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Abstract. Let Ay, Az lie in C"™*" and t in C. For the matrix quadratic poly-
nomial,
I+ At + A2t2 = (I — Oclt) (I — cht) s

we give explicit solutions for (a1, az) in C"™*". We consider two cases: i) Ap
and As commute; ii) A; and A do not commute.

1. Introduction

Consider the quadratic equation: az? + bx 4+ ¢ = 0, where a, b and ¢ are real
numbers. It is well known that its solutions are z = (1/(2a)){—b £ Vvb?> — 4ac}.
Here, we consider the problem of factorizing and inverting a matrix quadratic poly-
nomial (Gohberg et al., 2009). Matrix quadratic polynomials have applications in
many areas. We mention: exact analysis of production lines with no intermediate
buffers (Papadopoulos and Okelly, 1993); packet delay analysis for cellular digital
packet data (Massey and Srinivasan, 1997); analysis of a finite FIFO buffer in an
advanced packet-switched network (Krieger et al., 1998); analysis of edge waves (Fu,
2002); truncation and augmentation of level-independent QBD processes (Latouche
and Taylor, 2002); MAP/M/c queues with constant impatient time (Choi et al.,
2004); analytical study of non-linear transport across a semiconductor-metal junc-
tion (Peres, 2009); approximations to quasi-birth-and-death processes (Beuerman
and Coyle, 1989; Latouche and Ramaswami, 1993; Bean and Latouche, 2010); anal-
ysis of semi-infinite periodic structures (Fallahi and Hafner, 2010); and, dynamic
element vibration analysis (Gupta and Lawson, 2010).

Consider the matrix quadratic polynomial:

Q(t) =TI+ Ayt + Ast? = (I — aqt) (I — ast) (1.1)
for t € C, where I = I, is the identity matrix in C"*". We seek a1, ao such that
a1 + Qg = —Al, 10 = AQ. (12)

In fact, the factorization in (1.1) will hold if and only if we have a; + o = —A; and
ajay = Ay, In particular, if A; = 0, we have o = a2 = —A,. So, when A4; = 0,
the factorization exists if we can obtain a square root for As,.

Sections 2 and 3 give solutions to (1.1) when A;, As do and do not commute.
To the best of our knowledge, the results in the short note are new and original.
Higham and Kim (2000) did consider solutions of I + AT + AT? = 0 for Ay, As,
T in C™*". However, they did not provide any analytical result except to show that
the solutions can be represented as a Schur decomposition, see their Theorem 3.
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Higham and Kim (2000) mainly provided various numerical techniques for solving
I+ AT + A3T? = 0. A problem of inverting Q(¢) in (1.1) using a matrix power
series representation is considered in Section 4.

2. A Solution when A;, A, Commute

Theorem 2.1 gives solutions to (1.1) when A;, As are rxr matrices that commute
and have the same Jordan block structure. Since they commute they have common
left and right eigenvectors, say

A; = LA;R",
where LR* = 1.

Theorem 2.1. If both A; are diagonal (for example, if both A; have distinct eigen-
values) then (1.1) has solution

a,az =1L (—Al + D1/2) R*/2, (2.1)

where D = A2 — 4A5. Otherwise, we can write

D
Ay =diag (Jm, (Aji), 1<i<p), D mi=7, Ju(A) = My + Up, (2.2)

i=1

where (Up,)ij = 6iy1,; and Jy, () denotes the Jordan blocks, where 64, =1 or 0 for
a=1ora##1i. Then (1.1) has solution

Q1,0 = (—Al :|:51/2) /2

with
§ = LAR*, §"/? = LAY?R*, (2.3)
where
A = diag (A, (Mi, Aai), 1 <i<p),
A (A5 A2) = T (M) = 4dp (N2) = aglm + €,
e=a1U, + U,Q,L, ag = )\% — 4Ny, a1 =2M — 1,
and

AV2 = ding (A2, 1< <p),

[ee] m—1
1/2 — 1/2 1/2 1/2—k i
AL/2 = ao/ (In +agte)’” = ;70 ( . “o/ k= ?_0 YU,

1/2\ 12—k on—i
Vi = Z ( ki )ao/ a%k .
1/2<k

For §'/2 in (2.3) to exist, one must have ag # 0 for every Jordan block J,(\) of
Aj;.
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Proof: Since Ay, A; commute (1.1) has solution
a1, ap = (7A1 + 51/2) /2, 6= A2 — 44,
So, if both A; are diagonal then (2.1) follows. Otherwise, (2.2) holds and the Jordan

blocks commute since
Im (A1) I (A2) = M Aol + (M + A2) U, + Uﬁl =Jm (A2) I (A1) -
So, (2.3) follows. The proof is complete. O

3. A Solution when A;, A do not Commute

To find a solution in this case, suppose that as has diagonal Jordan form: as =
LAR*, where A = diag (A1,...,A.). By (1.2), we seek a = ap € C"™*" satisfying
a?+Aja+Ay =0, that is, LA2R*+A; LAR*+ Ay = 0, that is, LA?+A; LA+ Ay L =
0. Write L = (L;;) and consider first the case when the Jordan form is diagonal,
A = diag (A1,...,\y), with {\;} distinct.

Theorem 3.1. The (i,j) element in LA?R* + A LAR* + Ay =0 is

LijA3 + AviaLajAj + AgiaLaj = 0,

where we use the tensor summation of implicit summation of the repeated subscript
a over its range 1,2,...,r. That is,

Miq (Aj) Laj = 0,
where
Mia(A) = 0aiX” + AviaA + Azia.
That is, M(X;)L = 0. But det (L) # 0 so that {\;} are the roots of det M(X\) = 0.

The left hand side is a polynomial of degree 2r in A\ with roots A1, ..., o, say. We
can choose a subset of r of them, say {\n;} with corresponding right-eigenvectors

{ln,} in N, = (2:) ways. For each of these N, choices we have a different solution
A=diag( Mgy )y L=(lnyy.oosln.), RF=L""
fOT‘ g = LAR*, g = —Al — 1.
Next, we consider the case when M();) has K; Jordan blocks, say Jp;, (0) =
Unj, fork=1,...,K;and j=1,...,2r.
Theorem 3.2. For each j and k = 1,...,K;, there exists a non-trivial vector
it such that M(\;)lj, = 0. We have K = 23;1 K solutions, (;‘) = ()‘j), to

ljk
M(N)! = 0. We can choose v of them to form L € C"™*" in (5) ways. This then

is the number of solutions ao to (1.2). The case K = 2r only holds if K; =1, that
is, if for j=1,...,2r, M(X;) has only one Jordan block with an eigenvalue zero.

In Theorem 3.1, we have assumed that M (\;)l; = 0 holds for j =1,...,2r with
each [; a non-zero vector in C". In Theorem 3.2, we have assumed that the vectors
Lik, k=1,..., K; are linearly independent for each j.

Example 3.1. Suppose that 7 = 2. Then A\1,..., 4 are the roots of
0 =det M(X\) = A + Xtrace (4;) + A2 (detA; + trace (As)) + A [Ay, Ap] + det A,
where [Ay, Ao] = A111 B2z — A112Bag1 — A121Ba12 + A122Bon1.
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4. Inversion of Q(t)

Here, we consider inverting Q(t) given by (1.1). For example, if
aat"=Qt) = —ast) (I —ast)”! (4.1)
n=0

then

n
Ty = g an?alt = E an?ay ™. (4.2)
ni+n2=n no=0
So, if a; commute then

Ty = (0[1 — 0[2)71 (OZ?+1 — OZ;L+1) .

More generally, if Q(t) is a polynomial, how can the partial fraction expansion for
its inverse be obtained when r > 1?7 For r = 1 see, for example, Gradshteyn and
Ryzhik (2000).

By (1.1), Q(t) = Fi(t)F»(t), where F;(t) = I,—a;t, so that Q(¢) = = Fy(t) "1 Fy(t) 7L,
and x,, is given by (4.2). We can get a compact solution if we can find matrices X,
Y such that

QW) ' =XE )+ Fy(t)Y. (4.3)
This would give the coefficient of ¢ in (4.1) simply as
zn = Xal + ayY. (4.4)

Multiplying (4.3) on the left by F5(¢) and on the right by Fi(t) gives I, = Fa(t) X +
YFi(t), that is, X + Y = I, e X 4+ Yy = 0, that is,

asX + (I, — X)a; =0,
that is, Xa1 — as X = a;. We now show how to solve the more general equation
XA+ BX =C, (4.5)
where A, B,C, X € C"™*", using the vec operator. Write
X =(z1,...,2.), A=(a1,...,a.), C=(c1,...,¢),

vee X =x = (2},...,2), ¢ =(c},...,c.) = (vec ay)’ ecr,

Xaj = (Z XikAkj> = Ejvec X, B; €C™" | E=(E,,...,E.) eCcr="",
k=1
Given a € C", we can write
(Xa); = ZXikak = f! vec X,

k=1

where f! = (a1€},...,a,€}) € C*"" and e, is the ith unit vector in C". This proves
Theorem 3.1.

Lemma 4.1. Let e; be the ith unit vector in C". Fora e C", X € C"*",
Xa = F(a)'vec X,
where F(a) = (f1,..., fr) = (a;e;) € crixr,
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Lemma 4.2. Set G; = F(a;)', G(A) = (GY,...,G.). Then,
XA=(Xay,...,Xa,) = (Gyz,...,Grz), vec (XA) =G(A) vec X.
Lemma 4.3. Let BX = (Bxy,...,Bx,). Then,
vec (BX) = d(B)vec X,
where d(B) = diag(B, ..., B).
Theorem 4.1. A solution of (4.5) is given by
vee X = [G(A) +d(B)] 'vec C, Y = I, — X. (4.6)

Proof: Taking vec of (4.5) gives [G(A) + d(B)]vec X =¢c. O

Golub and Van Loan (1996, page 372) suggest a different type of solution when
X € C™*™ and A, B are square with diagonal Jordan forms.

Consider arbitrary z,c € C*, G € C*** for some s > 1. Does Gx = ¢ have a
solution if det(G) = 07 The answer is yes, provided that a certain condition holds,
but the solution is not unique. Let G = LAR* be its Jordan form and set y = R*z.
Consider the case when this Jordan form is diagonal. Then we can write A = diag
(0,As), Ay = (Azoyz) =d = (g;), where 0 is square, and d = R*c. So, a solution
exists provided that dy = 0, and in this case y; is arbitrary, and yo = A Ydy. This
can be applied to (4.6) with s = r?, G = G(A) + d(B).

Corollary 4.1. A solution of (4.3) is given by (4.6) with A = C = a1, B = aa,
Y = 1. — X. So, a solution of (4.1) is given by (4.4).

An extension of (1.1) to a general polynomial: Tt is not clear how this can be
achieved for r > 1. If » = 1, {«;} are distinct, and Q(t) = Hle (1 — a;t). Then,
by Gradshteyn and Ryzhik (2000),
I
QM) =) Hi(1—ait)",

i=1

where
Hi = H(l — ozj/ozi).

J#i

However, even for I = 2, it is not clear how to solve

I
QM) ' => Hi(I, — ait)”"
i=1
for {H;}.
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