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Abstract. We give an upper bound for the zero order of the difference between
a Mahler function and an algebraic function. This complements estimates of
Nesterenko, Nishioka, and Töpfer, among others, who considered polynomials

evaluated at Mahler functions.

1. Introduction

When Kurt Mahler was quite young and sick in bed, he set out to prove that
the number

∑
n>0 2−2n

is transcendental. He did so by exploiting the functional
equation

F (z2) = F (z)− z,
which the series

∑
n>0 z

2n

satisfies. In doing so, Mahler discovered an impor-
tant method in the theory of Diophantine approximations with applications to
transcendence and algebraic independence.

Mahler’s results were generalised and extended by several authors. The most
general of generalisations, which seems to capture all previous versions considered,
was given by Töpfer [15, 16], who considered formal power series f1(z), . . . , fd(z) ∈
C[[z]] that satisfy functional equations

A0(z, f1(z), . . . , fd(z)) · fi(T (z)) = Ai(z, f1(z), . . . , fd(z)) (1 6 i 6 d),

where T (z) ∈ C(z) and Ai(z, y1, . . . , yd) ∈ C[z, y1, . . . , yd] for i = 0, . . . , d. For this
version, Töpfer produced both a zero order estimate [16] for Q(z, f1(z), . . . , fd(z))
with Q(z, y1, . . . , yd) ∈ C[z, y1, . . . , yd] as well as algebraic independence results for
some special cases of his generalisation [15].

Of all of the generalisations, two stand out and are arguably the most important;
they are also the simplest. The first was given by Mahler himself [11], who
considered1 functions f(z) ∈ C[[z]] satisfying

f(zk) = R(z, f(z)),

for an integer k > 2 and a rational function R(z, y) ∈ C(z, y). The second is harder
to attribute, but goes back at least to the 1960s or 1970s. In this case, one considers
a function f(z) for which there are integers k > 2 and d > 1 such that

a0(z)f(z) + a1(z)f(zk) + · · ·+ ad(z)f(zk
d

) = 0, (1)
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for some polynomials a0(z), . . . , ad(z) ∈ C[z]. These two generalisations coincide
when d = 1, and for this value of d the strongest results have been shown. While
there are few natural examples of the other classes, functions satisfying (1) are readily
available and certain cases are of particular importance in theoretical computer
science; the generating functions of automatic and regular sequences satisfy (1).
See the works of Allouche and Shallit [1, 2, 3], Christol, Kamae, Mendès France,
and Rauzy [8], Dekking, Mendès France, and van der Poorten [9], Loxton [10], and
Becker [5] for further details and specific examples.

In this paper, we are concerned with the algebraic approximation of functions
satisfying (1). We call a function satisfying (1) a k-Mahler function, or just a Mahler
function when k is clear. The minimal such d for which (1) holds for f(z) is called
the degree of the Mahler function f(z), denoted df , and we define the height of the
Mahler function f(z) by Af := max{deg ai(z) : i = 0, . . . , df}.

Our main result is a zero order estimate for the difference of a Mahler function
with an algebraic function. To this end, let ν : C((z))→ Z ∪ {∞} be the valuation
defined by ν(0) :=∞ and

ν
(∑

cnz
n
)

:= min{i : ci 6= 0}

when
∑

n cnz
n is nonzero. Also, for G(z) an algebraic function with minimal

polynomial P (z, y) ∈ C[z, y], we call degy P (z, y) the degree of G(z) and we call
exp (degz P (z, y)) the height of G(z).

Theorem 1. If F (z) is an irrational k-Mahler function of degree dF and height
AF , and G(z) is an algebraic function of degree at most n and height at most HG,
then

ν
(
F (z)−G(z)

)
6 (dF + 1) ·AF · ndF +1 +

kdF +1 − 1

k − 1
· logHG · ndF .

Previous results on zero estimates of Mahler functions focussed on upper bounds
for ν(Q(z, F (z))) for polynomials Q(z, y) ∈ C[z, y] and used quite deep methods,
relying on Nesterenko’s elimination-theoretic method [12, 13]; see also Becker [4],
Nishioka [14], and Töpfer [16]. While the estimate provided by Theorem 1 is
essentially of the same order as the best bounds for ν(Q(z, F (z))), our proof is much
simpler—it avoids the use of Nesterenko’s and Nishioka’s methods—and is by all
means, elementary.

2. Algebraic Approximation of Mahler Functions

In recent work with Jason Bell [6], we proved the following result.

Lemma 1 (Bell and Coons). Let F (z) be an irrational k-Mahler function of degree
dF and height AF , and let P (z)/Q(z) be any rational function with Q(0) 6= 0. Then

ν

(
F (z)− P (z)

Q(z)

)
6 AF +

kdF +1 − 1

k − 1
·max{degP (z),degQ(z)}.

Theorem 1 is the generalisation of this result to approximation by algebraic
functions. To prove this generalisation, we use a resultant argument.

Lemma 2. Let f(z) and g(z) be two algebraic functions of degrees at least 2
satisfying polynomials of degrees ∆f and ∆g with coefficients of degree at most δf
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and δg, respectively. Then the algebraic function f(z) + g(z) satisfies a polynomial
of degree

∆f+g 6 ∆f∆g

with coefficients of degree

δf+g 6 δf∆g + δg∆f .

Proof. This result follows by using the Sylvester matrix to calculate a certain
resultant. For R a ring and P,Q ∈ R[y] with

P (y) =

degy P∑
i=0

piy
i and Q(y) =

degy Q∑
i=0

qiy
i,

the resultant of P and Q with respect to the variable y is denoted by resy(P,Q) and
may be calculated as the determinant of the (degy Q+ degy P )× (degy Q+ degy P )
Sylvester matrix; that is

resy(P,Q) := det



p0 p1 p2 · · · pdegy P

p0 p1 p2 · · · pdegy P

. . .
. . .

. . .
. . .

p0 p1 p2 · · · pdegy P

q0 q1 q2 · · · qdegy Q

q0 q1 q2 · · · qdegy Q

. . .
. . .

. . .
. . .

q0 q1 q2 · · · qdegy Q


,

where there are degy Q rows of the coefficients of P and degy P rows of the coefficients
of Q. Now suppose R = C[z, x], so that the entries of the above Sylvester matrix
are polynomials in the variables z and x, and set D(x, z) := resy(P,Q). Since
polynomial degrees are additive, using the Leibniz formula for the determinant, we
have immediately that

degzD(x, z) 6 degy Qdegz P + degy P degz Q (2)

and

degxD(x, z) 6 degy Qdegx P + degy P degxQ. (3)

The lemma now follows immediately by combining (2) and (3) with the fact that
given algebraic functions f(z), g(z) ∈ C[[z]] and polynomials Pf (z, y), Pg(z, y) ∈
C[z, y] with Pf (z, f) = Pg(z, g) = 0, the algebraic function f(z) + g(z) is a root of
the polynomial resy(Pf (z, y), Pg(z, x− y)) viewed as a polynomial in x. �

Because of Lemma 1, we may focus on algebraic functions of degree at least 2.

Lemma 3. Let a0(z), . . . , ad(z) be polynomials of degree at most A. If G(z) ∈ C[[z]]
is an algebraic function of degree ∆G > 2 satisfying a minimal polynomial with
coefficients of degree at most δg, then the function

MG(z) :=

d∑
i=0

ai(z)G(zk
i

)
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is an algebraic function satisfying a polynomial of degree

∆MG
6 ∆d+1

G

whose coefficients have degree

δMG
6 (d+ 1)A ·∆d+1

G +
kd+1 − 1

k − 1
· δG ·∆d

G.

Proof. Since G(z) is an algebraic function, so is
∑d

i=0 ai(z)G(zk
i

). One can easily
gain information about the sum using the theory of resultants.

To get an upper bound on ν(MG(z)), we apply the idea of the previous paragraph

by including the terms Gi(z) := ai(z)G(zk
i

) one at a time. To do this, let

PG(z, y) := g∆G
y∆G + · · ·+ g1y + g0

be the minimal polynomial of G(z). Here we have denoted the degree of G(z) by
∆G. Set δG := degz PG(z, y). Then

PGi
(z, y) = ai(z)

∆GPG(zk
i

, y/ai(z))

is a polynomial with PGi
(z,Gi(z)) = 0, where, of course, we only form this poly-

nomial when ai(z) 6= 0. Here, we have that PGi
(z, y) is still minimal with respect

to the degree of y, but there is no guarantee that it is minimal with respect to the
degree of z for this degree of y. However, we do have that the minimal polynomial
of Gi(z) divides PGi(z, y) and the remainder is just a polynomial in z. In any case,
the above gives that

∆Gi := degy PGi(z, y) = degy PG(z, y) = ∆G (4)

and

δGi
:= degz PGi

(z, y) 6 A∆G + kiδG. (5)

The lemma now follows by combining (4) and (5) with Lemma 2. �

Lemma 4. Let G(z) ∈ C[[z]] be an algebraic function of degree at least 2 satisfying
the polynomial PG(z, y) = an(z)yn + an−1(z)yn−1 + · · · + a1(z)y + a0(z), with
a0(z) 6= 0. Then ν(G(z)) 6 ν(a0(z)). In particular, ν(G(z)) 6 degz PG(z, y).

Proof. Since PG(z, y) is a minimal polynomial, we have a0(z) 6= 0. We thus have,
identically,(

an(z)G(z)n−1 + an−1(z)G(z)n−2 + · · ·+ a1(z)
)
G(z) = −a0(z).

The fact G(z), an(z), . . . , a0(z) ∈ C[[z]] then gives

ν
(
an(z)G(z)n−1 + an−1(z)G(z)n−2 + · · ·+ a1(z)

)
+ ν(G(z)) = ν(a0(z)),

which proves the lemma, since each of the terms is a nonnegative integer. �

Proof of Theorem 1. Let F (z) be a k-Mahler function satisfying (1) of degree dF
and height AF and let G(z) be an algebraic function of degree at most n and height
at most HG. Since by Lemma 1, the theorem holds for n = 1, we may assume
without loss of generality that n > 2.

Set M := ν(F (z)−G(z)), and write

F (z)−G(z) = zMT (z),
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where T (z) ∈ C[[z]] with T (0) 6= 0. Then also

d∑
i=0

ai(z)F (zk
i

)−
d∑

i=0

ai(z)G(zk
i

) =

d∑
i=0

ai(z)z
kiMT (zk

i

),

which since F (z) satisfies (1) reduces to

MG(z) :=

d∑
i=0

ai(z)G(zk
i

) = −
d∑

i=0

ai(z)z
kiMT (zk

i

).

This immediately implies that

ν(F (z)−G(z)) = M 6 ν (MG(z)) 6 δMG
,

where the last inequality follows from Lemma 4. By definition, δG = logHG, hence
applying Lemma 3 proves the theorem. �

3. Concluding Remark

The n-dependence in the estimate of Theorem 1 is the best that can be attained
by this method, that is, a bound of n-order ndF ; this is the same n-order for the best
known bounds on ν(Q(z, F (z))) as well [16]. While at first glance, the n-dependence
in Theorem 1 looks like ndF +1, when using the results one usually first takes a limit
through the height HG. With this in mind, one assumes that logHG > n > 1 so
that our estimate gives

ν (F (z)−G(z)) 6

(
(dF + 1) ·Af +

kdF +1 − 1

k − 1

)
· logHG · ndF .

The immediate question is whether or not this is the best bound possible; probably
the answer is ‘no.’ Presumably a ‘Roth-type’ estimate holds, so that one has a bound
that is linear in n. This would imply that a Mahler function F (z) is an S-number
in the suitable function-field analogue of Mahler’s classification (see Bugeaud [7] for
the relevant definitions), which is a question that has been circulating within the
area for some time now.
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