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Abstract. Let Γ be a quasiconformal curve in the complex plane C. In this

study, a constructive characterization of classes of harmonic functions with
singularities on closed quasiconformal curves is obtained.

1. Introduction and the Main Results

A function u = u(x, y) is called harmonic if it is real valued having continuous
partial derivatives of order one and two, and satisfying

∂2u

∂x2
+
∂2u

∂y2
= 0.

One usually defines the Laplace (differential) operator

∆ =

(
∂

∂x

)2

+

(
∂

∂y

)2

and so u is harmonic if and only if ∆u = 0 (and u is of class C2).It is known that
real part of an analytic function is harmonic.

Harmonic functions play an important role in many areas of applied mathemat-
ics and mechanics. It is actually the approximation of these functions by rational
functions or some other functions, which can be found easily. Direct and inverse
problems related to the approximation of harmonic functions have been studied in
references [2]-[10], [12]-[18], [21], [22] and [24]. If direct and inverse theorems are
in full accordance, it is common to say that a class has a constructive characteri-
zation.

In this study the constructive characterization of classes of harmonic functions
with singularities on a quasiconformal curves is studied. To prove the inverse
theorem here, we use the standard scheme for the proofs of inverse theorem [9] ,
[13] and [23].

Let C be the complex plane and let Γ ⊂ C be an arbitrary closed Jordan curve
with its complements Ω = CΓ = Ω1 ∪ Ω2 (0 ∈ Ω1,∞ ∈ Ω2). Consider the

function w = φi(z), (i = 1, 2) that conformaly and univalently maps Ωi onto Ω
′

i,

respectively
(

Ω
′

1 = {w : |w| < 1} ,Ω′2 = {w : |w| > 1}
)

with normalization
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φ1 (0) = 0, φ
′

1 (0) > 0, φ2 (∞) =∞, lim
z→∞

φ2 (z) /z > 0 .

The function, inverse to w = φi (z), is denoted by z = ψi (w) , (i = 1, 2).
For arbitrary natural n and δ > 0 we set

Γ
1+

(−1)i

n

:=

{
ζ : ζ ∈ Ωi, |φi (ζ)| = 1 +

(−1)
i

n

}
, i = 1, 2,

ρ
1+

(−1)i

n

(z) := inf
ζ∈Γ

1+
(−1)i

n

|ζ − z| , ρ1/n (z) := min
{
ρ

1+
(−1)i

n

(z)
}
, i = 1, 2

D (z, δ) := {ζ : |ζ − z| < δ} , z ∈ C,

Gn := ∪
ζ∈Γ

D

(
ζ,

1

2
ρ1/n (ζ)

)
.

We denote by c, c1, c2... positive constants, different in different relations, in
general, and depending, if not specifically said otherwise, on the curve Γ or on
other quantities inessential for the problems we are interested in. We shall also
employ the symbol A 4 B, denoting that A ≤ CB, where C = const > 0 does not
depend on A or B.

Let ω (δ) , δ > 0, be a function of the type of modulus of continuity, i.e. a
positive nondecreasing (with ω(+0) = 0) function satisfying for some c = const > 0
the condition ω(tδ) ≤ ctω (δ) , δ > 0, t > 1.

In the present paper we are interested in the case when Γ is a quasiconformal
curve. The convenient geometrical quasiconformal definition of the curve is as
follows (see, [20, p.100])

Let us consider a Jordan curve Γ and two arbitrary points z1 and z2 on it. By
Γ (z1, z2) we denote one of the two curves (with less diameter ) on which the points
z1 and z2 divide the curve Γ. A necessary and sufficient condition for the curve Γ
to be quasiconformal is that the relation

diam Γ (z1, z2) 4 |z1 − z2|

holds.
As P.P.Belinskii’s example shows (see, [11, p. 42]), a quasiconformal curves may

be unrectifiable at any point. Detailed information on the quasiconformal curves
can be found in the books [1], [9], [11] and [20].

Let us denote by Cω∆ (Γ) the class of real-valued, continuous in C, harmonic in

C\Γ functions u satisfying, for any z and ζ ∈ C, the condition

|u (z)− u (ζ)| ≤ cω (|z − ζ|) , c = c(u) = const > 0.

Let Bω∆ (Γ) be the class of real-valued, continuous in C, harmonic in C\Γ func-
tions such that, for any n ∈ N, there is a harmonic rational function

Rn (z) = Re

n∑
j=−n

ajz
j , n = 1, 2, ..., aj ∈ C (1.1)

satisfying the relation

|u (z)−Rn (z)| ≤ c1ω
[
ρ1/n (z)

]
, z ∈ Gn.
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The main results of this work are as follows:
Theorem 1. Let Γ be a quasiconformal curve and f ∈ Bω∆ (Γ) .Then f ∈ Cµ∆ (Γ) ,

where

µ (δ) = δ

1∫
δ

ω (t)

t2
dt, 0 < δ < 1/2 .

Corollary 1. If

δ

1∫
δ

ω (t)

t2
dt ≤ c2ω(δ), 0 < δ < 1/2

then

Cω∆ (Γ) = Bω∆ (Γ) .

2. Proofs of Main Results

We need the following theorem:
Theorem 2 [15]. Let Γ be a closed quasiconformal curve, u(z) ∈ Cω∆ (Γ). Then

for each natural n = 1, 2, ... there exists a harmonic rational function Rn(z), that
for z ∈ Gn the inequality

|u (z)−Rn (z)| ≤ c3ω
[
ρ1/n, (z)

]
where the constant c3 > 0 is independent of z and n, holds.

The following lemma is proved easily with the help of the Schwarz’s formula (see,
for example, [19, Paragraph 44])

Lemma 1. Let Γ be closed quasiconformal curve. If a rational harmonic function
of type (1.1), n ∈ N, satisfies the inequality

|qn (z)| ≤ ω
[
ρ1/n, (z)

]
, ∀z ∈ Gn, (2.1)

then, for z ∈ ∪
ζ∈Γ

D
(
ζ, 1

4ρ1/n (ζ)
)
, the estimate

|gradqn (z)| ≤ c4ω
[
ρ1/n (z)

]
/ρ1/n (z) (2.2)

is valid, where the constant c4 is independent of z and n.
Proof of Lemma 1. Suppose that the condition (2.1) is satisfied. We determine

the rational function Rn (z) for which ReRn (z) = qn (z) . As seen in [9, p.160], [4]
for small u > 0 we may construct the curves Γ∗

1+(−1)ju
, j = 1, 2 and there is an

ε > 0 for which the following inclusion holds:

Γ∗
1+(−1)j ε

n
⊂ ∪
ζ∈Γ

D

(
ζ,

1

4
ρ1/n (ζ)

)
.

We set ρ (z) = ρ1/n (z) . By consideration of Schwarz’s formula (see, [19], Para-
graph 44) and (2.1) for z ∈ Γ∗

1+(−1)j ε
n

we obtain∣∣∣R′n (z)
∣∣∣ =

1

π

∣∣∣∣∣
∫
∂D(z,ε∗ρ(z))

qn (ς)

(ς − z)2

∣∣∣∣∣ ≤ c5ω [ρ (z)] /ρ (z) , (2.3)
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where ε∗ is chosen so that the inclusion

D (z, ε∗ρ (z)) ⊂ ∪
ζ∈Γ

D

(
ζ,

1

2
ρ1/n (ζ)

)
is valid. Thus, the desired inequality (2.2) follows from (2.3).

Proof of Theorem 1. Let f ∈ Bω∆ (Γ) and δ > 0 be an arbitrary sufficiently
small number. Let z0 ∈ Γ be an arbitrary point. Let {Rn (z)}∞n=1 be a sequence
of rational functions, deg Rn (z) ≤ n, such that for z ∈ Gn and n = 1, 2, ... the
following inequality holds:

|u (z)−Rn (z)| ≤ c6ω
[
ρ1/n, (z)

]
. (2.4)

We define a subsequence {Rkj (z)}∞j=1 from the approximating sequence {Rn (z)}∞n=1.
We choose natural number p so that the following inequality holds:

ρ1/kp+2 (z) ≤ 4δ ≤ ρ1/kp+1 (z) .

The function u(z) can be represented in the form

u(z) =

N−1∑
j=0

Vj (z) + [u(z)− T2N (z)] , (2.5)

where

V0 (z) = Tk(z), Vj (z) = Tkj+1(z)− Tkj (z), j = 0, ..., (N − 1).

Use of equation (2.5) for z ∈ D (z0, δ) we have

u (z)− u (z0) =

N−1∑
j=0

Vj (z) + [u(z)− TkN (z)]−
N−1∑
j=0

Vj (z0) + [u(z0)− TkN (z0)]

≤ c6δ +

N−1∑
j=1

z∫
z0

|gradVj (ζ)| |dζ|+ |u(z)− TkN (z)|+ |u(z0)− TkN (z0)| . (2.6)

Consideration of (2.4) leads to

|u(z0)− TkN (z0)| ≤ c7ω
[
ρ1/kN (z0)

]
4 ω (δ) , (2.7)

|u(z)− TkN (z)| ≤ c8ω
[
ρ1/kN (z)

]
4 ω (δ) . (2.8)

We have, for z ∈ Gn

|Vj (z)| ≤ |f(z)− Tkj+1 (z)|+ |f(z)− Tkj (z)|

≤ c9ω
[
ρ1/kj+1 (z)

]
+ c10ω

[
ρ 1

kj
(z)
]
4 ω

[
ρ 1

kj+1
(z)
]
.

Then by Lemma 1 for z ∈ D (z0, δ) ,

|gradVj (z)| ≤ c11

ω
[
ρ 1

kj+1
(z)
]

ρ 1

kj
(z)

≤
ω
[
ρ 1

kj+1
(z)
]

[
ρ 1

kj
(z)
] [

1−
ρ 1

kj+1
(z)

ρ 1

kj
(z)

]
.
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4
ω
[
ρ 1

kj+1
(z)
]

[
ρ 1

kj
(z)
]2 [

ρ 1

kj
(z)− ρ 1

kj−1
(z)
]
4

ρ 1
kj

(z)∫
ρ 1

kj+1
(z)

ω(t)

t2
dt. (2.9)

Taking into account expressions (2.6)- (2.9), we obtain

|u(z)− u(z0)| < c12δ + δ

ρ 1
kj

(z)∫
ρ 1

kj+1
(z)

ω(t)

t2
dt+ c13ω (δ) + c14ω (δ) ≤ c15δ

1∫
δ

ω(t)

t2
dt,

where 0 < δ < 1/2. The proof of Theorem 2 is completed.
Using Theorem1 and 2, we obtain Corallary 1.
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