mM
sucrose, 4 mM EDTA, 15 mM g-mercaptoethanol,
20 mM Tris—HCI (pH 8.0, 4°C) and homogenized
in a Dounce hand homogenizer. The suspension
was centrifuged for 40min at 7000 X g, at 4°C.
The supernatant was decanted and then centrifuged
(1500 X g, 4 min) through a Sephadex G-50 (fine)
column (6.5 X 0.7 cm), equilibrated in 50 mM
Tris—HCl (pH 7.6, 4°C), 1 mM EDTA, 30 mM
B-mercaptoethanol (buffer B). The gel-filtered ex-
tract was diluted 60-fold before assay into buffer
B containing 6 mM MnCl; and 1 mg bovine serum
albumin/ml. Assays were done at 30°C. Details of
the phosphorylase phosphatase assay are in [23].
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2.5. Determination of phosphorylase phosphatase
activity in vivo

Oocytes (15—30) were individually injected with
50—-60ml [*’P]phosphorylase a (>2000 cpm) with
or without inhibitor-2. The zero time of the reac-
tion was taken immediately after all the injected
material had entered the cell. The reaction was ter-
minated by dropping oocytes into 1 ml ice cold
10% trichloroacetic acid; 0.1 ml 20 mg bovine
serum albumin/ml was then added, followed by
centrifugation in a microcentrifuge and liquid scin-
tillation counting of the soluble and insoluble frac-
tion. In some cases where longer incubation times
were employed, several oocytes were injected over
a 30 s interval and the zero time of the reaction
taken as the half-time for completion of the injec-
tion. The time between the first and last oocyte of
a group being injected never amounted to >10% of
the total assay time. All experiments were carried
out at least 3 times. All values shown are the mean
of duplicate determinations on oocytes from the
same female.

3. RESULTS AND DISCUSSION

In the presence of | mM Mn?* to optimise total
phosphatase activity, the specific activity of phos-
phorylase phosphatase in the oocyte extracts was
1.35 + 0.16 (n = 6) units/mg protein, a level of
activity comparable to that reported for a variety
of mammalian extracts [18,19]. Phosphorylase
phosphatase activity in such extracts is attributed
to the action of both protein phosphatase classes 1
and 2 [11,18]. In the presence of 100 units inhibi-
tor-2, 26 + 4% (n = 6) inhibition was observed in
the oocyte extract, indicating that ~25% of the
activity was due to protein phosphatase-1, and
75% to protein phosphatase-2 (the inhibitor-2 in-
sensitive activity). This is similar to the levels of
these enzymes in rabbit liver extracts [18—20]. The
dephosphorylation of phosphorylase a proceeds in
a linear fashion with time after injection into the
oocyte, and the rate is significantly reduced in the
presence of inhibitor-2 (fig. 1). Buffer A alone had
no effect. To determine whether the inhibition was
saturable, dose—response curves were carried out
with increasing concentrations of inhibitor-2 in-
jected in a constant volume (60 nl), with a constant
amount of phosphorylase ¢. Inhibition was satur-
able, with half-maximal inhibition at an internal
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Fig. 1. Effect of inhibitor-2 on the dephosphorylation of
phosphorylase @ in vivo. [*?P}Phosphorylase a was
mixed with an equal volume of buffer A; (10 mM Tris,
0.01% Brij-35, pH 7.0) (0—o0) or inhibitor-2 (e—e)
and the rate of dephosphorylation after microinjection
determined as in section 2. The final concentration of
inhibitor-2 in the cytoplasm was ~4 M.

concentration of 0.6 xM inhibitor-2 (fig. 2). This is
similar to the concentration of inhibitor-2 in rabbit
skeletal muscle, 0.35 xM [23]. Saturating concen-
trations of inhibitor-2 resulted in a 40% decrease in
the rate of phosphorylase a dephosphorylation,
demonstrating unambiguously that inhibitor-2 can
act as a phosphatase inhibitor in vivo.

The fact that inhibitor-2 acts as a saturable in-
hibitor of phosphorylase phosphatase in the intact
oocyte suggests that only one class of phosphatase
in the oocyte is subject to inhibition by inhibitor-2.
We suggest that the inhibited activity corresponds
to protein phosphatase-1. The possibility that the
non-inhibited activity represents proteolysis has
been ruled out by demonstrating all radioactivity
released comigrates with P; on thin-layer chroma-
tography.

To determine whether protein phosphatase-1
acts on the putative maturation-inhibiting phos-
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Fig. 2. Dose—response curve for inhibition of dephos-
phorylation of phosphorylase a in vivo. Oocytes (10—30)
were injected with 60 nl [*2P]phosphorylase a (>2000
cpm) containing increasing concentrations of inhibi-
tor-2. After 3 min, the reaction was terminated and the
extent of dephosporylation determined as in section 2.
The abscissa represents the intracellular concentration of
inhibitor-2 in units/ml; 1500 units/ml corresponds to a
concentration of ~0.6 x4M [23].

phoprotein(s), single doses of increasing concen-
trations of inhibitor-2 were injected into oocytes,
followed by progesterone administration. It was
anticipated that if protein phosphatase-1 played an
obligatory role during initial progesterone action,
then injection of inhibitor-2 should block matura-
tion. Inhibitor-2 was capable of delaying, in a
dose-dependent fashion, the time required for
germinal vesicle breakdown (fig. 3). Apparently
saturating concentrations of inhibitor-2 delayed
the half-time for 50% of the oocytes to undergo
germinal vesicle breakdown by >3-fold. Half-
maximal effects were seen at an internal concentra-
tion of 2.0 zM inhibitor-2. If the steady state level
of a maturation-inhibiting phosphoprotein can be
rapidly affected by changes in phosphatase activity
and protein phosphatase-1 was the only phospha-
tase acting at this step, one might have predicted,
a priori, that inhibitor-2 would have completely in-
hibited maturation, as seen with microinjection of
catalytic subunit of cyclic AMP-dependent protein
kinase [1,2], Complete inhibition is not observed
with inhibitor-2 which suggests, but does not
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Fig. 3. Effect of inhibitor-2 on oocyte maturation.
Groups of 25—30 oocytes were injected with increasing
concentrations of inhibitor-2 prior to progesterone
stimulation, and the time course for germinal vesicle
breakdown determined. Controls were injected with
buffer A. Progesterone (10 uM) was administered
15—30 min after injection of inhibitor-2, 0.5 GVBD 50
represents 50% of the time required for 50% of the
responding oocytes to undergo germinal vesicle break-
down. The abscissa represents the final intracellular con-
centration of inhibitor-2 in units/ml.

prove, that the hormonal control of the steady state
level of the maturation-inhibiting phosphopro-
tein(s) is not controlled primarily by changes in
phosphatase-1 activity. However, several other ex-
planations for incomplete inhibition of maturation
may also be proposed:

(1) More than one protein phosphatase could be
involved, with the second enzyme being insen-
sitive to inhibitor-2. The existence of such an
enzyme(s) is indicated in fig. 2 and, in addi-
tion, Ca?* also regulate oocyte maturation [1],
and we have found significant levels of a
calcium/calmodulin-dependent protein phos-
phatase-2 [33] in oocytes (unpublished).

(2) The kinetics of inhibition in vitro indicate that
inhibitor-2 acts in a hyperbolic manner, sug-
gesting that complete inhibition would be dif-
ficult to achieve;

(3) Inhibitor-2 may be inactivated with time,
either by proteolysis, or perhaps in a more
physiologically relevant manner [34,35].
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While this work was in progress, it was reported
that microinjection of the phosphorylated form of
inhibitor-1 could also delay but not prevent
maturation [36], similar to the results presented
here for inhibitor-2. Failure to totally block ma-
turation was interpreted as being due to a dephos-
phorylation of inhibitor-1. Clearly this cannot pro-
vide an explanation for the similar effects observed
here with inhibitor-2. The ability of inhibitor-1 and
inhibitor-2 to delay maturation supports the con-
cept that phosphatase-1 could be involved in
oocyte maturation. The resting activity of phos-
phatase-1 might become regulatory only in the
event of reduced protein kinase activity with pro-
gesterone, or there could be a net activation of the
phosphatase. Conclusive evidence for this latter
possibility will require the demonstration that this
enzyme is activated in response to progesterone,
possibly after inhibitor-1 dephosphorylation.
These considerations also lead to the prediction
that microinjection of purified protein phospha-
tase-1 alone would be sufficient to initiate the
maturation response. These predictions are cur-
rently under investigation in order to evaluate the
possibility that inhibitor-1 is in fact one of the
maturation inhibiting phosphoproteins.
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