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Saturable binding sites for the labelled calcium antagonist (+)[3H]nimodipine were found in guinea-pig 
hind limb skeletal muscle homogenates. Binding sites were enriched in a microsomal pellet by differential 
centrifugation of the homogenate. [3H]Nimodipine binding (Z& = 1.5 f 0.03 nM, B,,, = 2.12 0.25 pmoll 
protein, at 37°C) copurified (6-fold) in this fraction with [3H]ouabain binding (6.6-fold) and 1251-,-bun- 
garotoxin binding (5-fold). d-cis-Diltiazem (but not I-cis-diltiazem) stimulated (+) [JH]nimodipine bind- 
ing (ED50 I PM) by increasing the B,,,. Binding sites discriminated between the optical enantiomers of 
1,4-dihydropyridine calcium antagonists and the optically pure enantiomers of D-600. The data confirm, 
with biochemical techniques, the presence of 1,4-dihydropyridine and (*)D-600 inhibitable calcium 

channels in skeletal muscle, previously found with electrophysiological techniques. 

Skeletal muscle Calcium channel Antagonist Receptor A llosterism Nimodipine 

1. INTRODUCTION skeletal muscle membrane fraction derived from 
guinea-pig hind limb. 

Putative Cal+ channels have been directly iden- 
tified by the utilization of radiolabelled 1,4-di- 
hydropyridine Ca2+ -antagonists in mammalian 
heart [l-4], brain [2-61 and duodenal membranes 
(71. The potent 1,4_dihydropyridine Ca2+-antago- 
nist nimodipine [8] when radiolabelled with tri- 
tium binds to a homogeneous population of high 
affinity binding sites (Kd = 0.6 nM; 37°C) in 
guinea-pig brain membranes [5]. The ( ?)[3H]- 
nimodipine binding site interacts with organic and 
inorganic Ca2+ -antagonists [6] suggesting that 
(+)[3H]nimodipine binds to physiologically rele- 
vant C&+ channels. 

2. MATERIALS AND METHODS 

Besides the above tissues, skeletal muscle has 
Ca2+ channels, which have been identified by 
electrophysiological studies (review [9]). Therefore, 
we have performed ligand binding experiments 
and report on the direct identification of putative 
Ca2+ channels and their regulation by organic and 
inorganic Ca2+ -antagonists in a partially purified 

+ This is part of the thesis of D.R.F. to be presented to 
the Medical Faculty of the Justus-Liebig-Universitat 
Gieben 

Male guinea-pigs (250-350 g body wt) were 
stunned and bled. The skin around the hind limbs 
was removed and the muscles (15 g/animal) 
rapidly excised and placed in ice-cold 20 mM 
NaHC03 supplemented with 0.1 mM phenyl- 
methylsulphonylfluoride (PMSF). The muscle was 
trimmed free from fat and connective tissue and 
homogenized by two 30 s disruptions with an ul- 
traturrax (three quarters of maximal speed). The 
wet weight to volume ratio was 1:5. The crude ho- 
mogenate was filtered through 2 layers of cheese- 
cloth, and the resultant filtrate was centrifuged at 
3500 x g (15 min). The pellet was discarded, and 
the supernatant spun at 45 000 x g for 15 min. 

The resultant pellet is resuspended in 50 mM 

Tris-HC1 (pH 7.4) and centrifuged as above. The 
final crude microsomal pellet was suspended in 
Tris-HCl buffer (50 mM, pH 7.4) and stored in 
liquid nitrogen until use. 

* To whom all correspondence should be addressed 

(+ )[jH]Nimodipine (160 Ci/mmol, Bayer AG, 
>95% radiochemical purity) binding assays were 
performed under sodium vapour light as in [5]. In 
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brief: (+)[3H]nimodipine was incubated with 
tissue fractions and various additions in 50 mM 
Tris-HCl buffer (pH 7.4 at 37°C) and bound and 
unbound ligand separated by rapid filtration 
through Whatman GF/C filters. Non-specific 
binding was defined by 1 PM unlabelled ( ?)nim- 
odipine. Specific binding represents 2 85% of 
bound radioactivity in all ( + )[3H]nimodipine 
binding experiments. 

[3H]Ouabain (18 Ci/mmol, NEN, Dreieich) 
binding was performed as in [lo] except that Tris- 
HCl (50 mM,pH 7.4) replaced the imidazol buffer. 
t25I-Labelled hydroxyphenylisopropyladenosine 
(2 175 Ci/mmol, prepared and purified in our labo- 
ratory) binding was done as in [ 111. 

t25I-Labelled a-bungarotoxin (12.2 &i/pg, 
NEN, Dreieich) binding was performed as in 1121, 
except that non-specific binding was defined 
by 0.2 PM unlabelled a-bungarotoxin (Sigma, 
Miinchen). 

(+)PN 205-033 and (-)PN 205-034 are the op- 
tically pure enantiomers of the potent 1,4-dihydro- 
pyridine Ca2+ -antagonist (+)PN 200- 110 (iso- 
propyl-4-(2,1,3-benzoxadiazol-4-yl)- 1,4-dihydro- 
2,6-dimethyl-5-methoxycarbonyl-pyridine-3-car- 
boxylate) and were provided by Sandoz AG 
(Basel). (+)Fendiline was from Thiemann 
(Ltinen), Tiapamil, (N-(3,4-DimethoxyphenethyI)- 
2-(3,4-dimethoxyphenyl)-N-methyl-m-dithiane-2- 
propylamine- 1,1,3,3_tetraoxide) was a gift from 
Professor Hausler (Basel). The optically pure en- 
antiomers of D-600 were a gift from Professor 
Flohe (Aachen-Eilendorf). (+)Nimodipine (Bay e 
9736) and Nifedipine were gifts from Professor 
Hoffmeister (Wuppertal). Optically pure d-cis and 
I-cis-diltiazem were from Goedecke AG (Frei- 
burg). 

Statistics: All means are presented with standard 
errors for n independent experiments. Comparison 
of data sets for significant differences was done 
with Student’s two-tailed t-test. ~~0.05 is as usual 
taken to be the acceptable level of significance be- 
tween 2 means. 

3. RESULTS 

3.1, General properties of (-+ )[3 HJnimodipine bind- 
ing in skeletal muscle 

Saturable binding sites for the labelled calcium 
antagonist were found in filtered homogenates 
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from guinea-pig hind limb skeletal muscle. The 
binding was time and temperature dependent and 
fully reversible. A crude microsomal fraction was 
prepared from the filtered homogenate as in sec- 
tion 2. Compared to the starting material [3H]- 
ouabain binding sites were enriched by a factor of 
6.62 1.6 (n= 5), t251-a-bungarotoxin binding by a 
factor of 5.02 + 1.0 (n=4) whereas specific ‘2% 
HPIA binding was not detectable, indicating the 
absence of contamination by fat cell membranes. 

(2 )[3H]Nimodipine binding was enriched by a 
factor of 6.67 & 0.8 (n = 5). All further studies were 
performed with this partially purified microsomal 
preparation. Binding of (+)[3H]nimodipine to this 
fraction was stimulated by d-cis-diltiazem (E&o 
= 1020 + 130 nM, n = 3) but not by I-cis-diltiazem 
(fig.1). In the presence of 10 PM d-cis-diltiazem 
( & )[jH]nimodipine binding was enriched 
7.57 & 1.7 (n = 5)-fold relative to the homogenate in 
the microsomal fraction. 

3.2. Kinetics of (+)[jH]nimodipine binding 

At 37°C the kinetics were rapid and binding was 
fully reversible upon addition of 1 (LM unlabelled 
(+)-nimodipine. Data from an experiment which 
was performed in the absence and presence of 
d-cis-diltiazem (10 PM) are shown in fig. 1. The dis- 
sociation rate constant (k-l) in the presence of 
10 PM d-cis-diltiazem was 0.343 min-1 and in the 
absence 1.5 mint. The Kd derived from the ki- 
netic constants was 1.6 nM in the presence of 
10 PM diltiazem. The association rate of (&)[3H]- 
nimodipine at 37°C was too rapid to accurately 
compute /?&s in the absence of diltiazem. 

3.3. Saturation analysis of (+)[3H]nimodipine 
binding 

To determine the density of binding sites and 
the equilibrium binding & of (+)[3H]nimodipine, 
saturation analysis with varying ligand concentra- 
tions was performed. Fig.2 shows that in the pres- 
ence of 10 PM diltiazem the Kd is essentially inde- 
pendent from the receptor concentration (lo- 
90 PM) and that transformation of the data ac- 
cording to Scatchard yields linear plots. The Emax- 
values (density of (?)[3H]nimodipine binding 
sites/mg microsomal protein) obtained were: 
2.1 -L 0.25 pmol/mg protein (n = 3) and in the pres- 
ence of diltiazem (10 PM) 10+2 pmol/mg protein 
(n = 5). Clearly, d-cis-diltiazem increased the con- 
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Fig.1. Stimulation of ( ?)[3H]nimodipine binding by d-cis-diltiazem and kinetics of ( +)[3H]nimodipine binding. (A) 
Skeletal muscle microsomal membrane (48 pg protein/ml) were incubated for 30 min at 37°C in 0.25 ml with 1.02 nM 
(rt )[aH]nimodipine. The filled symbols (0) represent data in the presence of increasing concentrations of I-cis-diltiazem 
(I&= 35 PM). The open symbols (o) represent d-cis-diltiazem; the EDso for stimulation was 0.79 PM. In the absence of 
additions the specific ( +)[3H]nimodipine binding was 47 pM. (B) Kinetics of ( +)[3H] nimodipine binding to skeletal 
muscle microsomes. The experiment was performed in the absence (o) and presence of 10 PM d-cis-diltiazem (*). 
Dissociation of specifically bound radioligand was induced by the addition of 1 PM unlabelled (+)-nimodipine (ar- 
rows). Insert (Bl): B, is specifically bound ( +)[3H]nimodipine at equilibrium and B, the specifically bound ( *)[3H]- 
nimodipine at a given time. K&s in the presence of d-cis-diltiazem is 0.631 min- t. In the absence of diltiazem the on 
reaction was too rapid to accurately compute. Insert (B2): Dissociation of specifically bound ( +)[3H]nimodipine. The 
calculated dissociation rate constant, k-1 in the presence of 10 PM d-cis-diltiazem, was 0.343 min-t, and in the absence 

of d-cis-diltiazem 1.5 mint. 

centration of sites which bound ( &)[3H]nimodi- 
pine with high affinity @ < 0.0 1). 

The Z&-value of (&)[3H]nimodipine was de- 
creased from 1.5&0.03 (n=3) to 0.99kO.15 (n=5) 
@ < 0.05) by 10 PM d-cis-diltiazem. 

In order to get another estimate for the Kd, sat- 
uration analysis of ( 2 )[3H]nimodipine by recep- 
tors as in [16] was performed. The Kd in the pres- 
ence of d-cis-diltiazem was 0.58 nM, in the absence 
1.06 nM. The saturation analysis also gives the 
bindability fraction of the labelled l&and. As ex- 
pected (since the ligand is a radiochemically pure 
racemate) the bindability was 40-50%. 

3.4. PharmacologicalproJile of the (+)[3H]nimodi- 
pine binding sites in the skeletal muscle micro- 
somes 

In guinea-pig brain membranes [5] and bovine 
sarcolemma [6] 3 distinct classes of Ca*+ antago- 
nists can be discerned on the basis of their interac- 
tion with ( +)[3H]nimodipine binding sites. Class I 
Ca*+antagonists (to which all 1,Cdihydropyridine 

derivatives we have examined, belong) compete 
for (+)[3H]nimodipine binding with a Hill slope 
of 1.0. Class II Ca*+ antagonists are the optically 
pure enantiomers of verapamil and D-600 which 
compete with Hill slopes of < 1.0. The binding- 
inhibition data of class II Ca*+-antagonists tit sig- 
nificantly better to a two site model than to a one 
site model [5]. Class III Ca2+ -antagonists stimulate 
(+)[3H] . d’p’ mmo 1 me binding by acting as allosteric 
heterotropic regulators. d-cis-Diltiazem is the most 
potent class III Ca*+ -antagonist (review [ 131). 

In guinea-pig skeletal muscle microsomes nife- 
dipine had an ZCsu of 240 nM (n=2). Table 1 
summarizes the data obtained from binding-inhi- 
bition experiments with various unlabelled cal- 
cium antagonists, performed in the absence and 
presence of 10 PM d-cis-diltiazem. 

The 1,4_dihydropyridine enantiomers of ( f )PN 
200-l 10, (+)PN 205-033 and (-)PN 205-034 ex- 
hibit a eudismic ratio of 94 in the absence of d-cis- 
diltiazem, and of 125 in the presence of 10 PM 
d-cis-diltiazem. The pharmacologically more po- 
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Table 1 

Binding-inhibition constants of (2 )[3H] nimodipine binding by various Caz+-antagonists 

Control With 10 IJM d-cis-diltiazem present 

Drug ZCso (nM) nH n ZC50 OW nH n shift 
factor 

(+)PN 205-033 2.2+ 0.55 1.04+0.08 3 
(-)PN 205-034 206 f 42e 0.89 +- 0.07 3 
(+)Fendiline 540 k 125 0.98+0.10 3 
Tiapamil 292 f 14 1.08kO.15 3 
( + )D-600 1002 2267 0.78 + 0.04 4 

&)Y600 
> 10’ _ 3 

200 x 103 1.3 2 
Tetrodotoxin > 107 _ 2 

3.5 + 1.6 1.09+0.05 3 1.6 
333 +I 88e 1.18?0.06 3 1.6 

1209 + 205a 1.23r0.12 3 2.2 
12 230 it 4260b 0.89 + 0.09 3 42.0 

5745 + 164d 0.95+0.14 3 5.7 
1410 + 309c 0.90*0.14 3 - 

450 x 103 1.2 2 1.2 
> 107 2 - 

Significance: a ~~0.10 with respect to control; b ~~0.025 with respect to control; C ~~0.01 with 
respect to ( + )D-600; d p < 0.001 with respect to control; e p < 0.01 with respect to (+ )PN 205-033 

Average data with standard errors from n separate experiments, each performed in duplicate with 
5-10 concentrations of unlabelled drugs. nH is the Hill slope and ZCsu the concentration of drug 
causing 50% inhibition of specific ( +-)[3H]nimodipine binding, as calculated from linear regression 
analysis of data transformed into the Hill equation. Shift factor is the ratio of ZCsu in the presence 
10 ~_LM d-cisdiltiazem: ZCsu in the control experiment. The microsomal protein concentration was 
between lo-25 pg/ml and the concentration of (r)[sH] nimodipine between 0.8- 1.5 nM Examples 

of binding-inhibition experiments are shown in fig.3 

tent (+)PN 205-033 is the eutomer under both 
experimental conditions. 

(&)Fendiline becomes a weaker competitor of 
( +)[3H]nimodipine binding in the presence of 
10 PM d-cis-diltiazem, the IC5n value being shifted 
by a factor of 2.2-fold (p ~0.1). Tiapamil exhibits 
an even greater d-cis-diltiazem-induced shift of the 
ZC50 value, namely of 42-fold @ < 0.025). 

The optically pure enantiomers of D-600 com- 
peted in a stereoselective manner with specific 
( + )PH]nimodipine binding. ( + )D-600 behaved as 
(+ )fendiline and tiapamil becoming a weaker in- 
hibitor of (+)[3H]nimodipine binding in the pres- 
ence of 10 pM d-cis-diltiazem @<O.OOl). Re- 
markably, (-)D-600 only inhibited labelled cal- 
cium antagonist binding stimulated by d-cis-dil- 
tiazem, and then incompletely to the level of con- 
trol binding in the absence of d-cis-diltiazem 
(tig.3). Specific (st )[3H]nimodipine binding was 
inhibited by La3+ in the presence and absence of 
d-cis-diltiazem with ZCsu-values of 210 PM and 
460 PM, respectively. However, the divalent cat- 
ions Ca2+ and Mg2+ at up to 10 mM and the 
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monovalent cation Na+ at up to 100 mM had no 
effect on (+_)[JH]nimodipine binding. 

4. DISCUSSION 

Our results demonstrate that the potent 1,4-di- 
hydropyridine calcium antagonist nimodipine [ 141 
when radiolabelled binds in a time-dependent, 
fully reversible manner to crude skeletal muscle 
microsomes. Equilibrium binding experiments 
reveal that (+)[3H]nimodipine binding is of high 
affinity (& = l-l.5 nM) and to an apparently 
homogeneous population of receptors. 

The binding site was stereoselective for the op- 
tically pure enantiomers of the 1 ,Cdihydropyri- 
dine calcium antagonist (%)PN 200-l 10. 40-50s 
of ( +_)[3H]nimodipine binds to an excess of empty 
receptor sites although the radiolabel is of ~95% 
radiochemical purity. This is most likely because 
only the more potent 4 (s) enantiomer (which in 
biological test systems is the eutomer [ 151) is able 
to interact with the binding site with high affinity. 

As is expected, ligand saturation by receptors 
gave the true Kd of the bindable enantiomer for 
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1.6 2A 3.2 0 0.2 0.4 0.6 0.8 

FREE RECEPTOR[nM] BOUND/FREE RECEPTOR 

Fig.2. Saturation analysis of equilibrium binding. (A) 
Skeletal muscle microsomal membranes at 7.2 pg/ml 
(a), 2.9 pg/ml (o), 1.4 pg/ml (m) and 0.7 pg/ml (0) pro- 
tein was incubated with 0.06-3.6 nM (a)(sH]nimodi- 
pine at 37°C in 50 mM Tris-HCl (pH 7.4) with 10 (IM 
d-cis-diltiazem in 1.0 ml for 45 min. At 7.2 pg protein/ 
ml the non-specific binding was linear with respect to 
(k)[3H]nimodipine concentration (r=0.999) with a 
slope of 2.84 pM/nM radioligand. The bound axis inter- 
cept was 0.2 pM (=40 cpm, which is the counter back- 
ground radioactivity). (B) Hofstee transformation of the 
data shown in (A). The symbols correspond to those in 
(A). The Kd and B,,, of (it )[3H]nimodipine, calculated 
by linear regression analysis, were: at 7.2 pg membrane 
protein/ml: 694 pM, 11.94 pmol/mg; at 2.9 pg mem- 
brane protein/ml, 898 pM, 17.1 pmol/mg; at 1.4 pg 
membrane protein/ml, 602 pM, 10.93 pmol/mg; and at 
0.7 g of membrane protein/ml, 758 pM, 14.3 pmol/mg. 
(C) Plot of specifically bound (2 )[3H]nimodipine 
against the free receptor concentration in the presence 
(e) and absence (o) of 10 PM d-cis-diltiazem. The 
experiment was performed at 37°C in 0.25 ml with 
1.05 nM total ( 2 )[3H]nimodipine, allowing 30 min to 
reach equilibrium prior to the separation of bound and 
free radioligand. The highest protein concentration was 
440 pg/ml and the lowest 16 pg/ml. (D) Hofstee plot of 
the data in (C). In the presence of 10 PM d-cis-diltiazem 
the Kd of the receptor for the bindable fraction of radio- 
ligand (calculated by linear regression analysis) is 
580 pM whereas in the absence of d-cis-diltiazem the & 
of the receptor for the bindable (?)[3H]nimodipine is 

1060 pM. 

the racemic radioligand. This value is - % of the 
Kd derived from conventional receptor saturation 
experiments. 

d-cis-Diltiazem, but not I-cis-diltiazem stimu- 
lates ( f )[jH]nimodipine binding to guinea-pig 
brain membranes [5]. I-cis-Diltiazem is the biolog- 
ically inactive enantiomer with respect to Ca2+ 
antagonism [17]. In guinea-pig brain membranes 
d-cis-diltiazem stimulates (-+)[3H]nimodipine 
binding by decreasing the Kd 3-fold, due to a de- 
crease in the k- 1 of the (f )[jH]nimodipine recep- 
tor complex. No increase in Bmax is observed [5]. 
However, in skeletal muscle microsomes d-cis-dil- 
tiazem stimulates ( 2 )[3H]nimodipine binding by 
reducing the Kd of a sub-population of channels 
from > 50 nM to - 1 nM with respect to the bind- 
able enantiomer of (+)[3H]nimodipine. We ob- 
serve an increase in Bmax of (*)[3H]nimodipine 
binding sites with a Kd of 1 nM. As in guinea-pig 
brain membranes stimulation of (?)[3H]nimodi- 
pine is only seen with biologically active Ca2+- 
antagonistic enantiomer of diltiazem. 1-cis-Dil- 
tiazem only inhibits (2)[3H]nimodipine binding 
with an ZCso of 40 + 18 PM (n = 3). 

This stereoselectivity of the binding site under- 
lines its physiological and biochemical signili- 
cance. Further evidence that the binding of 
( +- )[jH]nimodipine is to biologically relevant 
Ca2+ channels came from binding-inhibition 

experiments. 
In [ 181 racemic D-600, nifedipine and inorganic 

Ca* + -antagonists blocked Ca*+ channels in skele- 
tal muscle. Appropriately we found that the in- 
organic Ca* + -antagonist La3+ , nifedipine and the 
optically pure enantiomers of D-600 exhibited af- 
finity for the (?)[3H]nimodipine binding sites. Re- 
markably (-)D-600 only inhibited ( +- )[3H]nimodi- 
pine binding stimulated by 10 PM d-cis-diltiazem, 
whereas ( +)D-600 was inhibitory under both ex- 
perimental conditions, losing binding-inhibition 
potency by 5-fold @< 0.001) in the presence of 
10 PM d-cis-diltiazem. 

The inhibition curves of (+)D-600 exhibited 
Hill slopes of < 1 in the absence of d-cis-diltiazem, 
suggesting heterogeneity of the binding sites on the 
putative Ca2+ channels. Tiapamil lost binding in- 
hibition potency in the presence of 10 PM d-cis-dil- 
tiazem by 42-fold and exhibited a Hill slope of < 1 
under this experimental condition. 

The specific binding of ( + )[sH]nimodipine is 
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Fig.3. Inhibition of saturable ( ?)[3H]nimodipine binding in skeletal muscle microsomes by Ca*+-antagonists. All 
experiments were incubated for 30-40 min at 37°C with 1-2 nM ( *)[3H]nimodipine, 16-25 pg skeletal muscle micro- 
somal protein/ml and unlabelled Ca *+-antagonists present as indicated. (A) Binding-inhibition data in the absence of 
d-cis-diltiazem transformed into Hill plots. B is % inhibition at a given concentration of unlabelled Ca2+-antagonist. 
Representive experiments are shown. The IC50 and Hill slopes computed by linear regression analysis for the individual 
experiments are: (o) (+)PN 205-033, 2.1 nM, 1.13; (0) (-)PN 205034. 200 nM, 1.04; (9) Tiapamil, 300 nM, 1.2; (A) 
(?)Fendiline, 600 nM, I .18; (*) La3+, 250 pM, I. 16. (B) As for (A) except that the experiments were performed in the 
presence of 10pM d-cis-diltiazem. The IC50 values and Hill slopes are: (0) (+)PN205-033, 1.7 nM, 1.01; (0) 
(-)PN 205-034, 200 nM, 1.17; (A) (+)Fendiline, 1400 nM, 0.991; (m) Tiapamil, 10 500 nM, 0.760: (*) La3+, 464 PM, 
1.21. (C) Direct plot of specifically bound (+)[3H] mmodipine in the absence of d-cis-diltiazem (0) and presence of 
d-cis-diltiazem at IO FM (0, 0). The 3 binding-inhibition curves shown were run in parallel at 1.16 nM ( ?))13H]nimodi- 
pine and 34 ng protein/ml: (0) (+)D-600 in the absence of d-cis-diltiazem; ZC5o = 700 nM, nH=O.748; (0) (+ )D-600 
in the presence of d-cis-diltiazem; ZC5u = 5750 nM, nB = 1.06. The IC5u of (-)D-600 in the presence of d-cis-diltiazem 
(0) was calculated by subtracting control binding in the absence of d-cis-diltiazem as blank. The IC5o for (-)D-600 in 

this experiment is 880 nM and qt = 1.19. 

enriched in a microsomal fraction of skeletal mus- 
cle, as do other accepted plasma membrane mark- 
ers. Evidence suggesting that the Cal+ current in 
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