
Volume 53, number 3 FEBS LETTERS May 1975 

GENERALIZATION OF THE MODEL BY MONOD, WYMAN AND CHANGEUX FOR THE 

CASE OF A REVERSIBLE MONOSUBSTRATE REACTION S,R,T -P 

S. V. POPOVA and E. E. SEL’KOV 
Institute of Biological Physics of the USSR, Academy of Sciences, Pushchino, 142292, USSR 

Received 7 March 1975 

1. Introduction 

So far it has been assumed in the mathematical 

analysis of oligomeric enzyme kinetics [ 1 ] that the 
reactions catalysed by such enzymes are irreversible 
(e.g. see [2-71). However, many of the known 
oligomeric and polymeric enzymes catalyse essentially 
reversible reactions, which should be taken into 
account in the analysis of open multienzyme systems. 
In this paper we describe a model of a reversible 

monosubstrate reaction (a generalization of the model 
by Monod, Wyman and Changeux [2]) and discuss a 
possible way of the construction of mathematical 

models of complex reactions catalysed by regulatory 
enzymes. 

2. Kinetic model 

Consider a reversible reaction, 

S.- 
E(R,T) 

P, (1) 

in which the interconversions of the substrate S and 
the product P are catalysed by the enzyme E which is 
present in two conformational forms R and T. Assume 
that the enzyme E has n identical active sites for S 
and P and the interactions of S and P with different 
enzyme forms are described by the following kinetic 
model: 

Ri_l + s c-i + l)k+l& ik+2 
\ 

ik- I “(n-i + l)k_, ‘-’ +’ 

T 
(n-i t 1) k’,, 

j-1 ts. 
ik’+ 2 

, 
ik_1 Tik(n-j+ Qk’__; T+l +’ 

Here R. and To are lhe free forms of conformations 
R and T; Ri (1 < i G n) and Ti (1 <i < n) are active 
enzyme-substrate complexes (indices i and j indicate 

the number of molecules of S bound to the corre- 
sponding form, R or T); 1, and I_ the rate constants 
for isomerization of the free forms of the enzyme E; 

(n-it l)k+1,(n-j t l)k’+,,ik_,,jk’_,, ik,,, 
jk’+p (n-i t 1) k-2, and (n-i t 1) k’_, the rate 
constants of the elementary steps. The relationships 
between the rate constants and the indices i and J’ 
taken account of the variations in the probability of 

joining and liberating the molecules of S and P by the 
enzyme molecules caused by variations in the number 
of free and occupied active sites [8,9]. 

Let us introduce the following notations: 

KS = (k_ 1 t k+2)/k+1 is the Michaelis constant of 
the form R for the substrate; 

K’s = (k’_ 1 t k’+z)/k’+l the same for the form T; 
Kp = (k_ 1 + k+z)/k_ 2 the Michaelis constant of 
the form R for the product 

K’p = (k’_ 1 t k’+f)/k’_ 2 the same for the form T; 
L = 1+/l _ the equilibrium constant of the isomeri- 
zation 

Rgl-- To or an allosteric function in the case where 
allowance is made for the dependence of L on the 
concentrations of allosteric effecters [2,3]. 
V = nk+2eo is the maximum rate of the conversion 
S+P catalysed by R (e. is the full concentration 
of the enzyme E), I’= nk’+2eo is the same for T; 
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x = k_ 1 lkf2 is the asymmetry coefficient for the 

breakdown of the enzyme-substrate complex in the 
case of form R (at x > 1 complexes Ri are broken 

down predominantly in the direction of the substrate 
formation, at x < 1 in the direction of the product 
formation); 
x’ = k’__ 1 /k’+, is the asymmetry coefficient in case 
of form T; 

cs = KslKrs is non-exclusive binding coefficient [2] 

for the substrate S (form R is chosen so that the con- 
dition cs < 1 be fulfilled); 

cp = K,/K’, the same for the product P; 

V 
a = 7 1 L the relative activity of the form T; 

KS KS 

v = v/V the dimensionless rate of the substrate-to- 
product conversion (v is the dimensional rate of this 
conversion); 
u = [S]/Ks the dimensionless substrate concentration; 

IT = [P] lKp the dimensionless product concentration; 

F = i [Ri] /eO the relative total concentration of 
i= 0 

the form R, or a state function [2] ; 

T= g 
j=O 

[Tj]/eo the relative total concentration of the 

form T; 

-- 
Q = ijo [Ri]/jio [Tj] = R/T a quotinent function [2]. 

3. Mathematical model 

Applying the conservation and mass action laws to 
model (2), we get the following system of stationary 
relations: [To] = L [Ro] 

(n--i+ 1) [Ri_l] (k+l [Sl tk-2 [PI) 
-i (k-1 +k+T) [&I ~0, 

(n-j t 1) [Ti_ll (k’+l [Sl tk’_2 PI) 
-j (k’_ 1 + k’+2) [TjI = 0, 

(3) 

v=-5!gL g (ik,, [Rj] - (+i t 1) k-2 [PI 
i=l 

[Ri- 11) t,fl O’k’+I PiI - (n-j t 1) k’-.Z PI 

F- 111, 

and after simple transformations we obtain the equa- 
tion for the dimensionless rate 

CP a--x’ ~_ 71 

v = _aIz- R+ a ~ 
cs 

1 tu+7r 
_--_T 

1 +csu+cp77 (41 

where 

In case of a thermodynamical equilibrium of reaction 
(l), two conditions must simultaneously be fulfilled 
according to the detailed balance principle : 

o-_x71= 0, u-.x’ “r , = 0 
CS 

(5) 

This yields the relation 

CP 
x=x’--, 

CS 

with consideration for which equation (4) takes the 
form 

or 

(7-x71 Q + aq u=---------. .__ 

1 tut7r 1 tQ 

(7) 

(8) 

One remarkable feature of eq. (8) is worth noticing. 
Its right hand side is a product of two functions 
which describe two principally different processes 
associated with the oligomeric enzyme activity. One 
of the functions 

is a dimensionless rate law function for a single active 
site of the form R. The shape of this function is 
determined only by the mechanism of elementary 
interactions of the substrate S and product P with 
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one active site of the enzyme. In contrast to the rate 
function @, the function 

(10) 

makes allowance for the effect on the enzyme E 
catalytic activity of indirect cooperative interactions 
between its active sites and of the conformational 
transitions Re T. The function \k we shall sub- 

sequently term the regulatory function. 

If enzyme E belongs to class K (i.e. if V’/V = l), 
then 

Q+w 
qJ=------- 

l+Q 
(11) 

In this particular case at rr = 0 or u = 0 equation (8) 

is identical to the equation derived by Monod, Wyman 
and Changeux [2], except for the difference in 
notations. 

If enzyme E belongs to class V (i.e. cs = cP = l), 
then 

(12) 

In figs. 1 and 2 presented are the families of ti:e 

curves u(u) and u(n) constructed for enzymes of class 

K (fig.1) and class V (fig.2). The points of intersection 
of the curves u(u) and u(n) with the abscissa axis 
represent the states of thermodynamical equilibrium 
of the reaction in which u = xrr. The negative values 
of the rate imply that the substrate is formed from 
the product. As seen from equation (8) u<O if 
u < xa. By applying the functions @ and \k, the 
velocity of a reaction catalysed by an olygomeric 
enzyme may be represented in a fairly general form 

V=*.* (13) 

4. Discussion 

The presentation of eq. (8) in the form of (13) may 
seem far too abstract. However, it is this presentation, 
free of the specific effects of the catalytic and 

regulatory enzyme sites, that dictates a very simple 

way of construction of the theory of complex multi- 
substrate reactions catalysed by regulatory enzymes. 
Briefly, this way is the following. 

The general form of the regulatory function q, as 
determined by equation (lo), is invariant with respect 
to the action mechanism of the catalytic sites, it 
depends on the assumed mechanism of conformational 

010” r 

Fig. 1. Dimensionless rate u = v/V of reversible reaction (1) as a function of the dimensionless concentrations of the substrate, 

o = [S]IKS and of the product, n = [PJIKP, for enzyme E of class K as calculated from eq. (8). (Left) Family of the curves v(o) 
constructed for various values of the isomerization constant L, as shown in the figure, and for A = 10, x = 1, ~~=c~=lO-~, n = 4. 

Note that the rate of the back reaction (v<O) depends drastically on L whereas that of the forward reaction (v>O) is only little 
dependent on L. This feature of reaction (1) seems to explain the apparent unidirectedness of the action of allosteric effecters 
on reversible reactions catalysed by olygomeric enzymes. (Right) Family of the curves v(n) constructed for various values of the 
dimensionless substrate concentration, o, as shown in the figure, and for x = 0.1, a = 0, cs=cp=O, L = 106, n = 4. Note that 
product Pacts as an activator of the enzyme when in small and as an inhibitor when in large concentrations. The activating 

isosteric effect of product P at n>l may be of an apparent cooperative character (i.e. Hill’s coefficient nH>l for that portion 

of the curve v(n) where dv/dn>O) and is the stronger the smaller x and a and the larger L. 
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Fig.2. Dimensionless rate u = v/V of reversible reaction (1) as a function of the dimensionless concentrations of the substrate, 

o = [S]/KS, and product, n = [P]/Kp, for enzyme E of class V as calculated by eq. (8). (Left) Family of the curves v(o) con- 

structed for various values of the isomerization constant L, as shown in the figure, and for ‘TT = 10, x = 1, a = 0.1, cs=cp=l, n = 4. 

As the regulatory function \Ir of the enzyme of class V (12) is independent of the substrate and product concentrations, fhe 

variation of L similarly affects the rates of the forward (v > 0) and back (v < 0) reactions. (Right) Family of the curves v(n) 
constructed for various values of the dimensionless substrate concentration, o, as shown in the figure, and for x = 1, a = 0.1, 

cS=+=l, L=103, n = 4. Note that in this case product Pacts only as an inhibitor of enzyme E. 

transitions. As will be shown elsewhere, with due 
regard to the detailed balance principle the generalized 
versions of the model by Monod, Wyman and 
Changeux, which make allowance for the existence 
of isomerizations RZe Ti(O<i<n) [lO,ll], 
and under some limitations ‘the square model’ [5,12] 

too, may be described by a function of type (10) 
whatever the mechanism of the catalytic site action 
(the number of substrates, the order of their binding 
and the reaction reversibility). 

Since the rate law function @ describes the reaction 
kinetics of the catalytic site alone with no allosteric 

or cooperative interactions involved, in most applica- 
tions there is no need to derive it for oligomeric 
enzymes which catalyse complex reactions. For many 
complex (multisubstrate, reversible) reactions the 

single-site rate law functions.@ have already been 
derived [7,13-201. 

reversible reactions catalysed by olygomeric enzymes 
can produce a profound isosteric activating or 
inhibiting effect on the reaction rate (fig.1, right). 
The isosteric product activation of an olygomeric 

enzyme may reveal an apparent cooperative character 

and is the stronger the greater L and the smaller a 
and x. Second, on product accumulation the forward 
and back reactions catalysed by an olygomeric enzyme 
of type K may strongly differ in their sensitivity to 
displacement in the equilibrium R .F== T caused 
by allosteric effecters or by any physico-chemical 
factors (fig. 1, left). 
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