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Abstract. We give solutions to the first order differential equation

y′(x) + c(x)y(x) = g(x)−1
I∑

i=1

pib (αix) y (αix) .

In the cell growth model, y(x) is the probability density function for the size

of a cell, b(x) is the rate at which a cell of size x divides and creates αi new

cells of size x/αi with probability pi, c(x) is a function determined by b(x) and
the growth rate of a cell, g(x).

1. Introduction

This paper extends results of Hall and Wake (1989, 1990) and of van-Brunt
and Vlieg-Hulstman (2010a, 2010b). Their cell growth model gives the partial
differential equation (pde)

∂tN(x, t) + ∂x [g(x, t)N(x, t)] + b(x, t)N(x, t) = α2b (αx, t)N (αx, t) , (1)

where ∂t = ∂/∂t, N(x, t) is the probability density function (pdf) of cells of size
x as measured by say volume or mass at time t, b(x, t) is the rate at which cells
of size x are dividing and creating α new cells of size x/α at time t, and g(x, t) is
the growth rate of the cells at time t. So, their model holds for a fixed α, such as
α = 2. We give two methods that allow for the more realistic model where α is
random. The first is simply to find a solution for fixed α then allow it to vary. The
second is to allow α to take a fixed number of values, say

α = αi with probability pi, i = 1, . . . , I and

I∑
i=1

pi = 1.

N(x, t) now becomes a random quantity with mean n(x, t) = E [N(x, t)] satisfying

∂tn(x, t) + ∂x [g(x, t)n(x, t)] + b(x, t)n(x, t) = E [b(x, t)n(x, t)] , (2)

where

Ef(x, t) = E
[
α2f(αx, t)

]
=

I∑
i=1

piα
2
i f (αix, t) (3)

when this exists. Since (1) is a special case of (3), we now drop the use of N(x, t).
We consider solutions of (2) of the form

n(x, t) = y(x)N(t), b(x, t) = b(x)B(t), g(x, t) = g(x)G(t). (4)

We shall see that solutions exist only for certain types of these functions.
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Figure 1. Plot of (6) versus x for α = 1.5, 2, 5, 20 and η = 1.

In Section 2, we give a solution that allows b(x) and g(x) to be arbitrary, but
only allows one of N(t), B(t) and G(t) to be arbitrary. (2) reduces to the form

∂xy(x) + c(x)y(x) = r(x, y), (5)

where

r(x, y) = g(x)−1 E [b(x)y(x)] .

This includes choices of b, g studied by earlier authors, (Examples 2.4 and 2.7),
as well as a new choice (Example 2.8), when I = 1 based on Kato’s fission/fusion
function

f(x : α, η) =

∞∑
k=0

e−α
kxηk/

k∏
j=1

(
1− αj

)
(6)

when y(0) = 0. Section 2 also gives a new series solution when y(0) 6= 0. Examples
2.4 and 2.7 also look at the effect of allowing α to be random.

Figure 1 shows the behavior of (6) versus x for selected α and η = 1. We can
see that f(x : α, η) is a monotonically decreasing function of x and a monotonically
increasing function of α.

Section 3 defines a multivariate form of Kato’s function to find solutions when
I ≥ 1 and either b, g are constants or g(x) = g0x, b(x) = b0x

n, n > 0, or g(x) = g0,
b(x) = b0x

n.
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Section 4 gives a new type of solution: either b(x) or g(x) is arbitrary - but not
both, while two of N(t), B(t) and G(t) can be arbitrary. If we accept both types
of restrictions, then any linear combination of the solutions of Sections 2 and 4 is
possible.

Earlier papers found solutions when y(0) = 0. We shall also give solutions when
y(0) 6= 0. Models with α > 1 are sometimes referred to as fission models, and those
with α < 1 as fusion models. For any function f(x), set

If (x) =

∫ x

0

f(z)dz (7)

when this exists.
The problem of this paper was analyzed for continuous pdf’s in Hall et al. (1991).

A future work is to compare our results and ensure that if the pdf for division in
the solutions in Hall et al. (1991) takes the form p(ξ, α) =

∑
wiδ(ξ/αi − x) for

suitable parameter values, where δ(·) is the Dirac-delta function.

2. Two Solutions to the PDE (2)

Substituting the separation of variables solution (4), into (2), and then dividing
by y(x)N(t)B(t), we find

q(t) + β(t)γ(x) = δ(x), (1)

where

q(t) = [∂tN(t)] / [B(t)N(t)] , β(t) = G(t)/B(t),

γ(x) = {∂x [g(x)y(x)]} /y(x), δ(x) = −b(x) + y(x)−1 E [b(x)y(x)]

for E of (3). Multiplying (1) by ∂x∂t gives ∂tβ(t) = 0 or ∂xγ(x) = 0. So, either (i):
β(t) = β is a constant, or (ii):

γ(x) = γ is a constant, (2)

a situation we deal with in Section 3. In this section, we suppose that β(t) = β is a
constant, and that b(x), g(x) are given. So, q = q(t) = δ(x)− βγ(x) is a constant,
and N(t), G(t) are given using the notation of (7), by

N(t) = N(0) exp [qIB(t)] , G(t) = βB(t). (3)

So, surprisingly, only one of N(t), B(t) and G(t) can be chosen arbitrarily.

Example 2.1. If cell division or growth is constant over time, then B(t) = B,
G(t) = βB, and by (3), N(t) = N(0) exp(qt) grows (if q > 0), or dies (if q < 0),
exponentially with time.

Most of the work is solving for y(x), the cell pdf, at a given time: it satisfies

g(x)∂xy(x) + c0(x)y(x) = E [b(x)y(x)] ,

where c0(x) = q + b(x) + ∂xg(x) and g(x) = βg(x). We now absorb β into g(x),
that is, we take β = 1. So, (5) holds with

c(x) = g(x)−1c0(x) = s(x) + g(x)−1∂xg(x) = g(x)−1 [q + b(x) + ∂xg(x)] ,

s(x) = g(x)−1 [q + b(x)] . (4)
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So, if g(x0) 6= 0 at x0 = 0 say, then

Ic(x) =

∫ x

0

c(z)dz = log [g(x)/g(0)] + Is(x), g(x)−1eIc(x) = g(0)−1eIs(x), (5)

Y (x) = eIc(x)y(x) (6)

satisfies

∂xY (x) = eIc(x)r(x, y),

eIc(x)y(x)− y(0) = Y (x)− Y (0) =

∫ x

0

eIc(z)r(z, y)dz.

Set Z = {0, 1, 2, . . .}. For k ∈ ZI , set

αk =

I∏
i=1

αkii . (7)

Let us try for a solution of (5) of the form

y(x) =

∞∑
k=0

qk(x),

that is,

Y (x) =

∞∑
k=0

Qk(x), Qk(x) = eIc(x)qk(x), (8)

where the sum from zero to infinity is over k = (k1, . . . , kI) ≥ 0 in ZI . Let Ei be
the ith unit vector in ZI . Set

Qk(x) = 0 unless k ≥ 0. (9)

Substituting into (6) gives

∞∑
k=0

∂xQk(x) = eIc(x)g(x)−1 E

[
b(x)e−Ic(x)

∞∑
k=0

Qk(x)

]

= eIc(x)g(x)−1
I∑
i=1

piα
2
i b (αix) e−Ic(αix)

∞∑
k=0

Qk−Ei
(αix)

since
∞∑
k=0

Qk(x) =

∞∑
k=0

Qk−Ei
(αix) .

So, (8) is a solution if {Qk} satisfy the recurrence relation

∂xQk(x) = eIc(x)g(x)−1
I∑
i=1

piα
2
i b (αix) e−Ic(αix)Qk−Ei (αix) , k ≥ 0. (10)

This is true whether or not each αi > 1. Integrating using (5) gives

Qk(x)−Qk(0) =

I∑
i=1

AiQk−Ei
(x), (11)
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where

Aif(x) =

∫ x

0

g(z)−1piα
2
i e
Ic(z)−Ic(αiz)b (αiz) f (αiz) dz

= g(0)−1piα
2
i

∫ x

0

eIs(z)−Ic(αiz)b (αiz) f (αiz) dz

by (5). Putting k = 0 gives Q0(x) = Q0(0), that is, Q0(x) is a constant.
First consider the case I = 1. Then, Qk(x) = Qk(0) +A1Qk−1(x), giving

Q1(x) = Q1(0) +Q0(0) A11,

Q2(x) = Q2(0) +A1Q1(x) = Q2(0) +Q1(0) A11 +Q0(0) A2
11,

Qk(x) =

k∑
i=0

Qk−i(0) Ai11.

Summing (11) over k ≥ 1 and putting j = i+ 1 gives Theorem 2.1.

Theorem 2.1. Consider the case I = 1. Then, the solution for Y (x) can be
expressed as

Y (x) = Y (0) +

∞∑
k=1

k∑
j=1

Qk−j(0)Aj11 = Y (0)

∞∑
j=0

Aj11 = Y (0) (I−A1)
−1

1

when
∞∑
i=0

Ai11

converges, where I is the identity operator.

The method giving Theorem 2.1 can be easily adapted if we choose x0 6= 0.

Example 2.2. Suppose that I = 1, b(x) = b, g(x) = g are constants. Then,

c(x) = s(x) = g−1(q + b) = s say,

Is(z/α)− Ic(z) = Sz,

A1f(x) = θ

∫ αx

0

e−Szf(z)dz,

A1e
−λx/θ = (S + λ)−1

[
1− e−α(S+λ)x

]
,

where S = s(α−1 − 1) and θ = αb/g. If s = 0 then Ai11 = (θx)iα(i+1
2 ) so that

Y (x) = Y (0)

∞∑
i=0

(θx)iα(i+1
2 ).

This is convergent if |α| < 1 or if α = 1 < θx. Suppose that s 6= 0. We give a
solution in terms of θ,

λ0 = 0, λj = α (S + λj−1) = S

j∑
k=1

αk = Sα
(
αj − 1

)
/(α− 1),

uj = (S + λj)
−1

= S−1(α− 1)/
(
αj+1 − 1

)
, j ≥ 0.
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If α > 1 and S > 0 (that is, s < 0,) then uj ↓ 0, 0 < λj ↑ ∞ as j ↑ ∞. Then, we
obtain an expansion of the form

(A1/θ)
i
1 =

i∑
j=1

vij
(
1− e−λjx

)
= −

i∑
j=0

vije
−λjx, i ≥ 0,

where the coefficients vij are given by the recurrence relations

v00 = −1, vi+1,0 =

i∑
j=0

vijuj , vi+1,j = −vi,j−1uj−1

for 1 ≤ j ≤ i+ 1. If y(0) 6= 0, this gives

Y (x)/Y (0) = 1 +

∞∑
j=1

wj
(
1− e−λjx

)
,

where

wj =

∞∑
i=j

θivij .

Also

w0 = −1 + θ

∞∑
j=0

ujwj , wj = −θuj−1wj−1

for j ≥ 1, giving

wj = (−θ)jUjw0, j ≥ 1,

w0 = −(1 + T )−1,

Y (x)/Y (0) = 1 + w0

∞∑
j=1

(−θ)jUj
(
1− e−λjx

)
,

where

Uj =

j−1∏
i=0

ui, T =

∞∑
j=1

(−θ)jUj .

Alternatively, by the definition of the partial ordinary Bell polynomial, B̂ji(U),
tabled on pages 307-308 of Comtet (1974),

T i =

∞∑
j=i

(−θ)jB̂ji(U), (12)

so that

w0 = −
∞∑
j=0

(−θ)jγj ,

Y (x)/Y (0) = 1−
∞∑
i=1

(−θ)iβi(x),
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where

γj =

j∑
i=0

(−1)iB̂ji(U),

βi(x) =

i∑
j=1

γi−jUj
(
1− e−λjx

)
.

This gives the solution y(x) = e−sxY (x) for any (α, θ, s) for which this converges,
that is

y(x) = Y (x)e−sx = Y (0)

e−sx −
∞∑
j=1

wj

[
e−sx − e−sx(α

j−2)
]

since s+ λj = −s(αj − 2). If α > 1 and s < 0 then as x increases,

Y (x)/Y (0)→ 1− T/(1 + T ) = −w0

and y(x)/(−w0y(0)) ≈ e−sx ↑ ∞, so that y(x) cannot be a pdf. If α > 1 and s > 0
then for j ≥ 1, λj < 0, and also s+ λj < 0 if αj > 2, so that y(x) is unlikely to be
a pdf, in contrast to the method of Example 2.4.

This example can be extended to b(x) and g(x) exponentials, as we now illustrate.

Example 2.3. Suppose that I = 1, b(x) = b0e
b1x, g(x) = g0e

g1x. So,

s(x) = g−10 e−g1x
(
q + b0e

b1x
)

=

1∑
i=0

Sie
nix, say,

c(x) = s(x) + g1, Ic(z) =

1∑
i=0

SiG0 (ni, z) ,

Is(z/α)− Ic(z) = Is(z/α)− Is(z)− g1z =

1∑
i=0

Si [G0 (ni, z/α)−G0 (ni, z)]− g1z

= a0z +

4∑
i=1

aie
miz say,

A1 = θA,
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where

G0(m,x) =

∫ x

0

emzdz =

{
(emx − 1) /m, m 6= 0,

x, m = 0,

Af(x) =

∫ αx

0

(
a0z +

4∑
i=1

aie
miz

)
eb1zf(z)dz,

Aemx = a0G1 (m+ b1, αx) + F1(m,x),

A1 = a0(αx)2/2 + F1(0, x),

F1(m,x) =

4∑
i=1

aiG0 (m+mi + b1, αx) ,

G1(m,x) =

∫ x

0

zemzdz =

{
xm−1emx +m−2 (1− emx) , m 6= 0,

x2/2, m = 0.

In this way Ajemx (and so Aj1) can be written in terms of {Gk(m,x), k = 0, . . . , j},
where

Gr(m,x) =

∫ x

0

zremzdz

= ∂rmG0(m,x)

=

{
m−1 [xremx − rGr−1(m,x)] , m 6= 0, r ≥ 1,

xr+1/(r + 1), m = 0

=

r∑
i=0

(
r

i

)(
xr−iemx − δij

)
Mi

by Leibniz’s rule, where Mi = ∂imm
−1 = (−1)ii!m−1−i. We omit further details.

Theorem 2.2 extends Theorem 2.1 for general I ≥ 1. A further extension of
Theorem 2.2 is given by Theorem 2.3.

Theorem 2.2. Set

UiQk = Qk−Ei
, V =

I∑
i=1

AiUi.

By (11),

Qk(x) = Qk(0) + VQk(x), (13)

so that (I− V)Qk(x) = Qk(0), (I− V)Y (x) = Y (0), and

Y (x) = Y (0)

∞∑
r=0

Vr1 = Y (0) (I− V)
−1

1

if this converges.

Theorem 2.3. Theorem 2.2 holds with V replaced by

S =

I∑
i=1

Ai.
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Proof: By the multinomial theorem,

Vr =
∑{(

r

ν

)
AνUν : |ν| = r

}
,

where

ν = (ν1, . . . , νI) , |ν| =
I∑
i=1

νi, Aν = Aν11 · · · A
νI
I , U

ν = Uν11 · · ·U
νI
I .

Moreover,

VrQk(x) =
∑
ν

{(
r

ν

)
AνQk−ν(x) : |ν| = r

}
=

 0, if r > |k|,(
r

k

)
Q0(x), if r = |k| (14)

by (9). By (13),

Qk(x) =

J−1∑
r=0

VrQk(0) + VJQk(x).

Putting J = |k|+ 1 gives

Qk(x) =

|k|∑
r=0

VrQk(0)

and

Y (x) =

∞∑
r=0

Vr
∑
r≤|k|

Qk(0)

=
∑

0≤r=|ν|≤|k|≤∞

(
r

ν

)
Qk−ν(0) Aν1

=
∞∑
r=0

∞∑
|ν|=r

(
r

ν

)
Aν1 Tν ,

where

Tν =
∑
|k|≥|ν|

Qk−ν(0) =
∑
k≥ν

Qk−ν(0) = Y (0)

by (14). This gives

Y (x) = Y (0) (I − S)
−1

1 = Y (0)

∞∑
r=0

Sr1,

y(x) = y(0)e−Ic(x)
∞∑
r=0

Sr1

if this converges, by (6). The proof is complete. 2

Suppose now that g(0)b(x) ≥ 0 for x ≥ 0. Then, if f(x) ≥ 0 when x ≥ 0,
Aif(x) ≥ 0, Af(x) ≥ 0, Arf(x) ≥ 0, and y(x)/y(0) ≥ 0 for x ≥ 0 if y(0) 6= 0.
Hall and Wake (1989, 1990) looked for y(x) a steady size pdf for the size of a cell,
that is, one satisfying y(x) ≥ 0,

∫∞
0
y(x)dx = 1. Their results are included in the

examples.
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We now give extensions of earlier results. Under the assumption that the func-
tions b and g depend only on x, Hall and Wake (1989, 1990) and van-Brunt and
Vlieg-Hulstman (2010a, 2010b) considered (2) and (4) for the special case I = 1,
B(t) = G(t) = 1. (This is equivalent to I = 1, B(t) = B0, G(t) = G0 since B0, G0

can be absorbed into b(x), g(x).) By (3),

N(t) = N(0)eqt. (15)

(5) becomes

∂xy(x) + c(x)y(x) = α2b(αx)y(αx)/g(x), (16)

where c(x) = [q + b(x) + ∂xg(x)]/g(x).

Example 2.4. Consider again Example 2.2: I = 1, b(x) = b, g(x) = g are
constants. So, c(x) = (q + b)/g = c say. Then,

∂xy(x) + cy(x) = aαy(αx), (17)

where a = αb/g. This is the pantograph equation studied by Kato and McLeod
(1971) for α < 1 as well as for α > 1. (They replace (α, aα, c) by (λ, a,−b).) van-
Brunt and Vlieg-Hulstman (2010a, 2010b) give references for various applications
of it. Suppose that α 6= 1. A solution of (10) is

Qk(x) = e−γkxrk,

where γk = (αk − 1)c and rk are constants such that

rk/rk−1 = −aα/γk = η/
(
1− αk

)
= νk

say, where

a = g−1bα, η = aα/c, rk/r0 =

k∏
j=1

νj ,

interpreted as one if k = 0. This gives

y(x) = e−cxY (x) = r0

∞∑
k=0

e−α
kcx

k∏
j=1

νj = r0f (cx : α, η) , (18)

where f is Kato’s function (6). This is the solution given by Theorem 9 (i), page
923 of Kato and McLeod (1971). (It is also the solution given by their Theorem 5,
page 909 when α < 1.) As they noted, f(x : α, η) has an exponential upper tail with
scale parameter α−1: f(x : α, η) ≈ e−αx as x→∞. Also,

∂xf(x : α, η) = −f(x : α, αη),∫ ∞
x

f(x : α, η)dx = f(x : α, θ), (19)

where θ = η/α = αb/(q + b). As in equation (36) of Hall and Wake (1990), we set

K(α, η) = f(0 : α, η) =

∞∑
k=0

ηk/

k∏
j=1

(
1− αj

)
= y(0)/r0. (20)
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Hall and Wake (1990, equation (96)) showed that

K(α, η) =

∞∏
n=1

(1− η/αn) . (21)

Taking logs of (21) gives

log K(α, η) = −
∞∑
k=1

(k − 1)!ηk
(
αk − 1

)−1
.

This is absolutely convergent if |η|α < 1, but diverges if η = 1. When α > 1, Hall
and Wake (1989) argue that f(x : α, η) > 0 for x > 0. So,

fα,η(x) = f(x : α, η)/K(α, θ) (22)

is a pdf on [0,∞) of a random variable, say X if K(α, θ) 6= 0 (that is, if η 6= αn+1,
n ≥ 1), and

Prob(X > x) = f(x : α, θ)/K(α, θ), x ≥ 0. (23)

Kato and McLeod (1971, page 923) note that f(x : α, η) is analytic in η for c < 0
so that fα,η(0) = 0 only for exceptional η. But f(0 : α, η) = K(α, η) = 0 implies
η = αn for some n ≥ 1.

Figure 2 shows the behavior of (22) versus x for selected α and η = 1. We
can see that fα,η(x) is a monotonically decreasing function of x. The upper tail of
fα,η(x) becomes thinner with increasing values of α.

If η = α then fα,η(0) = 0. Hall and Wake (1989) considered this case and
assumed in their equation (3), that q = q1, where η = αn if and only if q = qn,
where qn = (α2−n − 1)b, n = 1, 2, . . . since c = (q + b)/g. (n = 2 gives us the no
growth case, q = 0.) We have ∫ ∞

0

y(x)dx = 1

if and only if K(α, θ) = c/r0 = (q + b)/(gr0); q = q1 if and only if c = a if and
only if θ = 1 if and only if η = α. So, K(α, 1) = αb/(gr0) and y(0) = 0. So, for
the special case η = α, c = a that q = q1, θ = 1, y(0) = 0 and y(x) is the pdf of a
positive random variable Y = X/a with moments given by

E [X] = d−11 = µ say, E [Xr] = r!/dr, dr =

r∏
k=1

(
1− α−k

)
= dr(α) say,(24)

var(X) = E
[
(X − µ)2

]
=
(
1− α−2

)−1
, E

[
(X − µ)3

]
= 2

(
1− α−3

)−1
,

and by (19) or (23), X has distribution

Prob(X > x) = K(α, 1)−1
∞∑
k=0

e−α
kx/

k∏
j=1

(
1− αj

)
.

Comtet (1974, problem 10, page 159) shows that any polynomial in (x1, x2, . . .),
where xj = 1/(1− αj), can be written as the sum of polynomials in xj.
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Figure 2. Plot of (22) versus x for α = 1.5, 2, 5, 20 and η = 1.

Now consider the more general case of any α, θ such that K(α, θ) 6= 0. That
is, we no longer require that y(0) = 0. By (17), the nth moment of X = cY ,
mn = E [Xn], satisfies

−nmn−1 + cmn = η

∫ x

y(αx)dx = ηα−n−1mn, mn/mn−1 = n/en,

where en = 1− ηα−n−1 = 1− θα−n. So,

mj = j!/

j∏
n=1

en, E
[
eXt
]

= 1 + S(t), S(t) =

∞∑
j=1

tjνj ,

where

νj = 1/

j∏
n=1

en.

Also, since

S(t)k =

∞∑
j=k

tkB̂jk(ν),
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the jth cumulant, κj = κj(X), is given by

κj/j! =

j∑
k=1

(−1)k−1k−1B̂jk(ν).

(For a power series in η for mj, see the last equation on page 118 of Comtet (1974).)
These moments are conditional on α. Consider again the case η = α. By (17),
Y = X/a = Y0/a0, where a0 = b/g, Y0 = X/α. Now suppose that α is random
but not (b, g). Then, a = a0α and Y0 has conditional and unconditional moments

E [(Y r0 |α)] = r!α−r/dr, E [Y r0 ] = r!E
[
α−r/dr(α)

]
.

Suppose that α has pdf fα(u) on (1,∞). The means, E [Y0] = E
[
(α− 1)−1

]
and

E [Y ] = a−10 E [Y0], are infinite if fα(1+) > 0, but finite if α = 1 is unlikely in the
sense that fα(u) = (u− 1)γ [1 + o(1)] as u ↓ 1, where γ > 0, which we now assume.
Similarly,

a−r0 E [Y r] = E [Y r0 ] = r!E

[
α(r

2)/

r∏
k=1

(
αk − 1

)]
is finite if and only if r < γ + 1. For example, if γ > 1, then Y0 has finite variance

var (Y0) = 2E

[
α/

2∏
k=1

(
αk − 1

)]
−
{
E
[
(α− 1)−1

]}2
, var(Y ) = a−20 var (Y0) .

The unconditional distribution of Y0 is

Prob (Y0 > y) = E

K(α, θ)−1
∞∑
k=0

e−α
k+1y/θθk/

k∏
j=1

(
1− αj

)
≈ E

[
e−αy/K(α, θ)

]
as y →∞. To find its behavior for large y, we use the partial fraction expansion

f(x)−1 =

J∑
k=1

c−1k (x− αk)
−1
,

where

f(x) =

J∏
k=1

(x− αk) , ck = f·1 (αk) =
∏

1≤j≤J, j 6=k

(αk − αj) .

See, for example, equation (2.102) in Gradshteyn and Ryzhik (2000). So, putting
x = 1, J =∞, αk = α−k,

K(α, θ)−1 =

∞∑
k=1

c−1k (1− αk)
−1
,

where

ck =
∏
{(αk − αj) : j ≥ 1, j 6= k} .

The next example gives a general result based on Example 2.4.
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Example 2.5. Suppose that a random variable has pdf

fα(u) = (u− 1)γ f̃(u),

where

f̃(u) =

∞∑
j=0

fj(u− 1)j , γ > 0.

Then,

E
[
e−αy/K(α, 1)

]
= e−yΓ(γ)

∞∑
j=0

(γ)jy
γ−j

i∑
j=0

Pij(f)Cj−i−1,

where

Cj =

∞∑
k=1

kj−ic−1k kj , (γ)j = Γ(γ + j)/Γ(γ) = γ(γ + 1) · · · (γ + j − 1),

P00 = f0, and Pij(f) is a polynomial in (f0, f1, . . .). This asymptotic expansion fol-
lows by applying the saddlepoint expansion given in Withers and Nadarajah (2013)

with X = 1, λ = γ − 1, F (α) = αy, M = 1, G(α) = f̃(α)(α − 1)/(αk − 1). We
omit details.

The next two examples allow g(0) to be zero.

Example 2.6. See Section 1.1 of Hall and Wake (1990) for the case I = 1, b(x) =
b, g(x) = g0x

1−k, k > 0.

Example 2.7. Section 2 of Hall and Wake (1990) studied the case I = 1, g(x) =
g0x, b(x) = b0x

n, n > 0, so that

Ib(x) =

∫ x

0

b(y)dy = BxN ,

where N = n + 1, B = b0/N , and gave references to others who have studied that
case. (van-Brunt and Vlieg-Hulstman (2010b) also studied this case.) Setting

a0 = b0/g0, Z(x) = xγy(x), γ = 1 + q/g0, a2 = a0α
n+2−γ (25)

transforms (16) to

∂xZ(x) + a0x
n−1Z(x) = a2x

n−1Z(αx). (26)

Hall and Wake (1990) made the choice γ = 2, that is, q = g0, and assumed that

[g(x)y(x)]
∞
0 = 0,

∫ ∞
0

y(x)dx = 1.

They showed that there is then a unique solution with

y(x) = Cx−2
∞∑
k=0

αkne−Ia(αkx)/

k∏
j=1

(
1− αjn

)
,

C−1 (n/a0)
1/n

=


K (αn, 1) log α

 m∏
j=1

(
αjn − 1

) /m!, if m = n−1 ∈ I+,

K (αn, α) Γ
(
1− n−1

)
, if n−1 /∈ I+,
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where I+ = {1, 2, . . .} and K(·, ·) is given by (20). By (21),

K (αn, α) =

∞∏
k=1

(
1− α1−kn) .

They showed that y(x) is the pdf of a positive random variable Y = X/a0, and gave
the moments E

[
Xin

]
, i ≥ 1. For example, if n = 1 then

E [X] = (α− 1)−1, E
[
X2
]

= (α− 1)−1(log α)−1,

E [Xr] = (r − 2)!/ [dr−2(α− 1)(log α)]

for r > 2 and dr = dr(α) of (24) above. If we allow α > 1 to be random, we can
write down the unconditional moments E

[
Xin

]
, i ≥ 1; for example, if n = 1 then

E [X] = E
[
(α− 1)−1

]
, E

[
X2
]

= E [(α− 1)/(log α)] ,

E [Xr] = (r − 2)!E {1/ [dr−2(α)(α− 1)(log α)]}
for r > 2. Returning to fixed α, we now give a solution which does not require their
choice q = g0 in (15). Their transformations

z = xn/n, Y (z) = Z(x) (27)

give

∂zY (z) + a0Y (z) = a1α
nY (αnz) ,

where a1 = α2−γa0. This is just (17) with (x, y, c, a, α) changed to (z, Y, a0, a1, α
n).

So, in terms of f of (18), we obtain the solution

y(x) = x−γZ(x), (28)

where

Z(x) = r0f
(
a0x

n/n : αn, αn+2−γ)
for γ of (25). Clearly, if r0 6= 0, y(0) = ∞ unless 0 = K(αn, αn+2−γ), that
is, by (21), unless (2 − γ)/n is a non-negative integer. But it is not clear how
f(x, α, η) behaves near x = 0. Also, to choose r0 so that y(x) is a pdf, one can
write

∫∞
x
y(x)dx as a series if (1− γ)/n is a non-negative integer.

Does this method extend to g(x) = g0x
g1?

Example 2.8. Suppose that I = 1, g(x) = g0x
g1 , b(x) = b0x

b1 . By (4), c(x) =
s(x) + g1x

−1, where s(x) = g−10 x−g1(q + b0x
b1). Set Z(x) = xγy(x). Then, (5)

becomes

∂xZ(x) + c(x)Z(x) = a1α
2+b1−γxb1−g1−γZ(αx),

where

c(x) = c(x)− γx−1, a1 = g−10 b0.

So, c(x) is a weighted sum of powers of x with exponents (−1,−g1, b1 − g1). This
reduces to the exponents (−1, b1 − g1) if q = 0 or b1 = 0 or g1 = 1, and to the
single exponent −1 if b1 − g1 = −1 and either g1 = 1 (considered in Example 2.7),
or q = 0.
The case b1 − g1 = −1, that is, g(x) = g0x

g1 and b(x) = b0x
g1−1. Choose

γ = c1 + g1, (29)
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where c1 = g−10 q, so that c(x) = c1x
−g1 . The method of the previous example needs

c1 = 1 + γ, that is a1 = −1, that is, g0 = −b0, a case not applicable to cell growth.
In this case,

∂xZ(x)− xn−1Z(x) = a1α
2xn−1Z(αx),

where n − 1 = −g1. This is just (26) with (a0, a2) changed to (−1, a1α
2). So, in

terms of the pantograph function of (18) and γ of (29), we obtain the solution

y(x) = r0x
−γf

(
c1x

1−g1/ (1− g1) : αn,−a1α2
)
.

The case q = 0, that is, N(t) = N(0), b(x) = b0x
b1 , and g(x) = g0. Taking

γ = 0, (26) holds with (a0, n, a2) replaced by (a1, b1 + 1, a1α
b1+2). So, by (28), a

solution is

y(x) = r0f
(
b0x

b1+1/ [g0 (b1 + 1)] : αb1+1, αb1+3
)
.

In Section 4, we extend this case to I ≥ 1.

The Mellin transform method only applies if b(x) = b0x
n. Hall and Wake (1990)

gave a method for b(x) = b0x
kI(x ≥ x1) in their Section 3, while their Section 4

gives a method for a(x) = (x2 − x)−1I(x1 ≤ x ≤ x2).

3. A Multivariate Form of Kato’s Function

Examples 2.4, 2.7, 2.8 gave solutions when I = 1 based on Kato’s function (6).
Suppose now that I ≥ 1.

Example 3.1. Consider Example 2.4, that is with constant g(x) = g, b(x) = b,
but allow I ≥ 1. So, (5) takes the form

∂xy(x)/c+ y(x) =

I∑
i=1

wiy (αix) , (1)

where c = g−1(q + b) and wi = (b/cg)piα
2
i . A solution is

y(x) =
∑
k≥0I

e−α
kcxr(k)

since (10) has solution

Qk(x) = e−γkxr(k), γk =
(
αk − 1

)
c,

where αk is defined by (7) and r(k) are constants given by the recurrence equation

r(k) = ν(k)
∑
{wir (k − Ei) : 1 ≤ i ≤ I, Ei ≤ k} , k 6= 0I ,

where ν(k) = (1− αk)−1 and 0I is the I-vector of zeros. (Recall that Ei is the ith
unit vector in RI and k is now an integer vector.) One can show that r(k) has the
form

r(k) = r (0I)w
kf(k)

and f(k) is given by the recurrence equation

f(k) = ν(k)
∑
{f (k − Ei) : 1 ≤ i ≤ I, Ei ≤ k} , k 6= 0I , (2)
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where

wk =

I∏
i=1

wkii .

That is,

y(x)/r (0I) = f (cx : α,w) ,

where

f(x : α,w) =
∑
k≥0I

e−α
kxr(k : α,w), r(k : α,w) = r(k)/r (0I) . (3)

We call this the multivariate Kato function. If I = 1 it reduces to f(x : α,w)
with w = η of Example 2.4. fk, the solution of (2), can be built up from the case
I = 1, one dimension at a time. The first step uses

f (kiEi) /f ((ki − 1)Ei) = ν (kiEi) , ki ≥ 1

so that

f (niEi) =

ni∏
a=1

ν (aEi) =

ni∏
a=1

(1− αai )
−1

= F (αi, ni) say,

for ni ≥ 1. Next, get the two dimensional solutions using the recurrence equation
in k1,

f (k1E1 + k2E2) = ν (k1E1 + k2E2) [f (k1E1 + (k2 − 1)E2) + f ((k1 − 1)E1 + k2E2)] ,

that is, setting n = k1,

z[n] = b[n] (z[n− 1] + a[n]) ,

where

z [k1] = f [k1, k2] , f [k1, k2] = f (k1E1 + k2E2) ,

b [k1] = ν [k1, k2] = ν (k1E1 + k2E2) , a [k1] = f [k1, k2 − 1]

with solution

z[n] = b[0] · · · b[n] (a[0] + a[1]/b[0] + a[2]/b[0]b[1] + · · ·+ a[n]/b[0] · · · b[n− 1])

for n ≥ 0. Now get the two dimensional solutions using the recurrence equation in
k1 for z[k1] = f [k1, k2, k3] = f(k1E1 + k2E3 + k2E3) for fixed k2, k3; and so on.

Just as the univariate Kato function was also used to give solutions to Examples
2.7 and 2.8 when I = 1, its multivariate version can be used to give solutions to
these examples when I > 1, as we now show.

Example 3.2. Consider Example 2.7, that is with constant g(x) = g0x, b(x) =
b0x

n, n > 0, but allow I ≥ 1. So, for a0 of (25), (5) takes the form

∂xy(x) + c(x)y(x) = a0x
n−1

I∑
i=1

piα
2+n
i y (αix) ,

where

c(x) = a0x
n−1 +

(
1 + qg−10

)
x−1.
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Transforming with Z(x), γ of (25) gives

∂xZ(x) + a0x
n−1Z(x) = a0x

n−1
I∑
i=1

wiZ (αix) , (4)

where

wi = piα
n+2−γ
i .

The transformation (27) gives

∂zY (z) + a0Y (z) = a0

I∑
i=1

wiY (αiz) .

This is just (1) with (y, x, c, αi) replaced by (Y, z, a0, α
n
i ). So, by (3),

Y (z)/r (0I) = f (a0z : An, w) , (5)

where (An)i = αni , that is,

y(x)/r (0I) = x−1−q/g0f (a0x
n/n : An, w) .

Example 3.3. Suppose, (as in the last part of Example 2.8 with b1 replaced by n),
that g(x) = g0, b(x) = b0x

n, q = 0, but I ≥ 1. So, for a0 of (25), (5) takes the
form

∂xy(x) + c(x)y(x) = a0x
n

I∑
i=1

wiy (αix) ,

where c(x) = a0x
n and wi = piα

n+2
i . This is just (4) with (Z, n− 1, γ) replaced by

(y, n, 0). So, by (5), a solution is

y(x)/r (0I) = f
(
a0x

N/N : AN , w
)
,

where N = n+ 1.

4. Other Solutions for the PDE (2)

Here, we suppose that (2) holds. We show that (a) b(x) and g(x) cannot both
be arbitrary: one determines the other; (b) b(x) or g(x) determines y(x); (c) we
are free to choose any two of N(t), B(t), G(t) to determine the other. By (2),

∂xy(x) + c(x)y(x) = 0, q(t) + β(t)γ = δ = δ(x) (1)

for some constant δ, where c(x) = (∂xg(x)− γ)/g(x). That is,

∂t logN(t) = δ B(t)− γG(t), [b(x) + δ] y(x) = E [b(x)y(x)] . (2)

So, N(t) is given in terms of B(t) and G(t) by N(t) = N(0) exp{δ IB(t)− γIG(t)},
again using the notation (7). Also, y(x) is given by

y(x) = e−Ic(x)y(0) = eγIh(x)h(x)g(0)y(0), (3)

where h(x) = g(x)−1. But y(x) must also satisfy (2). So, we have Theorem 4.1.
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Theorem 4.1. With notation as above, either y(x) ≡ 0, or if y(0) 6= 0, then g(x)
and b(x) must satisfy

[b(x) + δ] e−Ic(x) = E
[
b(x)e−Ic(x)

]
. (4)

Putting x = 0 gives

δ =
{
E
[
α2
]
− 1
}
b(0),

where

E
[
α2
]

=

I∑
i=1

piα
2
i .

Theorem 4.2 expresses g(x) in terms of b(x).

Theorem 4.2. Consider the case I = 1. Then,

g(x) = eIc(x)
[
g(0) + γ

∫ x

0

e−Ic(z)dz

]
, (5)

where

Ic(x) =

∞∑
k=0

D
(
α−kx

)
(6)

when this converges, where

D(x) = log
{
α2b̃(x)/

[
b̃
(
α−1x

)
+ α2 − 1

]}
, b̃(x) = b(x)/b(0).

Proof: Write (4) as

exp [Ic(αx)− Ic(x)] = α2b(αx)/ [b(x) + δ] = exp [D(αx)] , (7)

Ic(x)− Ic
(
α−1x

)
= D(x).

So, D(0) = 0. Replace x by α−kx and sum from k = 0 to infinity to obtain (6). By
(1), we have (5). 2

An alternative approach to Theorem 4.2 is to assume that b(x) has a Taylor
series about zero and to obtain a similar series for g(x).

Example 4.1. Suppose that b(x) = b, a constant. Then, D(x) = 0 so that Ic(x) is
constant, which by (3) must be zero; that is, c(x) = 0, g(x) = g0x. This gives the
special case b(x) = b, g(x) = g0x, y(x) = y(0).

We now express b(x) in terms of g(x). If g(x) has a Taylor series expansion
about zero, then one can obtain a Taylor series expansion about zero for b(x) using
Bell polynomials. Suppose that g(x) =

∑∞
j=0 gjx

j = g0 + T (x) say, with g0 6= 0.

Theorem 4.3 shows how to obtain b(x) =
∑∞
j=0 bjx

j .

Theorem 4.3. With notation as above,

b0 =
(
α2 − 1

)−1
δ, bi =

(
αi+2 − 1

)−1 i−1∑
j=0

bjSi−j , i ≥ 1, (8)

where

Si =

i∑
r=0

B̂ir(s)/r!



62 CHRISTOPHER S. WITHERS and SARALEES NADARAJAH

and si =
(
αi − 1

)
/i.

Proof: As in (12), T (x)i =
∑∞
j=i B̂ji(g)xj at g = (g1, g2, . . .), so that

g(x)−1 = g−10

∞∑
i=0

(−g0)
−i
T (x)i =

∞∑
j=0

Cj(g)xj ,

where

Cj(g) = g−10

j∑
i=0

(−g0)
−i
B̂ji(g).

Also, by (1), c(x)g(x) = ∂xg(x)− γ so that

c(x) =

∞∑
j=0

cjx
j

with cj given by the recurrence relation

cjg0 +

j−1∑
i=0

cigj−i = cj ⊗ gj = (j + 1)gj+1 − γδj0.

So,

c0 = g−10 (g1 − γ) , cj = g−10

[
(j + 1)gj+1 −

j−1∑
i=0

cigj−i

]
, j ≥ 1.

Now set

sx = Ic(αx)− Ic(x) =

∫ αx

x

c(z)dz =

∞∑
i=1

six
i.

So,

esx =

∞∑
r=0

Srx/r! =

∞∑
i=0

Six
i.

For example, S0 = 1, S1 = s1 and S2 = s2+s21/2. So, by (7), Si⊗(bi+δδi0) = biα
i+2,

giving (8). 2

Theorem 4.3 can be extended to g0 = 0 6= g1.
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