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Abstract. Let A1, A2 lie in Cr×r and t in C. For the matrix quadratic poly-
nomial,

I +A1t+A2t
2 = (I − α1t) (I − α2t) ,

we give explicit solutions for (α1, α2) in Cr×r. We consider two cases: i) A1

and A2 commute; ii) A1 and A2 do not commute.

1. Introduction

Consider the quadratic equation: ax2 + bx + c = 0, where a, b and c are real
numbers. It is well known that its solutions are x = (1/(2a)){−b ±

√
b2 − 4ac}.

Here, we consider the problem of factorizing and inverting a matrix quadratic poly-
nomial (Gohberg et al., 2009). Matrix quadratic polynomials have applications in
many areas. We mention: exact analysis of production lines with no intermediate
buffers (Papadopoulos and Okelly, 1993); packet delay analysis for cellular digital
packet data (Massey and Srinivasan, 1997); analysis of a finite FIFO buffer in an
advanced packet-switched network (Krieger et al., 1998); analysis of edge waves (Fu,
2002); truncation and augmentation of level-independent QBD processes (Latouche
and Taylor, 2002); MAP/M/c queues with constant impatient time (Choi et al.,
2004); analytical study of non-linear transport across a semiconductor-metal junc-
tion (Peres, 2009); approximations to quasi-birth-and-death processes (Beuerman
and Coyle, 1989; Latouche and Ramaswami, 1993; Bean and Latouche, 2010); anal-
ysis of semi-infinite periodic structures (Fallahi and Hafner, 2010); and, dynamic
element vibration analysis (Gupta and Lawson, 2010).

Consider the matrix quadratic polynomial:

Q(t) = I +A1t+A2t
2 = (I − α1t) (I − α2t) (1.1)

for t ∈ C, where I = Ir is the identity matrix in Cr×r. We seek α1, α2 such that

α1 + α2 = −A1, α1α2 = A2. (1.2)

In fact, the factorization in (1.1) will hold if and only if we have α1 +α2 = −A1 and
α1α2 = A2. In particular, if A1 = 0, we have α2

1 = α2
2 = −A2. So, when A1 = 0,

the factorization exists if we can obtain a square root for A2.
Sections 2 and 3 give solutions to (1.1) when A1, A2 do and do not commute.

To the best of our knowledge, the results in the short note are new and original.
Higham and Kim (2000) did consider solutions of I +A1T +A2T

2 = 0 for A1, A2,
T in Cr×r. However, they did not provide any analytical result except to show that
the solutions can be represented as a Schur decomposition, see their Theorem 3.
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Higham and Kim (2000) mainly provided various numerical techniques for solving
I + A1T + A2T

2 = 0. A problem of inverting Q(t) in (1.1) using a matrix power
series representation is considered in Section 4.

2. A Solution when A1, A2 Commute

Theorem 2.1 gives solutions to (1.1) when A1, A2 are r×r matrices that commute
and have the same Jordan block structure. Since they commute they have common
left and right eigenvectors, say

Aj = LΛjR
∗,

where LR∗ = I.

Theorem 2.1. If both Λj are diagonal (for example, if both Aj have distinct eigen-
values) then (1.1) has solution

α1, α2 = L
(
−Λ1 ±D1/2

)
R∗/2, (2.1)

where D = Λ2
1 − 4Λ2. Otherwise, we can write

Λj = diag (Jmi (λji) , 1 ≤ i ≤ p) ,
p∑
i=1

mi = r, Jm(λ) = λIm + Um, (2.2)

where (Um)ij = δi+1,j and Jm(λ) denotes the Jordan blocks, where δai = 1 or 0 for
a = i or a 6= i. Then (1.1) has solution

α1, α2 =
(
−A1 ± δ1/2

)
/2

with

δ = L∆R∗, δ1/2 = L∆1/2R∗, (2.3)

where

∆ = diag (∆mi (λ1i, λ2i) , 1 ≤ i ≤ p) ,
∆m (λ1, λ2) = Jm (λ1)

2 − 4Jm (λ2) = a0Im + ε,

ε = a1Um + U2
m, a0 = λ2

1 − 4λ2, a1 = 2λ1 − 1,

and

∆1/2 = diag
(

∆1/2
mi
, 1 ≤ i ≤ p

)
,

∆1/2
m = a

1/2
0

(
Im + a−1

0 ε
)1/2

=

∞∑
k=0

(
1/2

k

)
a

1/2−k
0 εk =

m−1∑
i=0

γiU
i
m,

γi =
∑
i/2≤k

(
1/2

k

)
a

1/2−k
0 a2k−i

1 .

For δ1/2 in (2.3) to exist, one must have a0 6= 0 for every Jordan block Jm(λ) of
Aj.
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Proof: Since A1, A2 commute (1.1) has solution

α1, α2 =
(
−A1 ± δ1/2

)
/2, δ = A2

1 − 4A2.

So, if both Λj are diagonal then (2.1) follows. Otherwise, (2.2) holds and the Jordan
blocks commute since

Jm (λ1) Jm (λ2) = λ1λ2Im + (λ1 + λ2)Um + U2
m = Jm (λ2) Jm (λ1) .

So, (2.3) follows. The proof is complete. 2

3. A Solution when A1, A2 do not Commute

To find a solution in this case, suppose that α2 has diagonal Jordan form: α2 =
LΛR∗, where Λ = diag (λ1, . . . , λr). By (1.2), we seek α = α2 ∈ Cr×r satisfying
α2+A1α+A2 = 0, that is, LΛ2R∗+A1LΛR∗+A2 = 0, that is, LΛ2+A1LΛ+A2L =
0. Write L = (Lij) and consider first the case when the Jordan form is diagonal,
Λ = diag (λ1, . . . , λr), with {λj} distinct.

Theorem 3.1. The (i, j) element in LΛ2R∗ +A1LΛR∗ +A2 = 0 is

Lijλ
2
j +A1iaLajλj +A2iaLaj = 0,

where we use the tensor summation of implicit summation of the repeated subscript
a over its range 1, 2, . . . , r. That is,

Mia (λj)Laj = 0,

where

Mia(λ) = δaiλ
2 +A1iaλ+A2ia.

That is, M(λj)L = 0. But det (L) 6= 0 so that {λj} are the roots of det M(λ) = 0.
The left hand side is a polynomial of degree 2r in λ with roots λ1, . . . , λ2r say. We
can choose a subset of r of them, say {λnj} with corresponding right-eigenvectors

{lnj
} in Nr =

(
2r
r

)
ways. For each of these Nr choices we have a different solution

Λ = diag (λn1
, . . . , λnr

) , L = (ln1
, . . . , lnr

) , R∗ = L−1

for α2 = LΛR∗, α2 = −A1 − α1.

Next, we consider the case when M(λj) has Kj Jordan blocks, say Jmjk
(0) =

Umjk
for k = 1, . . . ,Kj and j = 1, . . . , 2r.

Theorem 3.2. For each j and k = 1, . . . ,Kj, there exists a non-trivial vector

ljk such that M(λj)ljk = 0. We have K =
∑2r
j=1Kj solutions,

(
λ
l

)
=
(
λj

ljk

)
, to

M(λ)l = 0. We can choose r of them to form L ∈ Cr×r in
(
K
2r

)
ways. This then

is the number of solutions α2 to (1.2). The case K = 2r only holds if Kj ≡ 1, that
is, if for j = 1, . . . , 2r, M(λj) has only one Jordan block with an eigenvalue zero.

In Theorem 3.1, we have assumed that M(λj)lj = 0 holds for j = 1, . . . , 2r with
each lj a non-zero vector in Cr. In Theorem 3.2, we have assumed that the vectors
ljk, k = 1, . . . ,Kj are linearly independent for each j.

Example 3.1. Suppose that r = 2. Then λ1, . . . , λ4 are the roots of

0 = det M(λ) = λ4 + λ3trace (A1) + λ2 (detA1 + trace (A2)) + λ [A1, A2] + detA2,

where [A1, A2] = A111B222 −A112B221 −A121B212 +A122B211.
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4. Inversion of Q(t)

Here, we consider inverting Q(t) given by (1.1). For example, if
∞∑
n=0

xnt
n = Q(t)−1 = (I − α2t)

−1
(I − α1t)

−1
(4.1)

then

xn =
∑

n1+n2=n

αn2
2 αn1

1 =

n∑
n2=0

αn2
2 αn−n2

1 . (4.2)

So, if αi commute then

xn = (α1 − α2)
−1 (

αn+1
1 − αn+1

2

)
.

More generally, if Q(t) is a polynomial, how can the partial fraction expansion for
its inverse be obtained when r > 1? For r = 1 see, for example, Gradshteyn and
Ryzhik (2000).

By (1.1), Q(t) = F1(t)F2(t), where Fi(t) = Ir−αit, so thatQ(t)−1 = F2(t)−1F1(t)−1,
and xn is given by (4.2). We can get a compact solution if we can find matrices X,
Y such that

Q(t)−1 = XF1(t)−1 + F2(t)−1Y. (4.3)

This would give the coefficient of tn in (4.1) simply as

xn = Xαn1 + αn2Y. (4.4)

Multiplying (4.3) on the left by F2(t) and on the right by F1(t) gives Ir = F2(t)X+
Y F1(t), that is, X + Y = Ir, α2X + Y α1 = 0, that is,

α2X + (Ir −X)α1 = 0,

that is, Xα1 − α2X = α1. We now show how to solve the more general equation

XA+BX = C, (4.5)

where A,B,C,X ∈ Cr×r, using the vec operator. Write

X = (x1, . . . , xr) , A = (a1, . . . , ar) , C = (c1, . . . , cr) ,

vec X = x = (x′1, . . . , x
′
r)
′
, c′ = (c′1, . . . , c

′
r) = (vec α1)

′ ∈ Cr
2

,

Xaj =

(
r∑

k=1

XikAkj

)
= Ejvec X, Ej ∈ Cr×r

2

, E = (E′1, . . . , E
′
r)
′ ∈ Cr

2×r2 .

Given a ∈ Cr, we can write

(Xa)i =

r∑
k=1

Xikak = f ′i vec X,

where f ′i = (a1e
′
i, . . . , are

′
i) ∈ C1×r2 and ei is the ith unit vector in Cr. This proves

Theorem 3.1.

Lemma 4.1. Let ei be the ith unit vector in Cr. For a ∈ Cr, X ∈ Cr×r,
Xa = F (a)′vec X,

where F (a) = (f1, . . . , fr) = (aiej) ∈ Cr2×r.
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Lemma 4.2. Set Gi = F (ai)
′, G(A) = (G′1, . . . , G

′
r)
′. Then,

XA = (Xa1, . . . , Xar) = (G1x, . . . , Grx) , vec (XA) = G(A) vec X.

Lemma 4.3. Let BX = (Bx1, . . . , Bxr). Then,

vec (BX) = d(B)vec X,

where d(B) = diag(B, . . . , B).

Theorem 4.1. A solution of (4.5) is given by

vec X = [G(A) + d(B)]
−1

vec C, Y = Ir −X. (4.6)

Proof: Taking vec of (4.5) gives [G(A) + d(B)]vec X = c. 2

Golub and Van Loan (1996, page 372) suggest a different type of solution when
X ∈ Cm×n and A, B are square with diagonal Jordan forms.

Consider arbitrary x, c ∈ Cs, G ∈ Cs×s for some s ≥ 1. Does Gx = c have a
solution if det(G) = 0? The answer is yes, provided that a certain condition holds,
but the solution is not unique. Let G = LΛR∗ be its Jordan form and set y = R∗x.
Consider the case when this Jordan form is diagonal. Then we can write Λ = diag
(0,Λ2), Λy =

(
0

Λ2y2

)
= d =

(
d1
d2

)
, where 0 is square, and d = R∗c. So, a solution

exists provided that d1 = 0, and in this case y1 is arbitrary, and y2 = Λ−1
2 d2. This

can be applied to (4.6) with s = r2, G = G(A) + d(B).

Corollary 4.1. A solution of (4.3) is given by (4.6) with A = C = α1, B = α2,
Y = Ir −X. So, a solution of (4.1) is given by (4.4).

An extension of (1.1) to a general polynomial: It is not clear how this can be

achieved for r > 1. If r = 1, {αi} are distinct, and Q(t) =
∏I
i=1 (1− αit). Then,

by Gradshteyn and Ryzhik (2000),

Q(t)−1 =

I∑
i=1

Hi (1− αit)−1
,

where

Hi =
∏
j 6=i

(1− αj/αi) .

However, even for I = 2, it is not clear how to solve

Q(t)−1 =

I∑
i=1

Hi (Ir − αit)−1

for {Hi}.
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