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Abstract. We give solutions to the first order differential equation

I
Y/(2) + e()y(@) = g(@) ™D pib (ae) y (o)
i=1
In the cell growth model, y(z) is the probability density function for the size
of a cell, b(z) is the rate at which a cell of size x divides and creates a; new
cells of size x/a; with probability p;, c(z) is a function determined by b(z) and
the growth rate of a cell, g(z).

1. Introduction

This paper extends results of Hall and Wake (1989, 1990) and of van-Brunt
and Vlieg-Hulstman (2010a, 2010b). Their cell growth model gives the partial
differential equation (pde)

0N (z,t) 4 0y [g(x, )N (z,t)] + b(x,t)N(z,t) = o®b (ax,t) N (az,t), (1)
where 0y = 0/0t, N(x,t) is the probability density function (pdf) of cells of size
x as measured by say volume or mass at time ¢, b(x,t) is the rate at which cells
of size x are dividing and creating « new cells of size 2/« at time t, and g(z,t) is
the growth rate of the cells at time ¢. So, their model holds for a fixed «, such as
a = 2. We give two methods that allow for the more realistic model where « is
random. The first is simply to find a solution for fixed « then allow it to vary. The
second is to allow « to take a fixed number of values, say

I
o = «; with probability p;, i =1,...,1 and Zpi =1
i=1

N(z,t) now becomes a random quantity with mean n(x,t) = E [N (x,t)] satisfying

on(z,t) + Oy [g(x, t)n(z, t)] + bz, t)n(z,t) = € [b(x, t)n(z,t)], (2)
where
I
(1) = E [o? f(aw, 0] = Y pa?f (asz, 1) ®)

when this exists. Since (1) is a special case of (3), we now drop the use of N(z,1).
We consider solutions of (2) of the form

n(z,t) = y(x)N(t), b(x,t) = b(z)B(t), g(z,t) = g(z)G(?). (4)

We shall see that solutions exist only for certain types of these functions.
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FIGURE 1. Plot of (6) versus « for a = 1.5,2,5,20 and n = 1.

In Section 2, we give a solution that allows b(z) and g(z) to be arbitrary, but
only allows one of N(t), B(t) and G(t) to be arbitrary. (2) reduces to the form

02y () + c(x)y(z) = r(z,y), (5)

where

r(z,y) = g(2)™" € b(a)y(z)].
This includes choices of b, g studied by earlier authors, (Examples 2.4 and 2.7),
as well as a new choice (Example 2.8), when I = 1 based on Kato’s fission/fusion
function

oo k
flz:a,n) Zeo‘xknl—oﬂ (6)
k=0 j=1

when y(0) = 0. Section 2 also gives a new series solution when y(0) # 0. Examples
2.4 and 2.7 also look at the effect of allowing « to be random.

Figure 1 shows the behavior of (6) versus z for selected o and n = 1. We can
see that f(z : a,n) is a monotonically decreasing function of z and a monotonically
increasing function of a.

Section 3 defines a multivariate form of Kato’s function to find solutions when
I > 1 and either b, g are constants or g(x) = gox, b(x) = boz™, n > 0, or g(x) = go,
b(x) = box™.
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Section 4 gives a new type of solution: either b(x) or g(x) is arbitrary - but not
both, while two of N(t), B(t) and G(t) can be arbitrary. If we accept both types
of restrictions, then any linear combination of the solutions of Sections 2 and 4 is
possible.

Earlier papers found solutions when y(0) = 0. We shall also give solutions when
y(0) # 0. Models with a > 1 are sometimes referred to as fission models, and those
with @ < 1 as fusion models. For any function f(x), set

SR (7)
0
when this exists.

The problem of this paper was analyzed for continuous pdf’s in Hall et al. (1991).
A future work is to compare our results and ensure that if the pdf for division in
the solutions in Hall et al. (1991) takes the form p(&,a) = > w;0(§/a; — x) for
suitable parameter values, where 0(-) is the Dirac-delta function.

2. Two Solutions to the PDE (2)

Substituting the separation of variables solution (4), into (2), and then dividing
by y(z)N(t)B(t), we find
q(t) + B(t)y(x) = &(), (1)

where

q(t) = [ON(8)] / [BA)N(1)], B(t) = G(t)/B(1),
(&) = {0z [g(2)y(2)]} /y(x), 6(z) = —b(z) +y(z) ™" & [b(a)y(w)]
for £ of (3). Multiplying (1) by 0,0; gives 9;6(t) = 0 or d,y(x) = 0. So, either (i):
B(t) = B is a constant, or (ii):
~v(x) =~ is a constant, (2)
a situation we deal with in Section 3. In this section, we suppose that 3(t) = 8 is a

constant, and that b(x), g(z) are given. So, ¢ = ¢(t) = §(x) — Sv(x) is a constant,
and N(t), G(t) are given using the notation of (7), by

N(t) = N(0)exp [gIp(t)], G(t) = BB(1). 3)
So, surprisingly, only one of N(t), B(t) and G(t) can be chosen arbitrarily.

Example 2.1. If cell division or growth is constant over time, then B(t) = B,
G(t) = BB, and by (3), N(t) = N(0)exp(qt) grows (if ¢ > 0), or dies (if ¢ < 0),
exponentially with time.

Most of the work is solving for y(x), the cell pdf, at a given time: it satisfies

9(x)0ry(x) + co(@)y(x) = € [b(x)y()],
where co(x) = q + b(z) + 0.g(z) and g(z) = Bg(x). We now absorb f into g(z),
that is, we take 8 = 1. So, (5) holds with
c(z) = g(x)"teo(x) = s(@) + g(x) " 0pg(x) = g(2) ™" [q + b(x) + pg(2)],
s(x) = (@)~ g+ b(x)]. (4)
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So, if g(zg) # 0 at xg = 0 say, then

Io(z) = /0z c(z)dz = log [g(x)/g(0)] + I(z), g(z)~ e = g(0)~e"*"), (5)
Y(x) = e"y(x) (6)
satisfies
0.Y (z) = elc(i)r(x,y),
eIC(”)y(m) —y(0)=Y(z) - Y(0) = / eIC(Z)T(z,y)dz.
0
Set Z ={0,1,2,...}. For k € Z!, set

I
b = Hafi. (7)
i=1

Let us try for a solution of (5) of the form

y(@) = ar(),
k=0

that is,
V(@)=Y Qulx), Qulx) = e @gy(a), (8)
k=0
where the sum from zero to infinity is over k = (ky,...,k;) > 0 in Z!. Let E; be
the ith unit vector in Z!. Set
Qr(r) =0 unless k > 0. 9)

Substituting into (6) gives

Z@ka(x) = el@gx)™t £ |b(x)e @ ZQk(x)
k=0 k=0

I 0
= ele@g(p)t Zpia?b (az) e~ Le(@im) Z Qr—g; (a;x)
i=1 k=0
since

D Qu(r) =) Qrp ().
k=0 k=0

So, (8) is a solution if {Q} satisfy the recurrence relation

I
0:Qi(x) = ¢ Wg(@)™ > piatb(aix) e NQy_p, (aiw), k>0.  (10)
=1

This is true whether or not each «; > 1. Integrating using (5) gives

I
Qr(r) — Qx(0) = ZAiQk—Ei (z), (11)
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where

A f () /0 g(z)flpiafelc(Z)flc(o“z)b(aiz) faz)dz

= 9(0)_11%‘(1?/ els =L@y (0, 2) f (a2) dz
0

by (5). Putting k = 0 gives Qo(z) = Qo(0), that is, Qo(x) is a constant.
First consider the case I = 1. Then, Qk(z) = Qx(0) + A1 Qx—1(z), giving

Q1(z) = Q1(0) + Qo(0) A11,
Qa(z) = Q2(0) + A1Q1 () = Q2(0) + Q1(0) A1l + Qo(0) Afl,
k
Qr(z) =D Qr-i(0) AjL.
=0

Summing (11) over k > 1 and putting j = ¢ + 1 gives Theorem 2.1.

Theorem 2.1. Consider the case I = 1. Then, the solution for Y (z) can be
expressed as

oo k o]
Y(@)=Y(0)+ ) Y Quj(0)A1=Y(0)) A1=Y(0)T-A) "1

k=1j=1 §=0

when
o0
> i
i=0
converges, where I is the identity operator.
The method giving Theorem 2.1 can be easily adapted if we choose zg # 0.

Example 2.2. Suppose that I =1, b(x) = b, g(x) = g are constants. Then,

co(x) = s(x) =g ' (q+b) = s say,
IS(Z/OZ) - IC(Z) = SZ,

Aufla) =6 [ (e
0
Are™ )0 = (S + X)L - emo S

where S = s(a™t —1) and 0 = ab/g. If s =0 then A}l = (H:C)ia(itl) so that

Y()=Y(0)) (62)'al?).
i=0
This is convergent if |a| < 1 or if « = 1 < 6z. Suppose that s # 0. We give a
solution in terms of 0,

J
Ao =0, )\j:a(S—i—)\j,l):SZak:Sa(aj—l)/(a—l),
k=1

uj = (S+ )" =5"1a-1)/ (Tt —1), j>0.
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Ifa>1and S >0 (that is, s <0,) then u; 1. 0, 0 < \; T 0o as j 1 co. Then, we
obtain an expansion of the form

i i
(A1/9)1 1= Z’Uij (1 — 6_)\jx) = — Zvije_hﬂ, ) Z 07
j=1 §=0
where the coefficients vi; are given by the recurrence relations
i

voo = —1, viy1,0 = E Vijlj, Vitl,j = —Vij—1Uj—1
j=0

for 1 <j<i+1. Ify(0)#0, this gives
Y(@)/Y(0) =1+ w;(1—e "),
=1
where
wj; = Z@ivij.
i=j
Also
wo = -1+ QZ'LL]'”LUJ', wj; = 7671]'_11[)]'_1
=0
for j > 1, giving

U.)j = (79)].ij0, j Z 1,
wo = —(1 —|—T>_1,

Y(SC)/Y(O) =14 wy Z(fg)jUj (1 o 67)‘1"/1") ’
where

j—1 00
Uj:Hui, T:Z(—G)JUJ
=0 j=1

Alternatively, by the definition of the partial ordinary Bell polynomial, Eji(U),
tabled on pages 307-308 of Comtet (1974),

oo

T =" (-0)B;(U), (12)
j=i
so that
wo ==Y (=0,
7=0

o0

Y(@)/Y(0)=1- (~0)'Bilx),

i=1
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where

v = (-1)'B;(U),

=0

Bi(x) = Z%;jUj (1 - 6_)‘j$) .
=1

This gives the solution y(x) = e~ %*Y (x) for any (o, 8,s) for which this converges,
that is

y(x) =Y (z)e ™ =Y (0) e % — ij [e*sw _ efsx(oﬂéz)

since s+ Aj = —s(a? —2). If a > 1 and s < 0 then as x increases,
Y(z)/Y(0) = 1-T/(14+T)=—w

and y(z)/(—woey(0)) = e~** 1 0o, so that y(x) cannot be a pdf. If « > 1 and s >0
then for j > 1, A\; <0, and also s+ \; < 0 if &/ > 2, so that y(z) is unlikely to be
a pdf, in contrast to the method of Example 2.4.

This example can be extended to b(x) and g(z) exponentials, as we now illustrate.

Example 2.3. Suppose that I =1, b(x) = bpe”?, g(x) = goed'*. So,

1
s(x) = go_lefgﬂ (q + boeblm) = Z S;e™T . say,
i=0
1
(o) = () + g1, 1(z) = 3 8iGo (i, 2)
i=0
1
IS(Z/O[) - I(‘(Z) = IG(Z/Q) - Ie(z) — g1z = Z SZ [GO (niv Z/Oé) - GO (nia Z)] — 0172
i=0
4
=apz + Z a;e™? say,
i=1

A =0A,
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where

x, m =0,

[e%4 4
Af(z) = /0 (aoz + Z aiemiz> " f(2)dz,
i=1

Aemz = aOGl (m + bl,()(af) + Fl(ma Qf),
Al = ao(ax)2/2 + F1(07:E)7
4
Fl(m7x) = Za,,LGO (m +m1 + blaal’) 9
i=1

T —1_max —2 mx
1-— 0
G1(m7x) = / ze™*dz = IIZ;’I‘L ¢ tm ( ¢ ) r M # ’
0 /2, m = 0.

In this way A7e™® (and so A71) can be written in terms of {Gr(m,z),k =0,...,5},
where

Gr(m,x) = /zremzdz
0

= 0,,Go(m,x)
_mT e —rGroi(my )], m#0,r > 1,
2™ (r 4+ 1), m =0

2 (e

=0
by Leibniz’s rule, where M; = 9t m~! = (=1)%!m~1=%. We omit further details.

Theorem 2.2 extends Theorem 2.1 for gemeral I > 1. A further extension of
Theorem 2.2 is given by Theorem 2.3.

Theorem 2.2. Set

I
UiQk = Qk—p,, V=" Al

By (11), i
Qr(r) = Qr(0) + VQi(x), (13)
so that (I —V)Qr(z) = Qx(0), I-WV)Y(z) =Y(0), and

Y(z) = Y(0) ivrl =Y (I-V)"'1
r=0

if this converges.

Theorem 2.3. Theorem 2.2 holds with V replaced by

I
S=> A
=1
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Proof: By the multinomial theorem,

V= Z{C)AUU" . v r},

v v v v
v=(v1,...,v1), V| = E vi, AV = A" --- AP, UV =07 U

where

Moreover,

Vo =S ()4 |u|r}{ %]:)QO@), i>:z: (14)

v

by (9). By (13),
Putting J = |k| + 1 gives

and

Y(z) = ZV’“ZQk

= r<|k|

- 3 (Z) Qi (0) A"1

0<r=|v|<|k|<oco

- Zz()mn,

=0 |u|=r
where
T,= Y Qr0(0)=>) Qi .(0)=Y(0)
[k[=]v] k>v
by (14). This gives

Y(z)=Y(0)(I-8)" Zsr

@) = y(O)e D S 571
r=0

if this converges, by (6). The proof is complete. O

Suppose now that g(0)b(z) > 0 for > 0. Then, if f(z) > 0 when z > 0,
Aif(z) >0, Af(z) > 0, A" f(x) > 0, and y(z)/y(0) > 0 for x > 0 if y(0) # 0.
Hall and Wake (1989, 1990) looked for y(x) a steady size pdf for the size of a cell,
that is, one satisfying y(z) > 0, fooo y(z)dz = 1. Their results are included in the
examples.
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We now give extensions of earlier results. Under the assumption that the func-
tions b and g depend only on x, Hall and Wake (1989, 1990) and van-Brunt and
Vlieg-Hulstman (2010a, 2010b) considered (2) and (4) for the special case I = 1,
B(t) = G(t) = 1. (This is equivalent to I = 1, B(t) = By, G(t) = Gy since By, Gg
can be absorbed into b(z), g(z).) By (3),

N(t) = N(0)e". (15)
(5) becomes
0uy(x) + c(2)y(z) = a®blaz)y(ax)/g(x), (16)
where ¢(z) = [q¢ + b(x) + dpg(2)]/9(x).

Example 2.4. Consider again Ezxample 2.2: I = 1, b(z) = b, g(x) = g are
constants. So, c(x) = (¢+b)/g = ¢ say. Then,

Ooy(x) + cy(r) = aay(ax), (17)

where a = ab/g. This is the pantograph equation studied by Kato and McLeod
(1971) for oo < 1 as well as for a > 1. (They replace (o, ac, c) by (A, a,—b).) van-
Brunt and Vlieg-Hulstman (2010a, 2010b) give references for various applications
of it. Suppose that o # 1. A solution of (10) is

Qr(x) = e ™y,

where v, = (a* — 1)c and 7, are constants such that

T/Tro1 = —aa/ye =1/ (1 — o) = vy,

say, where

a=g ‘ba, n= aa/e, r/ro = H vj,

interpreted as one if k = 0. This gives
y(x) = e~ Y (x) =ro Ze aca H vi=rof (cx:a,mn), (18)

where f is Kato’s function (6). This is the solution given by Theorem 9 (i), page
923 of Kato and McLeod (1971). (It is also the solution given by their Theorem 5,
page 909 when o < 1.) As they noted, f(x : «,n) has an exponential upper tail with
scale parameter o 1: f(x:a,n) ~ e ** as x — oo. Also,

Opf(x:a,m) = —f(z: a,am),
/ f(@: aym)dz = f(z - 0,6), (19)

where 0 =n/a = ab/(q+b). As in equation (36) of Hall and Wake (1990), we set

00 k
K(a,n) = f(0: a,m) Zn H y(0)/7o. (20)
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Hall and Wake (1990, equation (96)) showed that

oo

K(a,n) = [[ (@1 =n/a™). (21)

n=1

Taking logs of (21) gives

log K(a,n) =— Z(k —Dp* (ak - 1)71 .
=1

This is absolutely convergent if |n|a < 1, but diverges if n = 1. When a > 1, Hall

and Wake (1989) argue that f(z : a,n) > 0 for > 0. So,

fan(@) = f(z:a,n)/K(a,0) (22)

is a pdf on [0,00) of a random variable, say X if K(c,0) # 0 (that is, if n # a1,
n>1), and

Prob(X > z) = f(z: o,0)/K(a,8), 2 > 0. (23)

Kato and McLeod (1971, page 923) note that f(x : a,n) is analytic in n for ¢ <0
so that fo (0) = 0 only for exceptional n. But f(0: o,n) = K(c,n) = 0 implies
n=a" for somen > 1.

Figure 2 shows the behavior of (22) versus x for selected « and n = 1. We
can see that fo () is a monotonically decreasing function of x. The upper tail of
fan(z) becomes thinner with increasing values of «.

If n = a then fo,(0) = 0. Hall and Wake (1989) considered this case and
assumed in their equation (3), that ¢ = q1, where n = o™ if and only if ¢ = qn,
where g, = (o>~ —1)b, n = 1,2,... since ¢ = (¢ +b)/g. (n = 2 gives us the no
growth case, ¢ =0.) We have

/ y(z)dr =1
0

if and only if K(a,0) = ¢/ro = (¢ +b)/(gro); ¢ = q1 if and only if ¢ = a if and
only if 0 = 1 if and only if n = a. So, K(a,1) = ab/(gro) and y(0) = 0. So, for
the special case n = «, ¢ = a that ¢ = q1, 0 = 1, y(0) = 0 and y(z) is the pdf of a
positive random variable Y = X/a with moments given by

E[X]=d;' = p say, E[X"] =r!/d,, d. = H (1—a") =d.(a) say,(24)
k=1

var(X) =E[(X —p)?] = (1—a™2) " E[(X —p)*] =2(1—a%) ",

and by (19) or (23), X has distribution
o k
Prob(X > z) = K(a,1)™* Ze_“k””/ H (1-a7).
k=0 j=1

Comtet (1974, problem 10, page 159) shows that any polynomial in (x1,x2,...),
where z; = 1/(1 — a?), can be written as the sum of polynomials in x;.
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FIGURE 2. Plot of (22) versus z for a = 1.5,2,5,20 and n = 1.

Now consider the more general case of any «, 0 such that K(«,0) # 0. That
is, we no longer require that y(0) = 0. By (17), the nth moment of X = cY,
my, = E[X"], satisfies

—NMy—1 + My, = 77/ y(ax)dr = na™" " m,, mp/m._1 =n/en,
where e, =1 —na™" "t =1—0a"". So,
J 0
m; :.7'/ H en, E [eXt} =1 +S(t)7 S(t) = thyj7
n=1 j=1
where
J
vi=1/ H €n.
n=1
Also, since

S@sziﬁéﬂwy
j=k
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the jth cumulant, k; = rk;(X), is given by
j ~
ki /30 =D (=) R B (v),
k=1

(For a power series inn for m;, see the last equation on page 118 of Comtet (1974).)
These moments are conditional on «. Consider again the case n = «. By (17),
Y = X/a = Yy/ag, where ag = b/g, Yo = X/a. Now suppose that o is random
but not (b,g). Then, a = apar and Yy has conditional and unconditional moments

E[(Yy|a)] =rla™"/d,, E[Yy]=7E [a""/d(a)].
Suppose that o has pdf fo(u) on (1,00). The means, E[Yy] = E [(a —1)7!] and
E[Y] = ay 'E[Yy], are infinite if fo(14+) > 0, but finite if a = 1 is unlikely in the

sense that fo(u) = (u—1)"[14+0(1)] as u l 1, where v > 0, which we now assume.
Similarly,

a, "E[Y" =E[Y)] =rE

a(;)/ ﬁ (ak — 1)
k=1

is finite if and only if r < v+ 1. For example, if v > 1, then Y, has finite variance

var (Yp) = 2E |f1/ H (ofF —1)| — {E [(a=1)7"] }2, var(Y) = ag ?var (Yp) .

k=1

The unconditional distribution of Yy is

oo k
Prob (Yo >y) = E|K(a,0)! Ze‘o‘kﬂy/‘gﬂk/ H (1-a)
k=0 j=1

Q

E [e*ay/K(a, 9)]
as y — 00. To find its behavior for large y, we use the partial fraction expansion

J
f@) =3 gt @ —an)

k=1

where

J
flz) = H(m—ak), ek = fa1(og) = H (o — o).
k=1

1<j<J, j#k

See, for example, equation (2.102) in Gradshteyn and Ryzhik (2000). So, putting
r=1,J =00, ap =a"F,

K(a,0) ! = chl (1—ap) ",
k=1

where
cr=[[{lar—a;):5>1, j#k}.

The next example gives a general result based on Example 2.4.
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Example 2.5. Suppose that a random variable has pdf

fa(u) = (u—=1)"f(u),

where
Fo =Y fitu =17, v >0
Then, .
E [e=V/K(a,1)] = e™(y) i(v)jy” Z By (1)Ci-imas
where - h

Ci=> K"K, (7); =T(y+)/T() =7(y+ 1) (v+j - 1),
k=1

Poo = fo, and P;;(f) is a polynomial in (fo, f1,...). This asymptotic expansion fol-
lows by applying the saddlepoint expansion given in Withers and Nadarajah (2013)
with X =1, A=y —1, F(a) = ay, M = 1, G(a) = f(a)(a —1)/(aF —1). We
omit details.

The next two examples allow g(0) to be zero.

Example 2.6. See Section 1.1 of Hall and Wake (1990) for the case I =1, b(z) =
b, g(x) = gox'~F, k> 0.

Example 2.7. Section 2 of Hall and Wake (1990) studied the case I =1, g(x) =
gox, b(z) = box™, n > 0, so that

Iy(z) = /0 “b(y)dy = Ba™,

where N =n+1, B =by/N, and gave references to others who have studied that
case. (van-Brunt and Vlieg-Hulstman (2010b) also studied this case.) Setting
ao =bo/g0, Z(z) =2"y(x), v=1+4q/go, az = apa" 7" (25)
transforms (16) to
0.7 (x) + apx™ ' Z(x) = asax™ ' Z(ax). (26)
Hall and Wake (1990) made the choice v = 2, that is, ¢ = go, and assumed that

lo(@)y(@)] =0, / Y y@)ds = 1.

They showed that there is then a unique solution with

oo k
y(x) = Cp2 Zakne—la(akm)/ H (1 _ ajn) 7
k=0 j=1

K (o™, 1)log « (aj"—l) /ml,  ifm=n"telt

—-

Il
—

1 (n/ag)"" =

J

K(a",a)T (1-n"

—
~—

, ifn L ¢ I+,
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where IT = {1,2,...} and K(-,-) is given by (20). By (21),

K (o™ o) = H (1—at=Fmy).

k=1
They showed that y(x) is the pdf of a positive random variable Y = X/ao, and gave
the moments E [Xm], i1 > 1. For example, if n =1 then

EX]=(a—1)"", E[X?] =(a—1)""(log &) ",
E[X"] = (r — 2)!/ [dr—a(a — 1)(log a)]

forr > 2 and d, = d.(«a) of (24) above. If we allow a > 1 to be random, we can
write down the unconditional moments E [Xm] , 1> 1; for example, if n =1 then

EX]=E[(a—1)7"], E[X?] =E[(a—1)/(log a)],
E[X"] = (r = 2)E{1/[d,—2(a)(a — 1)(log a)]}
forr > 2. Returning to fired o, we now give a solution which does not require their
choice ¢ = go in (15). Their transformations
z=2a"/n, Y(z) = Z(x) (27)
give
0,Y (2) + agY (2) = a1a"Y (a"2),
where a; = o®> Vag. This is just (17) with (x,y, ¢, a, ) changed to (z,Y, ag, a1, a™).
So, in terms of f of (18), we obtain the solution
y(x) =277 Z(x), (28)
where
Z(z) =rof (apz™/n: a", a"T?77)

for v of (25). Clearly, if 1o # 0, y(0) = oo unless 0 = K(a™, a""277), that

is, by (21), unless (2 — v)/n is a non-negative integer. But it is not clear how

f(z,a,m) behaves near x = 0. Also, to choose ro so that y(x) is a pdf, one can
. o0 . . . . .

write [ y(x)dx as a series if (1 —)/n is a non-negative integer.

Does this method extend to g(z) = gox9'?

Example 2.8. Suppose that I = 1, g(x) = gox9*, b(z) = boz". By (4), c(z) =
s(x) + gre~!t, where s(x) = gy a9 (q + box®t). Set Z(x) = x7Vy(x). Then, (5)
becomes

0. Z(x) +¢(x)Z(z) = a1®> TV =9 =V 7 (),
where

o(z) = c(x) — vz, ar = gy tbo.

So, ¢(x) is a weighted sum of powers of x with exponents (—1,—g1,b1 — g1). This
reduces to the exponents (—1,b1 — g1) if ¢ =0 or by = 0 or g1 = 1, and to the
single exponent —1 if by — g1 = —1 and either g1 = 1 (considered in Example 2.7),
or q=0.
The case b; — g1 = —1, that is, g(x) = goz* and b(z) = bgz9 ~1. Choose

Y =c1+ g1, (29)
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where ¢; = go_lq, so that ¢(z) = cix~ 9. The method of the previous example needs
c1 =147, that is a; = —1, that is, go = —by, a case not applicable to cell growth.
In this case,

0. Z(x) — 2" Z(z) = a1a®2™ " Z(ax),

where n — 1 = —gy. This is just (26) with (ag,as) changed to (—1,a1a?). So, in
terms of the pantograph function of (18) and v of (29), we obtain the solution

y(x) =roz 7 f (12" 9/ (1 — 1) : ", —a10?) .

The case ¢ = 0, that is, N(t) = N(0), b(x) = byz"', and g(x) = go. Taking
v =0, (26) holds with (ag,n,az) replaced by (ay,by + 1,a1a**2). So, by (28), a
solution is

y(z) =rof (boz” T/ [go (by +1)] : &, a1 F3)
In Section 4, we extend this case to I > 1.

The Mellin transform method only applies if b(z) = bpx™. Hall and Wake (1990)
gave a method for b(z) = bgz*I(z > z1) in their Section 3, while their Section 4
gives a method for a(z) = (vo — ) (21 < 2 < 19).

3. A Multivariate Form of Kato’s Function

Examples 2.4, 2.7, 2.8 gave solutions when I = 1 based on Kato’s function (6).
Suppose now that I > 1.

Example 3.1. Consider Example 2.4, that is with constant g(x) = g, b(x) = b,
but allow I > 1. So, (5) takes the form

I
Oey(x)/c +y(x) = Zwiy(aix), (1)

where ¢ = g7 (q +b) and w; = (b/cg)pia?. A solution is
y()= > e r(k)
k>0;
since (10) has solution
Qr(x) = e ™ r(k), = (o —1) ¢,
where o is defined by (7) and r(k) are constants given by the recurrence equation
r(k) :V(k)Z{wz‘T(k—Ez‘) c1<i<I, E; <k}, k#0y,

where v(k) = (1 — a®)~1 and 0; is the I-vector of zeros. (Recall that E; is the ith
unit vector in RT and k is now an integer vector.) One can show that r(k) has the
form

r(k) =7 (0r) w* f(k)

and f(k) is given by the recurrence equation

F)=v(k)Y {f(k—E): 1<i<I, E; <k}, k#0p, (2)
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where

I

wh = wa

i=1

That is,
y(@)/r (01) = f(c: a,w),
where
flz:a,w) = Z e*akwr(k s, w), r(k:a,w) =r(k)/r(0r). (3)
k>0;

We call this the multivariate Kato function. If I =1 it reduces to f(z : a,w)
with w = n of Example 2.4. fi, the solution of (2), can be built up from the case
I =1, one dimension at a time. The first step uses

fE)/f (ki —1)Ey) =v(kE;), k> 1
so that

g

fnE;) = 1_1 v(aE;) = H (1- a?)fl = F (o, n;) say,

a=1
for n; > 1. Next, get the two dimensional solutions using the recurrence equation
m k‘1,

f (klEl + k2E2) =V (klEl + kQEQ) [f (klEl + (kg — 1) EQ) + f ((kl — 1) E1 + ]CQEQ)] s
that is, setting n = kq,
z[n] = b[n] (z[n — 1] + a[n]),

where

z[ki] = f ki, ko], flki ko] = f(k1E1 + kaEs),

b[k’l] =V [kl,kz] = V(klEl + ]{?QEQ) , a [kl] = f [kl,kg — 1]
with solution
z[n] = b[0] - - - b[n] (a[0] + a[1]/b[0] + a[2]/b[O]B[1] + - - - 4 a[n]/b[0] - - - b[n — 1])

forn > 0. Now get the two dimensional solutions using the recurrence equation in
ky for z[ki] = flk1, ke, k3] = f(k1E1 + ko E3 + ko Es3) for fized ko, k3; and so on.

Just as the univariate Kato function was also used to give solutions to Examples
2.7 and 2.8 when I = 1, its multivariate version can be used to give solutions to
these examples when I > 1, as we now show.

Example 3.2. Consider Example 2.7, that is with constant g(x) = gox, b(x) =
boz™, n > 0, but allow I > 1. So, for ag of (25), (5) takes the form

I
dzy(x) + c(z)y(x) = apx™ ! Zpia?Jr"y (o),
i=1

where

e(z) = apz" '+ (L4qg5 ")zt
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Transforming with Z(x), v of (25) gives

I
0 Z(x) + agx™ ' Z(2) = apz™ ! sz‘Z (), (4)
i=1
where
w; = pia?+2_7.

The transformation (27) gives
I
0.Y (2) + apY (2) = ag Z w;Y (;2) .
i=1

This is just (1) with (y,z,c, a;) replaced by (Y, z, ag, ). So, by (3),
Y(2)/r (01) = f (a2 : An,w), (5)
where (Ayp); = o, that is,
y(@)/r (01) = 7799 f (aga™ [/ : An,w).

Example 3.3. Suppose, (as in the last part of Example 2.8 with by replaced by n),
that g(x) = go, b(x) = box™, ¢ =0, but I > 1. So, for ag of (25), (5) takes the

form
I
Ooy(z) + c(x)y(z) = apx™ Z wiy (i),
i=1

where c(z) = apx™ and w; = p;a 2. This is just (4) with (Z,n — 1,7) replaced by

7

(y,n,0). So, by (5), a solution is
y({E)/T (01) = f (aoxN/N : AN,’U)) )
where N =n + 1.

4. Other Solutions for the PDE (2)

Here, we suppose that (2) holds. We show that (a) b(x) and g(x) cannot both
be arbitrary: one determines the other; (b) b(z) or g(z) determines y(x); (c) we
are free to choose any two of N(t), B(t), G(t) to determine the other. By (2),

Oay(x) + c(x)y(x) =0, q(t) + B(t)y = 0 = 6(x) (1)
for some constant §, where ¢(z) = (9z9(x) —7v)/g(z). That is,
dplog N(t) = 6 B(t) —7G(t), [b(x) +6] y(z) = € [b(x)y(x)]. (2)

So, N(t) is given in terms of B(t) and G(t) by N(t) = N(0) exp{d I5(t) —vIa(t)},
again using the notation (7). Also, y(x) is given by

y(a) = e y(0) = " n(2)9(0)y(0), 3)

where h(z) = g(z)~!. But y(z) must also satisfy (2). So, we have Theorem 4.1.
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Theorem 4.1. With notation as above, either y(x) =0, or if y(0) # 0, then g(x)
and b(x) must satisfy

b(z) + 8] e~ =@ = & [b(x)e*fc@)] . (4)
Putting x = 0 gives
§ = {E [a?] — 1} b(0),

where
I
E [aﬂ = ZPM%
i=1

Theorem 4.2 expresses g(z) in terms of b(x).

Theorem 4.2. Consider the case I = 1. Then,

o) =0 Jg(0) 44 [ e )
where
I.(z) = Z D (o *z) (6)

k=0
when this converges, where

D(z) = log {a%(x) / [E (a7'z) +a® - 1} } , b(x) = b(x)/b(0).
Proof: Write (4) as
exp [I(ax) — I.(z)] = o?b(ax)/ [b(z) + 6] = exp [D(ax)], (7)
I.(z) = I. (o 'z) = D(x).
So, D(0) = 0. Replace = by %z and sum from k = 0 to infinity to obtain (6). By
(1), we have (5). O

An alternative approach to Theorem 4.2 is to assume that b(x) has a Taylor
series about zero and to obtain a similar series for g(z).

Example 4.1. Suppose that b(z) = b, a constant. Then, D(z) =0 so that I.(z) is
constant, which by (8) must be zero; that is, c(x) = 0, g(x) = gox. This gives the
special case b(x) = b, g(x) = gox, y(x) = y(0).

We now express b(z) in terms of g(zr). If g(z) has a Taylor series expansion
about zero, then one can obtain a Taylor series expansion about zero for b(x) using
Bell polynomials. Suppose that g(z) = Z;io g;x? = go + T(z) say, with go # 0.
Theorem 4.3 shows how to obtain b(x) = -7 b;x7.

Theorem 4.3. With notation as above,
i—1
bo = (042 — 1)_1 57 bi = (ai+2 - 1)71 ijSi_j, 1 Z 1, (8)
j=0

where
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and s; = (' = 1) /i.

Proof: As in (12), T(x)! = E;‘;Z Eji(g)xj at g = (91,92, --.), so that

o) = g (o) T = Y Oyl
where o ”

Cjl9) = 95" 2]: (—90) " Bjilg).
Also, by (1), ¢(x)g(z) = dpg(x) — v Zs;()that

o0
c(x) = Z c;a’
=0

with ¢; given by the recurrence relation

j—1
cigo+ Y cigi—i =¢; ®g; = (§ + 1)gjr1 — 1550
i=0
So,
j—1
co=gg (G1=7), ;=95 [(F+1)gj41 — Zcigji] e
i=0
Now set
ar oo )
Se = I.(ax) — I.(x) = / c(z)dz = Zsixl.
z i=1
So,

oo o0
efr =y Sr/rl=Y" S
r=0 =0

For example, Sp = 1, 5] = 51 and Sy = s5+57/2. So, by (7), S;®(b;+088;0) = b;a’*2,
giving (8). O
Theorem 4.3 can be extended to gg = 0 # ¢;.
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