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i .  Introduct ion 

Most o f  the physicochentical studies o f  the various 
steps of  the enzymatic acylation o f  tRNA [ I - 7 |  have 
been bar;ed on the fluorescence emitted by the Try- 
residues o f  some aminoacyl-tRNA synthetases or by 
fluorescent labels attached to the enzyme Gr the tRNA_ 
The present paper reports changes o f  the fluorescence 
of  the naturaUy occurring Y-base o f  tRNA phe (yeast) 
upon binding to the cognate synthetase. This result 

implies an influence of  the synthetase on the anti- 
codon region o f  the bound tRIqA. Furthermore the 
kinetic parameters for the it~teraction t3f PILS and 
tRNA phe are reported, as derived from stopped flow 
experime~zts monitoring the fluorescence o f  ~he Y-base. 
The association is almost diffusion corn roiled. The dis- 
sociation of  the phenylaltmyl-tRNA Phe-PRS complex 
is not rate limiti~lg for the steady state turnover of  the 
acyiation reaction. 

Abbreviatiotls: 
PRS, phenyta_~anyl-tRNA syntheta~e; SRS, seryl-tRNA syn- 
thetase; DTE, di thioery throl; EDTA, ethylenediamine- 
te~raacetic acid; Kass, association constant;/¢R, rate con- 
stunt for ~.~o---iation; kD, rate constant for dissociation. 

2. Materials and m e t h o d s  

PRS was purified from commerci',tl baker's yeast 
by a method similar to  that o f  Fasiolo et al. [8] .  The 
enzyme was homogeneous as judged by gel electro- 
phoresis. The specific activity was the same as in the 
preparation o f  Fasioio et al. [8] .  

hl agreement with [8, 9 ] ,  the molecular weight zs 
determined by equ~ibriurn sedimentation was 
230,000. 

Purified Ser-tRNA syntltetase (SRS) was kindly 
supplied by A_ Ph~goud. 

Purified tRNA eh~- from baker's yeast was purchased 
from Boehringer (Mannheim) and dialyzed against 
double distilled water. Concentrat ions o f  tRNA Phe 
were determined by  absorbance measurements: 

260 rml 1.6 X 10 -6 M titaNIA phe correspond to 1 "'1 c~m unit. 
tRNA Ata (yeast) was prepared as described in [ l 0].  
Experiments were performed in 0 0 3  M potassium- 
phosphate buffer with 5 X 10 4 M i,  4.dithioerythr0[, 
104 M EDTA and varying amounts  o f  MgCI 2 and KCt 
pH 7.2. Ultracentrifugation experiments were carried 
out at ! 2 ° in a Spinco model E analytical ultracen- 
trifuge equipped with a photelectric .scanner. Fluo- 
rescence titrations were perforined in a Schoeffel RRS 
11300 spectrofluorometer .  The spectral bandwidth ,~t 
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Fi~r. l. ~edimentation velocity experiment of  1~3 × 10 -6 M 
,RNA Phe with 0.4 X 10 -6 M PRS; 48 000 rpm, 12 mm cell; 
concentration l~rofile measured at 265 am ( ); base line 
( .... ). 

excitation and emission was 6 nm. When the t i tration 

was followed by monitoring the fluorescence of the 
Y-base o f  tRNA Wne, the fluorescence o f  the added  PRS 
was subtracted from the measured values. 

Kinetic parameters were determined from stopped- 
tlo,.v measurements as described in the accompany~c; 
paper [71. In all kinetic experiments  the tempera~.ure 
was I0 ° and 10 -2 M MgC! 2 and 0.1 M KC! were preset  ~. 

3. Results 

3.1. S e d i m e n t a l i o n  experime~z ts 
The s toiehiometry o f  the t R N A P h e - P R S  complex  

was determined using the sedimentat ion boundary  
technique under  condi t ions  where  the tRNA Phe was 

ia excess o f  PRS. The concent ra t ion  profile o f  a typical 

0.  values o f  file experiment is shown in fig. 1. The S20.w- 
sl0w and fast boundary  were 3.9 S and 11.6 S, respec. 
tively. The e~tzyme alone sedimertted with a value o f  
0 _ S20,w- 8.7 S (experimental result no~ shown). There- 

fc~re it is evident that the slow boundary  represents the 
sedimentation o f  the free tRNA Phe, v, hereas the fast 
boundary car. be ascribed to that  o f  rite tRNAFhe--PRS 
complex_ Since the concent ra t ions  were more than one 

order o f  magnitude higher than the di:;soeiation con- 
stant, virtually all enzyme was bound in the complex. 
TherL the concent ra t ion  o f  the bound  enzyme is iden- 
tical to the total enzyme  concent ra t ion .  Af ter  sub- 
traction o f  the absorbanee o f  the enzyme front the 
total absorbance in the faster bonndary  the eoncen-  
trafiort o f  bound  t R N A  Phe can be evaluated from the 
relative heights o f  the two boundaries.. The absorbances 
of both boundaries  were corrected for dilution effects 
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!:i". 2. Quenching of the fluorescence of trte Y-base of 
- - - 7  - .  g ~ , e  t, X I0- M of tRN~ - induced by addition of PRS; 10 -2 
M Mg z+, present 21) ° : Excitation at 313 nm; emission at 450 urn. 
Relative fluorescence o': the Y-base (,~ -,', ,-:.,) after cor- 
rection t'or flu~rescene., of adzled PRS. 

due to file sector shape o r the cell. 
In the experiment o f  fig. 1 0.4 X 10 -6 _'A PRS are 

bound to 9.35 X 1G ~6 M tRNA Phe. This result is in- 
terpreted as indicating a I : 1 complex  between tRNA ore 

and its co~:~aate enzyme_ Eariier (unpublished) results 

from ot, r laboratory suLge~ting a 2: ! e n z y n ' e - t R N A  

stoichiometry were pro:Jably due to h~ipurities in p-e- 
vious enzyme pr~parations_ 

Nonspecific bindi_ng o f  tRNA At'~ to PRS :ould  also 
be detected by sedimentation experimt:ats. However. 
it is about  two order;  o f  magnitude weaker :hart the 

specific binding o f  tFiNA phe to PRS. 

3.2. F luorescence  eq, t i l ibr ium m e a s u e e m e n t s  | 
In the presence of  IC 2 M Mg 2+, PRS qu,:tlChe:~ the 

fluorescence o f  me Y-base o f  tRNA Phe. A typical ~i- 
tration experiment is shown in fig. 2 from which the 
sto.~chiometry o f  the complex is seen to be I: : I. Ti- 
trations at lower concentra t ions  o f  t R N A  Phe l11 | 
yielded a binding coll'~tant o f  about  8 X t0  7 M -! and 

7.X l0  6 M -I , withou", and with 0.1 M KCI added,  re- 
spectively. The bindit:g constants  were not  affected 
by temperature in the range between IO and 20 °. 

Purified SRS even at a 6-lbld excess over tRNA Phe 
did no t  affect  the fluorescence o f  the Y-base. Simi- 
larly, tP,_NA Ala at IO-fold excess did not  compe te  
w i t h  t R N A  I'h~ for the tRNA binding site o f  PRS. The 
binding equilibrium o f  the tRNAPhe-PRS interaction 
is not influenced by  the presence o f  either [i) -3 M ATP 
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Fig. 3. Iai l-Deper~ de~ce o f t h e t ] t torescence o f  c o m p l e x - b o u n d  
tRNA Phe and  free tRNA Pite. 0.1 M KCI, p resen t  5 X 10 -.4 _M 
DTE, 20 °. Excitation at 3 ! 3 nm; emission at 450 nm; tRNA Phe 
saturated with PRS (~--t3--o); free tRNA Phe (X - - X  . - -xJ .  

or 10 -3 M phenylalanine.  The influence o f  PRS or, the 
fluorescence o f  tRNA I'he strongly depends on the pre- 
sence ofMg 2+. In the absence o f M g  2+ and at low salt 
concentrat ions (c.f. fig. 3) PRS enhances  the fluores- 
cence o f  the Y-base in tRNA l'he. Under these condi t ions  

the fluorescence o f  the tRNA bound  to  PRS (fig. 3) 
and o f  the Mg 2÷-  tRNA complex  (not  shown in the 
figure) is independent  o f  pH in contrast  to  free tRNA Phe 

The t ryptopha~e fluorescence o f  PRS evaluated as 
in [7[ is quenched by about  5% when tRNA Phe is ad- 
ded. tRNA Ale did not  affect  the f luorescence o f  PRS. 

3.3. Stopped-Jlow measurements 
A typical oscillogram o f  a binding exper iment  is 

shown in fig. 4a. All measured curves could  be described 
in terms o f  a simple bimolecuiar  mechanism (cf .  for- 
mula 1 in [7] ) where the ampli tudes (cor rec ted  for 
dead time) were consistent w~th the equil ibr ium mea- 
surements. The association rate constant  was found to  
be k R = ( I . 6  .+- 0.3) X 1{38 M-  l s ec -  1. '['he concent ra-  
tions o f  bo th  reactants have been varied by  about  a 
factor o f  four ( 0 . 2 5 - 1 . 0  × 104;M) and the same rate 
constant  was found.  This demonstra tes  the validity o f  a 
bimoLecular ree, ct ion mechanism. 

Dissoc.iation e~'periments were pet-formed as described 
in the accompanying paper [71. The dissociation rate 
constant k D was determined to  27 s e e  1, which is in 

good agreement with the value calculated front K R 
attd Kas s. 

q-he assuciation rate constants  in the presence o f  
10-3 M A'IP or 10 -3 M Phe are lower by  less than a 
factor o f  two, and by less than a factor  o f  5 i f  b o th  are 
present. In the latler case it was seen from the s topped-  
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Fig. 4.  S topped - f low osciHograms a f t e r  mL~ing o f  t R N A  Fhe 
wi th  a) PRS:  T o t a l  c o n c e n t r a t i o n s  a f t e r  mix ing :  5 × 10 -7 '~t 
PRS, 5 X IO -7  M iRMA IPhe_ O~ei l loscope se t t ings :  5 msee/unit ,  
5 m V / u r d t .  F ina l  si~nal:  320  inV.  b) PRS,  ATP  a n d  r 'hc. 
Tota l  c o n c e n t r a t i o n s  after, m ix ing :  5 X 10 -7 M P R $ ,  5 x ~0 -~ 
M t R N A  Phe,  l 0  -3  M ATP,  l 0  -3 M Phe.  Osc i l loscope  settin~s: 
20 mV/unit; lower trace: 20 msec/unit; upper trace: 200 
msec/unit. Final signal: 460 mV. The base lines of the two 
beams a m  d i f f e r e n t  b y  I. -8 uni t s .  C o m m o n  c o n d i t i o n s  o f t )  
and  b) :  Band  falter ( S e h o t t  &_ ( ;on .  UG ! ! )  a t  t he  excitatior~ 
m o n o c h r o m a t o r ;  cu t t -o f f - f i l t e r  ( K V  4 0 8 )  for  e m i t t e d  l ight:  
! m s e c  rise t ime ;  inc[~asing f luorescence  c o r r e s p o n d s  to  neg- 
a t ive  de f lec t ion .  

flow ampl i tude ,  tha t  Kas s, which could  n o t  be deter- 
mined by t i t rat ions,  is n o t  a l tered marked ly  by  the 
s imul taneous  presence o f  ATP mid Phe. Under  these 
turnover  condi t ions  the binding process is seen in tile 
lower trace o f  fig. 4b.  Af te r  the  binding,  aminoacyla- 

t ion o f  ihe  t R N A  occurs  and the release o f  part  o f  the 
a c y l a t e d  tRN A  is observed as the slow fluorescence 
increase (u p p e r  trace o f  fig. 4b )  ehar:mterized by a rate 
constant  o f  2.5 s e c -  1. 

I f  the tRNA was p re incuba ted  for  15 rain at 37 ° 
with a catalyt ic  concen t r a t i on  o f  syn the tase  in the 
presence o f  2 X l 0  -3 M A T P a n d  2 )~ 10 - 3  M Phe atxd 
af te r  cool ing  to  10 ° mixed  rapidly wi th  an equal 
molar i ty  o f  synthetas¢,  it  was possible to  fo l low the 
binding o f  acyla ted  tP, N A  (80% charged)  to  the syn- 
thetase.  The  lower ampl i tude  observed in this experi- 
men t  compared  to  the binding o f  unacyla ted  tRNA 
is due  to the lower binding cons tant  o f  the acy|ated 
tP-,NA (since the sa tura t ion  value o f  f luorescence 
quenching  is the same) .  This d i f fe rence  is consistent 
with the ampl i tude  o f  the  slow f luorescence change in 
the turnover  ex p e r im en t .  T h e  binding cons tan t  of  
acyla ted  tRN A  was es t imated  f rom these amp!itudcs 
to  be about  2 X  1 0 6 M -  ! , k  R was found  to  b e 8 X I 0 7  

M -  l s ec -  I and k D calculated f rom h as  s and kg  to 
40  s ec -  t 
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4. Oiset~sioa 

The binding o f  PRS to tRNA ~ e  in the absence o f  
Mg 2+ c a u l s  an enhancement  o f  the fluorescence o f  
the Y-base. A similar effect  is observed upon binding 
of Mg 2+ to  tR2JA I~te [ 12]. This phenomenon  has been 
interpreted as a shielding o f  the Y-base against the 
quenching effect  o f  water  molecules.  The analogy be- 
tween the ef fec t  c~f Mg 2÷ and PRS on the fluorescence 
of the ~/'-base is fur ther  suppor ted  by the fact that PRS 
and Mg 2÷ abolish the pH-dep~:ndence o f  the Y-base as 
observed in the free tRNA ehe. This analogy would 

furlhetmore suggest, that the fluorescence changes 
upon binding o f  Mg :z* { ! 2] and PRS are caused by a 

local influence o f  PRS on tha ant icodon region. PRS is 
less effective Ln enhanci_ng the Y-base fluorescence lhan 
is Mg 2+. In a IRNA t'he solut ion containing both Mg 2+ 
and PRS, the en::yme ,:educes the shielding effect  o f  
the Mg 2+-ions. This is dentonstrated in the exper iment  
depicted in qg 2, where in the presence o f  Mg 2+, PRS 
quenches the fluorescence o f  the Y-base o f  tRNA i'h.:. 

The the rmodynamic  parameters derived fro:n the 
binding studies agree with earlier studies on  the same 
~tnd on an-.dogous systems. The s toichiometry  is i : I 
[13], and the binding is specific, i.e. unspecific inter- 

acli~ns are weaker by at least two orders o f  magnitude 
[1,6,7,  141. There  is no influence o f  the small sub- 
strafes phenylalanine and ATP on  the binding equilil3- 
rium between PRS and tRNA Phe [ 15. ! 6] .  

The association rate constant ,  k R = 1.6 X 108 M -  1 
sec- I,  is close to diffusion eontrol led. .According to 
Alberty and Hammes [ 171 the diffusion controi!ed 
rate constant ,  k ~  iff  , is est imated to 

kdif f _ 2rr 
- 1000 NL r (Dtt~N a + D e r s )  = 4  × ! O s M -1 sec -  t. 

Dtl~.,qA and DpR s are the corresponding diffusion coef~ 
fieients [ I 1 ] and r is a reaction radius est imated to 
10- 7 cm [ l 7 ] .  Electrostatic interactions,  however,  are 
not taken in'.o account .  Alberty and t lammes reported 
as a rough guess that the rate constant  can increase by 
a factor o f  five due to electrostat ic  a t t ract ion.  With 
these uncerta'~nties in mind, we conc |ude  tha~ the ex- 
perimental rate is not  more than one order  o f  t,mgni- 
rude slower than diffusion control led.  Fur thermore ,  
the binding under  a variety o f  concentra t ions  could be 
interpreted as a single step reaction.  Consecutive rezr- 
r~ngentents o f  the complex  slower than I 0 "2 sec could 

be excluded because o f  the agreement be tween tile dis- 
sociation rate constant  which was measured direct ly and 
flint which was calculated from k R and K~zs~. 

Futthe:-more it is interesting to  no te  ~he result that 
the rate limiting step in the entire process o f  amino- 
acylation occurs before the release o f  the acylaled 
tRNA from the enzyme.  Sittce the dissociation rote o f  
the ncylated tRNA I~:e had been determined separately.  
it could be shown that this step is more titan an order  
o f  magnitude faster than the rate limiting process which 
was observed as a slow fTtzorecence increase under  
condit ions o f  atrLinoacylation (of. fig. 4b). The turn- 
over number  evaluated from this experintent  agreed 
well with that found in an aminoacylat ion assay. 
These findings are different from tha t  repor ted  by  
Yarus aitd Berg [ i 51 in the lie-system of/?.  colt 
using the nitrocellulose-filter technique.  They  fi~und 
slower association rate constants anti the dissoci : t ion 
o f  the acylated tRNA to be rate limiting for  the whole 
aminoacylatkm protein. In additio.,: they found a 
5-fold incream of  the rate constants in the presence o f  
the amino acid. whereas a minor decrease o f  the dif- 
fusion controlled rate constants is reported in this 
paper_ 

We feel, that the dl.fferences d i~ussed  above, are 
more likely due :o different experimental  condi t ions 
tti.~n to different  systems, because in tile Set-system 
[7] and the Pile-system investigated under sirni!ar 
condit ions comparable results are obtained.  
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