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Abstract. We show that the transcendental equation cos z+H
sin z

z
= 0, with

H a real number has only real solutions, which are countably many, simple,
and there exists a positive H0 such that the positive solutions satisfy

zn(H) = (n−
1

2
)π +

H

(n− 1
2
)π
−

H2

2(n− 1
2
)3π3

+O(
1

n3
), as n→∞,

for each H ≥ −H0, and

zn(H) = (n+
1

2
)π +

H

(n+ 1
2
)π
−

H2

2(n+ 1
2
)3π3

+O(
1

n3
), as n→∞.

if H < −H0.

1. The Zeros of the Transcendental Equation cos z +H
sin z

z
= 0.

Throughout this paper, H is considered a real number. We investigate the
complex solutions of the equation

cos z +H
sin z

z
= 0. (1.1)

We show first that z ∈ C is a solution to (1.1) if and only if λ = z2 satisfies the
eigenvalue problem {

−u′′(x) = λu(x), x ∈ (0, 1)
u(0) = 0 = u′(1) +Hu(1).

(1.2)

This will help in showing that the solutions to (1.1) are real. One can see easily
that if z ∈ C satisfies (1.1), then λ = z2 is an eigenvalue of (1.2) with the associated

eigenfunction u(x) =
sin(
√
λx)√
λ

. Conversely, if λ is an eigenvalue of the boundary

value problem (1.2), then there exists a non-identically zero function u(x) that
satisfies (1.2). It follows that u′(0) 6= 0, as otherwise the ODE and the boundary
condition u(0) = 0 would imply that u(x) = 0, for all x ∈ [0, 1] (the initial value
problem −u′′(x) = λu(x), u(0) = 0 = u′(0) has only one solution, namely the

zero solution). Hence, v(x) :=
u(x)

u′(0)
is well-defined. It follows that v′(0) = 1, and

v(0) = 0, −v′′(x) = λv(x), for x ∈ (0, 1), due to the properties of u(x). This means

that v(x) =
sin(
√
λx)√
λ

, because
sin(
√
λx)√
λ

is the only solution to this initial value
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problem. Thus, cos(
√
λ) +H

sin(
√
λ)√
λ

= v′(1) +Hv(1) =
u′(1)

u′(0)
+H

u(1)

u′(0)
= 0, since

u(x) satisfies (1.2). We showed this way that z =
√
λ is a solution to (1.1).

Next we show that the eigenvalues λ’s of (1.2) are real valued. Let λ ∈ C be
an eigenvalue of (1.2) with u(x) an associated eigenfunction. Taking the complex
conjugate in (1.2), multiplying the ODE just obtained by u(x), multiplying the
ODE of (1.2) by ū(x) (the complex conjugate of u(x)), and subtracting the two
new equations one from another we arrive at:

d

dx
(ūu′ − ū′u)(x) = (λ̄− λ)ū(x)u(x), x ∈ (0, 1). (1.3)

Integrating (1.3) from x = 0 to x = 1, and using the boundary conditions that u
and ū satisfy and the fact that H ∈ R we get:

0 = (λ̄− λ)

∫ 1

0

|u(x)|2dx,

from which we readily have λ̄ = λ, since u 6= 0 as an eigenfunction. Thus, λ ∈ R.

Due to the previous two paragraphs, the zeros of f(z) := cos z + H
sin z

z
are

either real or pure imaginary (z = ±
√
λ where λ is an eigenvalue of (1.2), so λ is

real). We show that f cannot have zeros that are pure imaginary. Suppose that
z = iy, with y ∈ R − {0}, is a zero of f . Then f(iy) = 0, which is equivalent to(
e−y + ey

)
+ H

e−y − ey

−y
= 0, by means of the known formulas cos z =

eiz + e−iz

2

and sin z =
eiz − e−iz

2i
. So y 6= ±H, since otherwise the second equation for y

would give 2e±y = 0. Hence, the second equation for y is further equivalent to
e2y = H−y

H+y . Clearly, the graphs of e2y and H−y
H+y intersect only at y = 0, but our y

was assumed nonzero. This is the needed contradiction.
We observe that if z 6= 0 is a zero of f , then sin z 6= 0 (otherwise cos z =

−H sin z
z = 0, contradicting sin2 z + cos2 z = 1). It follows next that cot z = −Hz .

Conversely, if z 6= 0 is such that cot z = −Hz , then f(z) = 0.
Hence, by the discussion in the previous two paragraphs, the nonzero zeros of

f are the real-valued solutions of cot z = −Hz , i.e. they are the z-coordinate of

the intersection points of the curves w = cot z and w = −Hz of real variable z (for
H 6= 0). Graphing these two functions, we observe that their intersection points
are countably many, they form pairs symmetric with respect to the origin of the
coordinate axes, and the n’th point of intersection located in the right half plane
has the z-coordinate near (n+ 1

2 )π, if H < −H0, and near (n− 1
2 )π, if H ≥ −H0,

for all n ≥ 1. The number −H0 is the smallest negative H such that

lim
z→0+

(
cos z +H

sin z

z

)
· lim
z→π−

(
cos z +H

sin z

z

)
< 0. (1.4)

In other words, −H0 is the smallest negative H such that the curves w = cot z and
w = −Hz of real variable z have their first intersection point of the right half plane
located in the first vertical stripe 0 < z < π. An asymptotic formula for zn can be
found in [2, Problem 4.2, page 171]. However, we sharpen it in Theorem 1. Thus,
we showed that the nonzero zeros of f are countably many.
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Now we argue that the nonzero zeros of f are simple. If H = 0 then f(z) = cos z,
and thus it has the zeros±

(
n− 1

2

)
π, which clearly are simple. So we assume further

that H 6= 0. Let z̃ 6= 0 be a zero of f . Then z̃ ∈ R−{0} (as argued above), f(z̃) = 0
and

f ′(z̃) = − sin z̃ +H
cos z̃

z̃
−H sin z̃

z̃2
= cos z̃ ·

(
z̃

H
+
H + 1

z̃

)
,

by substituting − sin z̃ and −H sin z̃
z̃ from f(z̃) = 0 into the formula of f ′(z̃). Since

H 6= 0, we have that cos z̃ 6= 0, because otherwise it would imply that cos z̃ =
0 = sin z̃ (see f(z̃) = 0), contradicting sin2 z̃ + cos2 z̃ = 1. If H /∈ (−1, 0], then
z̃
H + H+1

z̃ 6= 0, again because z̃ ∈ R−{0}. If H ∈ (−1, 0), then z̃
H + H+1

z̃ = 0 if only

if z̃ = ±
√
−H(H + 1), which due to f(z̃) = 0 would imply that

√
−H(H + 1) ·

cos
√
−H(H + 1) = −H · sin

√
−H(H + 1). Graphing the two functions of H

on (−1, 0) one sees no intersection points. Actually, the graph of
√
−H(H + 1) ·

cos
√
−H(H + 1) stays above the graph of −H · sin

√
−H(H + 1) for H ∈ (−1, 0).

See Figure 1. Hence, z̃
H + H+1

z̃ 6= 0, if H ∈ (−1, 0). Thus f ′(z̃) 6= 0, which means
that z̃ is a simple zero of f .

If H = −1, then

f(z) = cos z − sin z

z
=

(
1

3!
− 1

2!

)
z2 +

(
1

4!
− 1

5!

)
z4 + . . . ,

by the power series of cos z and sin z (see [1, page 38]). Hence z = 0 is a double
zero of f , in this case.

Theorem 1. For a fixed H ∈ R, let zn(H) be the n’th positive zero of f(z) :=

cos z + H
sin z

z
, for n ≥ 1. Then for each H ≥ −H0, and respectively for each

H < −H0:

zn(H) = (n− 1

2
)π +

H

(n− 1
2 )π
− H2

2(n− 1
2 )3π3

+O(
1

n3
), as n→∞, (1.5)

zn(H) = (n+
1

2
)π +

H

(n+ 1
2 )π
− H2

2(n+ 1
2 )3π3

+O(
1

n3
), as n→∞. (1.6)

Proof: Let G(H, z) := cos z + H sin z
z , for H, z ∈ R. This function is continuously

differentiable with respect to both H and z. Fix n ≥ 1 and let z∗n :=
(
n− 1

2

)
π,

and z∗∗n :=
(
(n+ 1)− 1

2

)
π =

(
n+ 1

2

)
π. Then:{

G(0, z∗n) = 0,
∂G
∂z (0, z∗n) = − sin z∗n = (−1)n 6= 0.

(1.7)

It follows by the Implicit Function Theorem that there exists a small neigh-
borhood [−δ1, δ1] of H = 0 and a unique continuously differentiable function
Zn : [−δ1, δ1]→ R such that:{

Zn(0) = z∗n,
G(H,Zn(H)) = 0, for all H ∈ [−δ1, δ1].

(1.8)

We shall prove that the function Zn above extends to a continuously differ-
entiable function on all of [−H0,+∞), has the property G(H,Zn(H)) = 0, for
all H ∈ [−H0,+∞), and Zn(H) equals the right hand side of (1.5), for each
H ∈ [−H0,+∞). If these are established, then for an arbitrary but fixed H ∈



38 MIHAELA-CRISTINA DRIGNEI

[−H0,+∞), Zn(H) will be a real-valued zero of f(z) := cos z+H sin z
z in the neigh-

borhood of z∗n, for n large. So, sinZn(H) ≈ sin z∗n = ±1 6= 0. This will further mean
that Zn(H) is the real solution of cot z = −Hz , which is closest to z∗n. Graphing

the functions cot z and −Hz of real variable z (Remember H ≥ −H0!), one observes
that their n’th intersection point located in the right half plane has the abscissa z
closest to z∗n. Thus, Zn(H) will be the n’th positive solution of cot z = −Hz , and so
the n’th positive zero of f(z) for the chosen H. Therefore Zn(H) = zn(H), by our
numbering of the zeros of f(z), from which the asymptotics formula (1.5) of zn(H)
follows.

Taking the derivative with respect to H in the second identity of (1.8) and using
the definition of G(H, z) we get:

Z ′n(H) =
Zn(H) sinZn(H)

Zn(H)2 sinZn(H)−HZn(H) cosZn(H) +H sinZn(H)
, for H ∈ [−δ1, δ1].

(1.9)
Then for any H ∈ [−δ1, δ1] the following calculations hold:

Zn(H)− z∗n =

∫ H

0

Z ′n(H ′)dH ′

=

∫ H

0

Zn(H ′) sinZn(H ′)

Zn(H ′)2 sinZn(H ′)−H ′Zn(H ′) cosZn(H ′) +H ′ sinZn(H ′)
dH ′

≈
∫ H

0

z∗n
(z∗n)2 +H ′

dH ′ = z∗n ln

(
1 +

H

(z∗n)2

)
. (1.10)

In (1.10) we used Zn(H ′) ≈ Zn(0) = z∗n, possible because Zn is a continuous
function and H ′ is close to 0, by being between 0 and H ∈ [−δ1, δ1]. Thus
cosZn(H ′) ≈ 0, and sinZn(H ′) ≈ (−1)n+1. Using the Taylor series expansion

of ln(1 + x) about x = 0 (note that
H

(z∗n)2
= O(

1

n2
)), formula (1.10) yields for each

H ∈ [−δ1, δ1]:

Zn(H) = z∗n +
H

z∗n
− H2

2(z∗n)3
+O(

1

n3
), as n→∞. (1.11)

Thus we have the desired asymptotics of Zn(H), but only for H ∈ [−δ1, δ1]. We
shall use (1.11) to achieve our goal stated above about Zn(H).

Let Ĥ := δ1, and let ẑn := Zn(Ĥ). It follows from (1.11), after ignoring all terms
O( 1

n4 ) and lower, that:

ẑn = z∗n + Ĥ
z∗n

+O( 1
n3 ),

sin ẑn = sin z∗n cos
(
Ĥ
z∗n

+O( 1
n3 )
)

+ cos z∗n sin
(
Ĥ
z∗n

+O( 1
n3 )
)

= (−1)n+1
(

1− Ĥ2

2(z∗n)
2

)
,

cos ẑn = cos z∗n cos
(
Ĥ
z∗n

+O( 1
n3 )
)
− sin z∗n sin

(
Ĥ
z∗n

+O( 1
n3 )
)

= (−1)n
(
Ĥ
z∗n

+O( 1
n3 )
)
,

1
ẑn

= 1

z∗n+
(
Ĥ
z∗n

+O( 1
n3 )

) = 1
z∗n

1

1+

(
Ĥ

(z∗n)2
+O( 1

n4 )

) = 1
z∗n

(
1− Ĥ

(z∗n)
2 +O( 1

n4 )
)

= 1
z∗n

+O( 1
n3 ).

(1.12)
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We used in (1.12) the Taylor series expansions about x = 0
cosx = 1− x2

2! + x4

4! − . . . ,
sinx = x− x3

3! + x5

5! − . . . ,
1

1+x = 1− x+ x2 − . . . .

It follows from (1.8), and the definition of G(H, z) together with (1.12) that:

G(Ĥ, ẑn) = G(Ĥ, Zn(Ĥ)) = 0, (1.13)

∂G

∂z
(Ĥ, ẑn) = (−1)n

(
1− Ĥ2

2(z∗n)2

)
+ Ĥ(−1)n

(
Ĥ

z∗n
+O(

1

n3
)

)(
1

z∗n
+O(

1

n3
)

)

+ Ĥ(−1)n

(
1− Ĥ2

2(z∗n)2

)(
1

(z∗n)2
+O(

1

n4
)

)

= (−1)n

(
1 +

Ĥ2 + 2Ĥ

2(z∗n)2

)
+O(

1

n4
)

6= 0, since Ĥ2+2Ĥ
2(z∗n)

2 = O
(

1
n2

)
. (1.14)

The Implicit Function Theorem, (1.13), (1.14) imply the existence of a neigh-

borhood [Ĥ − δ2, Ĥ + δ2] of H = Ĥ and of a unique continuously differentiable

function Ẑn : [Ĥ − δ2, Ĥ + δ2]→ R such that:{
Ẑn(Ĥ) = ẑn,

G(H, Ẑn(H)) = 0, for all H ∈ [Ĥ − δ2, Ĥ + δ2] ⊂ (0,∞).
(1.15)

Note that we can take δ2 < Ĥ = δ1, by shrinking the interval around Ĥ, because
clearly G(H, Ẑn(H)) = 0 would hold on any subinterval of the interval asserted by
the implicit function theorem. If we show that

Ẑn(H) = z∗n +
H

z∗n
− H2

2(z∗n)3
+O(

1

n3
), for each H ∈ [Ĥ − δ2, Ĥ + δ2], (1.16)

then (1.16), (1.11), and the second identity in each of (1.15) and (1.8) will tell that

for H ∈ [−δ1, δ1] ∩ [Ĥ − δ2, Ĥ + δ2], both Ẑn(H) and Zn(H) are real-valued zeros
of f(z) and they are the closest to z∗n such zeros. It follows by the same discussion

as in the third paragraph of the proof of Theorem 1 that both Ẑn(H) and Zn(H)
are the n’th positive zero zn(H) of f(z), and thus

Ẑn(H) = Zn(H), for all H ∈ [−δ1, δ1] ∩ [Ĥ − δ2, Ĥ + δ2].

This means that the function Zn could be extended from [−δ1, δ1] to [−δ1, δ1] ∪
[Ĥ − δ2, Ĥ + δ2] = [−δ1, δ1 + δ2] by preserving the analyticity, the asymptotics, and
the property G(H,Z(H)) = 0. The extension is performed by patching together

the two functions Zn and Ẑn.
Hence, we can repeat the above steps with [−δ1, δ1 + δ2] in place of [−δ1, δ1],

and Ĥ being the right end-point of this new interval. Note that doing this, Ĥ
would increase. Nevertheless, (1.14) remains true, because when |Ĥ| is large (i.e

comparable to z∗n), Ĥ2 dominates in Ĥ2 + 2Ĥ, so
Ĥ2 + 2Ĥ

2(z∗n)2
stays positive, keeping
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(−1)n

(
1 +

Ĥ2 + 2Ĥ

2(z∗n)2

)
+ O(

1

n4
) away from zero. Having (1.14) true guarantees

the existence of a neighborhood of the right end-point Ĥ of the current interval
where z can be explicitly found in terms of H, via the Implicit Function Theorem.
That means that we can keep enlarging the interval. So, the function Zn can be
extended to [−δ1,+∞) by preserving the three properties above.

Now we proceed in proving (1.16). Differentiating with respect to H in the

second identity of (1.15) and using the definition of G(H, z) we obtain Ẑ ′n(H) for

all H ∈ [Ĥ − δ2, Ĥ + δ2], which further gives:

Ẑn(H)− ẑn =

∫ H

Ĥ

Ẑ ′n(H ′)dH ′

=

∫ H

Ĥ

sin Ẑn(H ′)

Ẑn(H ′) sin Ẑn(H ′)−H ′ cos Ẑn(H ′) +H ′ sin Ẑn(H
′)

Ẑn(H′)

dH ′

=

∫ H

Ĥ

sin Ẑn(H ′)

Ẑn(H ′) sin Ẑn(H ′)−H ′ cos Ẑn(H ′)− cos Ẑn(H ′)
dH ′. (1.17)

To obtain the last equality in (1.17) we used the second identity of (1.15).

Due to the continuity of Ẑn, and because H ′ is between Ĥ and H ∈ [Ĥ −
δ2, Ĥ + δ2] we can approximate Ẑn(H ′) by Ẑn(Ĥ) = ẑn in (1.17), and we can also
use sin ẑn

ẑn
= − cos ẑn

Ĥ
, which is due to the definition of ẑn and the second identity

of (1.8). Thus, (1.17) implies that for H ∈ [Ĥ − δ2, Ĥ + δ2]:

Ẑn(H)− ẑn ≈
∫ H

Ĥ

sin ẑn
ẑn sin ẑn −H ′ cos ẑn − cos ẑn

dH ′

=

∫ H

Ĥ

sin ẑn

ẑn sin ẑn +H ′
(
Ĥ sin ẑn

ẑn

)
+ Ĥ sin ẑn

ẑn

dH ′,

(sin ẑn 6= 0, as otherwise cos ẑn = −Ĥ sin ẑn
ẑn

= 0)

=

∫ H

Ĥ

1(
ẑn + Ĥ

ẑn

)
+H ′

(
Ĥ
ẑn

)dH ′,
(dividing by sin ẑn 6= 0. Recall sin2 ẑn + cos2 ẑn = 1.)

=
ẑn

Ĥ
ln


(
ẑn + Ĥ

ẑn

)
+H

(
Ĥ
ẑn

)
(
ẑn + Ĥ

ẑn

)
+ Ĥ

(
Ĥ
ẑn

)
 =

ẑn

Ĥ
ln

1 +
(H − Ĥ)

(
Ĥ
ẑn

)
(
ẑn + Ĥ

ẑn

)
+ Ĥ

(
Ĥ
ẑn

)


=
ẑn

Ĥ
ln

(
1 +

Ĥ(H − Ĥ)

ẑn
· 1

ẑn + Ĥ+Ĥ2

ẑn

)
=
ẑn

Ĥ
ln

1 +
Ĥ(H − Ĥ)

ẑ2n
· 1

1 + Ĥ+Ĥ2

ẑ2n


=
ẑn

Ĥ

Ĥ(H − Ĥ)

ẑ2n

1

1 + Ĥ+Ĥ2

ẑ2n

− Ĥ2(H − Ĥ)2

2ẑ4n

 1

1 + Ĥ+Ĥ2

ẑ2n

2

+ . . .

 . (1.18)
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The last equality in (1.18) is due to the Taylor’s series expansion ln(1 + x) =

x− x2

2 + x3

3 −. . . about x = 0, which is permitted because Ĥ(H−Ĥ)
ẑ2n

1

1+ Ĥ+Ĥ2

ẑ2n

= O( 1
n2 ),

as we shall see next.
Using (1.11) we write

ẑn := Zn(Ĥ) = z∗n +
Ĥ

z∗n
− Ĥ2

2(z∗n)3
+O(

1

n3
), (1.19)

from which we obtain:

1

ẑn
=

1

z∗n
· 1

1 +
(

Ĥ
(z∗n)

2 − Ĥ2

2(z∗n)
4 +O( 1

n4 )
)

=
1

z∗n

1−

(
Ĥ

(z∗n)2
− Ĥ2

2(z∗n)4
+O(

1

n4
)

)
+

(
Ĥ

(z∗n)2
− Ĥ2

2(z∗n)4
+O(

1

n4
)

)2

− . . .


=

1

z∗n
− Ĥ

(z∗n)3
+O(

1

n5
). (1.20)

In the second identity of (1.20) we used the Taylor series expansion 1
1+x = 1− x+

x2 − x3 + . . . about x = 0. From (1.20) we get further:

1

(ẑn)2
=

1

(z∗n)2
− 2Ĥ

(z∗n)4
+O(

1

n6
) (1.21)

1

(ẑn)3
=

1

(z∗n)3
+O(

1

n5
), by multiplying (1.20) with (1.21). (1.22)

Using again the Taylor’s series expansion of 1
1+x about x = 0 and (1.21) we have:

1

1 + Ĥ+Ĥ2

ẑ2n

= 1− Ĥ + Ĥ2

ẑ2n
+

(
Ĥ + Ĥ2

ẑ2n

)2

− . . . = 1− Ĥ + Ĥ2

(z∗n)2
+O(

1

n4
), (1.23)

and

 1

1 + Ĥ+Ĥ2

ẑ2n

2

= 1− 2(Ĥ + Ĥ2)

(z∗n)2
+O(

1

n4
). (1.24)
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Inserting (1.20), (1.22), (1.23), (1.24) into (1.18) we obtain for each H ∈ [Ĥ −
δ2, Ĥ + δ2]:

Ẑn(H)− ẑn =
(H − Ĥ)

ẑn

1

1 + Ĥ+Ĥ2

ẑ2n

− Ĥ(H − Ĥ)2

2ẑ3n

 1

1 + Ĥ+Ĥ2

ẑ2n

2

+O(
1

n5
)

= (H − Ĥ)

(
1

z∗n
− Ĥ

(z∗n)3
+O(

1

n5
)

)(
1− Ĥ + Ĥ2

(z∗n)2
+O(

1

n4
)

)

− Ĥ(H − Ĥ)2

2

(
1

(z∗n)3
+O(

1

n5
)

)(
1− 2(Ĥ + Ĥ2)

(z∗n)2
+O(

1

n4
)

)
+O(

1

n5
)

=
H − Ĥ
z∗n

− Ĥ(H − Ĥ)

(z∗n)3
− (H − Ĥ)(Ĥ + Ĥ2)

(z∗n)3
− Ĥ(H − Ĥ)2

2(z∗n)3
+O(

1

n5
)

=
H − Ĥ
z∗n

− Ĥ(H − Ĥ)(H + Ĥ + 4)

2(z∗n)3
+O(

1

n5
). (1.25)

Finally, (1.25) and (1.19) yield for each H ∈ [Ĥ − δ2, Ĥ + δ2]:

Ẑn(H) = z∗n +
H

z∗n
− H2

2(z∗n)3
+

(H2 − Ĥ2)− Ĥ(H − Ĥ)(H + Ĥ + 4)

2(z∗n)3
+O(

1

n3
)

= z∗n +
H

z∗n
− H2

2(z∗n)3
+

(H − Ĥ)(H −HĤ − Ĥ2 − 3Ĥ)

2(z∗n)3
+O(

1

n3
),(1.26)

which is (1.16), since H ∈ [Ĥ − δ2, Ĥ + δ2] can be approximated by Ĥ and so

(H − Ĥ)(H −HĤ − Ĥ2 − 3Ĥ)

2(z∗n)3
≈ − (H − Ĥ)(Ĥ2 + Ĥ)

(z∗n)3
≈ −δ2 · Ĥ

2

n3
= O(

1

n3
),

because we are allowed to take δ2 ≤
1

Ĥ2
by shrinking the interval [Ĥ − δ2, Ĥ + δ2]

around Ĥ, if needed. Note that
1

Ĥ2
decreases (thus giving a smaller quantity δ2),

because, as mentioned in the paragraph preceding the paragraph of (1.17), |Ĥ|
increases.

By the same reasoning we showed that Zn could be extended from [−δ1, δ1] to
[−δ1,∞) we can show that Zn can be extended to the left of −δ1. Note that if

we take Ĥ := −δ1, then Ĥ2 + 2Ĥ < 0, because −δ1 is a small negative number

so it falls in (−2, 0). Nevertheless, (−1)n
(

1 + Ĥ2+2Ĥ
2(z∗n)

2

)
+ O( 1

n4 ) 6= 0, because

Ĥ2+2Ĥ
2(z∗n)

2 = O
(

1
n2

)
, even if it is negative. So (1.14) holds, making possible the

applicability of the Implicit Function Theorem.
Let −H0 be the furtherest margin to the left the function Zn could be extended

to. Note that −H0 6= −∞, as otherwise G(H,Zn(H)) = 0, for H ∈ (−∞,+∞)
will hold, which together with the asymptotics (1.5) of Zn(H) would imply that the
curves w = cot z and w = −Hz of real variable z will intersect in the right half plane
at (z, w) with z = Zn(H) ≈ z∗n. That would mean that for each H ∈ (−∞,+∞),
the two curves will intersect in the right half plane in each vertical stripe 0 < z < π,
π < z < 2π, 2π < z < 3π, etc, as z∗1 , z∗2 , z∗3 , etc are the midpoints of these intervals.
But this is not true because the graphical illustration of the curves w = cot z and
w = −Hz reveals that, for H sufficiently negative, the first intersection point of the
two curves in the right half plane is in the vertical stripe π < z < 2π.

Next, take Ĥ slightly smaller than −H0, and let ẑn be the abscissa z of the n’th

intersection point in the right half plane of the curves w = cot z and w = − Ĥz .
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Hence, ẑn ≈ z∗∗n and G(Ĥ, ẑn) = 0, which further give:

∂G

∂z
(Ĥ, ẑn) = − sin ẑn + Ĥ

cos ẑn
ẑn

− Ĥ sin ẑn
ẑ2n

= − sin ẑn + Ĥ
cos ẑn
ẑn

+
cos ẑn
ẑn

≈ − sin z∗∗n + (Ĥ + 1)
cos z∗∗n
z∗∗n

= −(−1)n 6= 0. (1.27)

Therefore, the Implicit Function Theorem can be applied at this point (Ĥ, ẑn):

there exists a small interval [Ĥ − δ̃1, Ĥ + δ̃1], and a continuously differentiable

function Z̃n : [Ĥ − δ̃1, Ĥ + δ̃1]→ R, such that{
Z̃n(Ĥ) = ẑn
G(H, Z̃n(H)) = 0, for all H ∈ [Ĥ − δ̃1, Ĥ + δ̃1].

By shrinking the interval around Ĥ, we can assume that [Ĥ − δ̃1, Ĥ + δ̃1] ⊂
(−∞,−H0). From here we can continue with similar arguments as we presented
for the function Zn, and (1.6) will follow. �

We illustrate the asymptotic formulas (1.5), (1.6) when H = −10;−0.8;
√

3; 13.
For a fixed H ∈ R, the calculations of the positive zeros zn(H) of f(z), which are
the positives Zn(H) such that G(H,Zn(H)) = 0, were performed using the MAT-
LAB built-in function fzero with the specified searching intervals being [0+ε, π−ε],
[π + ε, 2π − ε], etc if H satisfies (1.4), and [π + ε, 2π − ε], [2π + ε, 3π − ε], etc if H
is such that the inequality in (1.4) is reversed. We took ε = 0.01 for the numerical
experiments. The panels of Figure 2 confirm the order O

(
1
n3

)
of the asymptotic

formulas (1.5), (1.6). Through numerical experiments, we got −H0 ≈ −1.

Figure 1. The graphs of u =
√
−H(H + 1) · cos

√
−H(H + 1)

and of v = −H · sin
√
−H(H + 1).
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Figure 2. Illustration of (1.5), (1.6) for H = −10, H =

−0.8, H =
√

3, H = 13 (top-bottom, left-right). The ratio

|Zn(H)−
(
(n∓ 1

2 )π+
H

(n∓ 1
2
)π
− H2

2(n∓ 1
2
)3π3

)
|

1/n3 flattens out as n→∞, as pre-

dicted by these formulas. Numerically, we found −H0 ≈ −1.
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