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Rernd HOFER and Huber KfjSTER 
Institut fiir Orgunische Chemie und Biochemie der Universit~t, Martin-Luther-King-Plntz 6, D-.X@0 Hamburg 13, FRC 

Promoters are DNA regions at which higtrty selective 
RNA polymerase binding and RNA chain initiation 
take place. They are not characterized by a unique 
primary structure, Compa~son of published promoter 
sequences [ I- 141 reveals that there is not even an 
absolute requirement for a particular base at any 
positian within such a region. 

In view of this situation we started to examine the 
dependence of promoter function on specific structural 
elements of the nucleobases. Thus we ‘removed’ the 
5.methyl of de~xythym~d~ne (Td) by replacement of 
this nucleoside by deoxyu~dine (II&l. The moditica- 
tion was introduced into the codogenic strand of 
Escherichia coli phage fd RF DNA. Individual pro- 
moters were separated by cleavage of the circular 
DNA with restriction endonuclease &&rII and poly- 
acrylamide gel electrophoresis. E. coZi RNA polymerase 
binding assays in the absence and presence of ribo- 
nudeoside tr~ph~spllates revealed that upon the DNA 
modification described the fd gene II promoter loses 
its affinity for the enzyme. 

2. Mate&Is and methods 

DNA polymerase I of E. c&i was isolated by 
H. MulIer following the procedure in [IS]. The farge 
fragment of DNA polymerase I obtained by subtilisin 
treatment of the enzyme [ 161 was purchased from 

dbbr~v~~on~: RF DNA, replicative form DNA of bacterio- 
phage fd; PEG, polyethyieneglycoi; DTE, di~~ioeryth~itol~ 
deoxyribonucleosides are marked by d following the nUClee- 
side symbol 

Boehringer Mannheim. E: coli DNA ligase was puri- 
fied according to [I 73. T4 DNA ligase was isolated 

by R. Frank and M. Wipperm~n as in [Ig]. i!@~II 
restriction endonuclease from Haemophilus paraitzz- 
fluenzae was purchased from Miles Labs, Elkhart, 
IN. E: c& RNA polyn~erase holoen~me was a 
generous gift of Professor W. Zillig, Martinsried. 
fd-infected E. coli K12 Hfr 3300 was grown and fd 
DNA was isolated essentially as in [ 19,20] with the 
modi~cat~on that phages were pulled by two 
successive precipitations with 3% PEG in 0.5 M 
NaCl [2 11. fd-specific oligonucleotide primers of 
chain length 1 I - 13 o~gin~ting from a D&se digest 
of fd RF DNA were prepared and purified by 
D. Miiller. Ribo- and deo~yribonucleoside triphos- 
phates were from Boehringer Mannheim. [~Y-~~P] AdTP 
was purchased from the Radiochemic~ Centre, 
Amersham. RF DNA was synthesized in vitro in the 
presence of [o-32P]AdTP. Synthesis and isolation 
were done essentially as in [22]. 100% substitution of 
Td by Ud within the codogenic strand was achieved 

by replacement of TdTP by IJdTP and of DNA 

polymerase I by its large fragment, Detailed descrip- 
tions of these procedures will be published elsewhere 
(in preparations. For fra~entation of fd RF, 10 ~.rg 
normal RF or 5 #g modified RF were incubated with 
15 units or 25 units, respectively, of NpaII at 37°C 
for 10 h in 0.5 ml of 30 mM Tris B HCl (pH 7.9, 
10 mM MgClz, 1 mM DTE, 3 9% glycerol. The frag- 
ments were deproteinized by 2 phenol extractions 
and desalted on Sephadex G-50. RNA polymerase 
binding experiments were performed in 20 mM 
Tris . HQ (pH g.O), 10 mM MgQ, 120 mM RCI, 
0.1 mM DTE, 0.1 mM EDTA, 5% glycerol at 37OC 
[23]. To allow RNA chain initiation GTP, ATP and 
UTP were present in some experiments at 0.1 mM 
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each RF was 0 15 pmol/ml RNA polymerase RF 
ratio was 30 Ahquots wlthdrdwn from the reaction 
muiture were added to solutions contammg denatured 
calf thymus DNA. 5 mm later they were filtered 
through cellulosemtrdte (MF 1.5 from Sartorms, 
Gottmgen) and the filter bound material was eluted 
[13,34] When RNA chain mltlatlon was measured 

filters were washed with ice-cold bmdmg buffer (see 
above) contammg 1 M KC1 [25] followed by bmdmg 
buffer without KC1 DNA fragments eluted from the 
filters were separated on 1 mm thick 3 5% polyacryl- 

dmlde/7 M urea slab gels equilibrated with 50 mM 
Trls H3B03, 1 mM EDTA (pH 8 3) [16] and run at 
30 V/cm The frozen gels were analyzed by auto- 
iadlography using Kodak X-Omat R films 

3 Results and discussion 

Starting from viral single-stranded fd DNA a modl- 
fied RF DNA m which all Td-moletIes of the codogemc 
strand were replaced by Ud was synthesized m an 
ohgonucleotlde-primed ‘repair’ synthesis [2,27] 
catalyzed by the large fragment of B colz DNA 
polymerase I lacking the 5’-exonuclease function 
[ 161 Open circular RF II species were converted to 
covalently closed RF I by 6 cob or T4 DNA hgase 

The modified DNA was cleaved by restriction 
endonuclease HpaII from Haemophrlus para&luenza. 
This allows dlscrmundtlon between the mterdctlons 
of different fd promoters withE colz RNA polymerase 

P31 
The purified HpaII fragments were incubated with 

RNA polymerase holoenzyme at 37°C and 120 mM 
KC1 These condltlons were shown to allow only 
specific binding of the enzyme to promoter regions 

[23] After 70 s, 50 s. 2 mm and 5 mm, ahquots were 
withdrawn ,md exammed by d filter bmdmg assay 
which traps RNA polymerase and DNA complexed 
by the enzyme [23,14] HpaII fragments elutcd from 
the filters were separated by polyacrylamlde gel 
electrophoresis Assays with unmodified DNA were 
run as control 

Figure 1 shows the fragments of normal and U,- 
substituted fd RF DNA bound by RNA polymerase 
dfter a 5 mm mcubatlon at an enzyme RF ratio of 
-20 Both fragment patterns are quahtdtlvely identical 
with the exception of fragment H carrying the fd 
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Fig 1 HpaII fragments of normal and deoxyurldme-con- 
taming fd RF DNA bound by RNA polymerase 3’P-labeled 
fd RF DNAs (37 5 pmol) pre-fragmented by HpaII mere 

Incubated with 750 pmol RNA polymerase holoenzyme in 
250 ~1 for 5 mm at 37°C The reaction was stopped by ad& 

tlon of excess denatured calf thymus DNA rragments bound 

by RNA polymerase were trapped on cellulosemtrate filters, 

separated on polyacrylamlde gels and vlsuahzed by auto- 

radiography For details see section 2 Results of such 

analyses are shown m slots 2 (normal DNA) and 4 (Ud-con- 

tammg DNA) Slots I and 3 show complete sets of HpafI 
fragments A-H contammg Td or Ud, respectively 

gene II promoter as the only RNA polymerdse bmdmg 
site 

Obviously m the case of Ud-substitution this 
fragment cloes . -: form a complex with the enzyme 
This result also holds for the samples wlthdrawn 
edrher from the reaction mixture As can be expected 
promoter bmdmg IS a rather fast reactton Half- 
maxmid bmdmg of the fastest fd promoters (of genes 
X, II and VIII) requires 15-60 s under the condltlons 

applied, and there 1s no promoter-contammg fragment 
that 1s not at least partldlly bound dfter only 70 s 
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(unpublished results). On the other hand the half-life 
of the gene II promoter-RNA polymerase complex 
was found to be in the range of 30 s 1281. Though 
rather unlikely there might exist the possib~ity that 
the modified promoter forms a complex too short- 
lived to be detected by our assay, but long-lived 
enough to allow RNA chain initiation, which is 
known to occur in <I s after RNA polymerase binding 

[28]. So the binding experiment was repeated in the 
presence of 3 ribonucleoside triphosphates. Under 
these conditions a stable ternary complex of unmodi- 
fied fragment H, RNA polymerase and a short RNA 
chain is formed (unpublished results). We were unable, 
however, to find such a complex with Ud-substituted 
fragment H. From these results we conclude that the 
Td analogue eliminates the function of the gene II 
promoter, most probably by preventing RNA 
polymerase binding, 

As mentioned before such a drastic effect was not 
observed with the other Ud-modified fd promoters. 
There are several aspects in which the normally strong 
gene II promoter differs from the other strong phage 

promoters. From comparison of the sequences (fig.2) 
it is obvious that most of the Ud-moieties are found 
not only at different positions but also next to dif- 

ferent neighbouring nucleotides. Moreover the gene 
II promoter region is unusually rich in AdTd/Ud 
(-78%) and has a high U, content as roughly 42% of 

the base pairs are AdUd pairs. 
Based on c~st~lographic data for U,MP (Cl ‘-exo 

-50 

puckering of deoxyribose and tg conformation about 
the C4’-CS’ bond), which differ considerably from 
those obtained for T,MP as well as for UMP, it has 
been argued that replacement of T, by U, would 
distort the normal stacking, hydrogen bonding, and 
backbone geometry of the double helix [3 I]. In fact 

a r, decrease of poly A&J, [32] and Ud-containing 
DNA (33 ] relative to their normal counterparts has 
been observed and proves a less stable structure. 
Moreover the altered electrophoretic mobility of 
Us-substituted fra~ents in polyac~lamide gels (see 
fig.1 > indicates conformations changes within several 
regions of the fd genome at least under certain con- 
ditions. So it seems that the S-methyl of T, plays a 
rather important role for DNA structure, and the 
elimination of prol~oter function reported could 
reflect a structural alteration of the highly U,- 
substituted gene II promoter region. Rather long 
A~T~~U~-ricll self~omplenlenta~ sequences exist 
in this part of the phage genome, which could give 
rise to stem-loop-like structures. The stability of 
such a structure relative, e.g., to a double heIieal 
structure or to another stem-loop structure could 
be crucially aftered by conformational strains brought 

about by U, incorporation. 
Apart from this interpretation the loss of promoter 

function could also be due to the lack of methyl 
groups in one or a few crucial positions being impor- 
tant contact sites for RNA polymerase. Following 
this hypothesis it seems rather unlikely that (all> such 

gene X TCTTAATCTTTTTGATGC~TTCGCTTTGCTTCTGACTAT~TAGACAGGGT~AGACCT 

xx X xx x xxxxxx xxx x 

gene II ACAAAACATTAACGTTTACATTTAAATATATTTGCTTATAC~TCATCCT~TTTTT~GGGC 

x xxxx x xx x xx xxx x xxxx x 

gene VIIITGATAC~TCTCCGTTGTACTTTGTTTCGCGCTTGGTAT~TCGCTGGGGGTCAAACAT 

x x xxx X x xx xxx x 

Fig.2. &mp&son of the fd gene II promoter sequence to the promoter regions of fd genes X and VIII [Z]. Viral strands are 
shown in 5’-3’ p&.&y. Similar szquences [29,30] are overlined. Transcriptional start sites are underlined. Sites of complernen- 
tary strand modification are marked by X. 

89 
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posltlons are situated within the Prlbnow sequence 
[29] as promoters exhlbltmg identical modlficatlons 
of this region like the gene X and gene VII promoters 
(see fig 2) show no or only a small decrease of pro- 
moter strength (our unpublished results) 

For a precise locahzatlon of the effect described 
here studies with partially modified gene II promoter 
regions which can be obtamed by use of unique 
primer molecules for DNA polymerase 1 should be 
quite useful 
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