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Abstract. We introduce an alternative proof, with the use of tools and notions

for Hopf algebras, to show that Hopf Galois coextensions of coalgebras are
the sources of stable anti Yetter-Drinfeld modules. Furthermore we show that

two natural cohomology theories related to a Hopf Galois coextension are

isomorphic.

Introduction

The general definition of Hopf Galois extensions was introduced by Kreimer and
Takeuchi [21] around the same time when noncommutative geometry [6] started
to develop with works of Alain Connes in 1980. In fact Hopf Galois extensions
are noncommutative analogue of affine torsors and principal bundles. Descent data
related to a Hopf Galois extension has its roots in works of Grothendieck in algebraic
geometry [9]. Basically there are two well-known homology theories which are
related to a Hopf Galois extension A(B)H . One is the relative cyclic homology
of the algebra extension B ⊆ A, and another one is the Hopf cyclic homology of
the Hopf algebra H involved in the Hopf Galois extension. It is shown in [23]
that these two homology theories are isomorphic where the Hopf cyclic homology
of Hopf algebra H has coefficients in a stable anti Yetter-Drinfeld (SAYD) module.
Not only this isomorphism is given by the canonical isomorphism of the Hopf Galois
extension, but also the SAYD coefficients, which is a module-comodule over H, is
constructed by this canonical map. A great idea here is that the cyclic (co)homology
of (co)algebra (co)extensions which is not easy to compute is isomorphic to the
Hopf cyclic (co)homology of the Hopf algebra of the (co)extension which can be
computed more easily. The dual notion of Hopf Galois coextensions is introduced
by Schneider in [27] and can be viewed as a noncommutative generalization of the
theory of quotients of formal schemes under free actions of formal group schemes
[28].
In this paper we recall the basics of Hopf Galois (co)extensions. Also we study
the module-comodule and specially stable anti Yetter-Drinfeld module structures
over the Hopf algebra involved in a Hopf Galois (co)extension. Furthermore we
study the related (co)homology theories to a Hopf Galois (co)extension and finally
we observe that these (co)homology theories are isomorphic. More precisely, in
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Section 1 we recall the results of Jara and Stefan in [23] for Hopf Galois extensions
and in Section 2 we introduce an alternative proof for the dual case of Hopf Galois
coextensions using the tools and notions for Hopf algebras. Although the main
results of the second section of this paper have been already proved for a general
case of Equivaraint Hopf Galois coextensions for ×-Hopf coalgebras in [14], a direct
proof for the case of Hopf algebras using the related concepts and notions, which
has not been appeared in the literature, has its own advantages.
Notations: In this paper we denote a Hopf algebra by H and its counit by ε.

We use the Sweedler summation notation ∆(h) = h
(1) ⊗ h

(2)

for the coproduct
of a Hopf algebra. Furthermore the summation notations H(h) = h<−1> ⊗ h<0>

and H(h) = h
<0>
⊗ h

<1>
are used for the left and right coactions of a coalgebra,

respectively.
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1. Hopf Cyclic Cohomology

In this section we review the basics of (co)cyclic modules. We explain cyclic duality
to obtain a cyclic module from a cocyclic module and vice versa. As an example we
study the Hopf cyclic (co)homology with coefficients in a stable anti Yetter-Drinfeld
module.

1.1. Cyclic modules and cyclic duality. A cosimplicial module [6], [22] con-
tains C-modules Cn, n ≥ 0, with C-module maps δi : Cn −→ Cn+1 called cofaces,
and σi : Cn −→ Cn−1 called codegeneracies satisfying the following cosimplicial
relations;

δjδi = δiδj−1, if i < j,

σjσi = σiσj+1, if i ≤ j,

σjδi =


δiσj−1, if i < j,

Id, if i = j or i = j + 1,

δi−1σj , if i > j + 1.

(1.1)
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A cocyclic module is a cosimplicial module with extra morphisms τ : Cn −→ Cn

which are called cocyclic maps such that the following extra commutativity relations
hold.

τδi = δi−1τ, 1 ≤ i ≤ n+ 1,

τδ0 = δn+1, τσi = σi−1τ, 1 ≤ i ≤ n,
τσ0 = σnτ

2, τn+1 = Id .

(1.2)

Dually a cyclic module is given by quadruple C = (Cn, δi, σi, τn) where Cn’s, n ≥ 0,
are C-modules and there are C-module maps δi : Cn −→ Cn−1, called faces, σi :
Cn → Cn+1, 0 ≤ i ≤ n called degeneracies and τ : Cn → Cn called cyclic maps
satisfying the following commutativity relations;

δiδj = δj−1δi, if i < j,

σiσj = σj+1σi, if i ≤ j,

δiσj =

 σj−1δi, if i < j,
Id, if i = j or i = j + 1,
σjδi−1, if i > j + 1,

(1.3)

and;

δiτ = τδi−1, 1 ≤ i ≤ n,
δ0τ = δn, σiτ = τσi−1, 1 ≤ i ≤ n,
σ0τ = τ2σn, τn+1 = Id .

(1.4)

Now we recall the duality procedure for (co)cyclic modules [6]. For any cyclic

module C = (Cn, δi, σi, τ) we define its cyclic dual by C̆n = Cn with the following
cofaces, codegeneracies and cyclic morphisms.

d0 : τnσn−1, di := σi−1 : C̆n −→ C̆n+1, 1 ≤ i ≤ n,

si := δi : C̆n −→ C̆n−1, 0 ≤ i ≤ n− 1,

t := τ−1.

(1.5)

Conversely for any cocyclic module C = (Cn, di, si, t) one obtains its cyclic dual

denoted by C̃ where;

δi := si : C̃n −→ C̃n−1, 0 ≤ i ≤ n− 1, δn := δ0τn,

σi := di+1 : C̃n −→ C̃n+1, 0 ≤ i ≤ n− 1,

τ := t−1.

(1.6)

1.2. Cyclic cohomology of Hopf algebras. In this subsection, we study some
examples of (co)cyclic modules and their dual theories for Hopf algebras which
will be used later in Sections 2 and 3. Hopf cyclic cohomology was introduced by
Connes and Moscovici in [7] and was generalized to Hopf cyclic cohomology with
coefficients in a stable anti Yetter-Drinfeld module in [12].

A left-right anti Yetter-Drinfeld (AYD) module M over a Hopf algebra H is a left
module and a right comodule overH satisfying the following compatibility condition
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[11];

(h . m)<0> ⊗ (h . m)<1> = h
(2)

. m<0> ⊗ h
(3)

m<1>S(h
(1)

). (1.7)

This is called stable if m<1> . m<0> = m for all m ∈ M . We use left-right of
SAYD modules in Section 2 for Hopf Galois extensions. Similarly a right-left SAYD
module M over H is a right module and a left comodule satisfying the following
compatibility condition,

(m / h)
<−1>

⊗ (m / h)
<0>

= S(h
(3)

)m
<−1>

h
(1)

⊗m
<0>

/ h
(2)

. (1.8)

This type of SAYD modules will be used in Section 3 for Hopf Galois coextensions.
A generalization of Connes-Moscovici cocyclic module for Hopf algebras with co-
efficients in a SAYD module was introduced in [12]. The following cyclic module
is the dual cyclic module of the mentioned cocyclic module for a left-right SAYD
module M over H where Cn(H,M) = H⊗n+1 ⊗H M .

δi(h0 ⊗ · · ·hn ⊗H m) = h0 ⊗ · · · ⊗ ε(hi)⊗ · · ·hn ⊗H m,

σi(h0 ⊗ · · ·hn ⊗H m) = h0 ⊗ · · · ⊗∆(hi)⊗ · · · ⊗ hn ⊗H m,

τn(h0 ⊗ · · ·hn ⊗H m) = hnm<1> ⊗ h0 ⊗ · · · ⊗ hn−1 ⊗H m<0> . (1.9)

We use this cyclic module in Section 2 for Hopf Galois extensions. The authors in
[18] introduced a new cyclic module for Hopf algebras which is a dual of Connes-
Moscovici cocyclic module for Hopf algebras in some sense. Later they have shown
in [19] that this cyclic module is isomorphic to the cyclic dual of Connes-Moscovici
cocyclic module for Hopf algebras. A generalization of this cyclic module with
coefficients in a SAYD module was introduced in [12]. The following cocyclic
module is the dual cocyclic module of the mentioned cyclic module for a right-left
SAYD module M over Hopf algebra H where Cn(H,M) = H⊗n ⊗M.

δi(h̃⊗m) = h1 ⊗ · · · ⊗ hi ⊗ 1H ⊗ · · · ⊗ hn ⊗m,

δn(̃b⊗m) = h1
(1)

⊗ · · · ⊗ hn
(1)

⊗ S(h1
(2)

· · ·hn
(2)

)m
<−1>

⊗m
<0>

,

σi(h̃⊗m) = h1 ⊗ · · · ⊗ hihi+1 ⊗ · · · ⊗ hn ⊗m,

σn(h̃⊗m) = h1 ⊗ · · · ⊗ hn−1ε(hn)⊗m,

τn(h̃⊗m) = h2
(1)

⊗ · · · ⊗ hn
(1)

⊗ S(h1
(2)

· · ·hn
(2)

)m
<−1>

⊗m
<0>

/ h1
(1)

.

(1.10)

Here h̃ = h1 ⊗ · · · ⊗ hn. We use this cocyclic module in Section 3 for Hopf Galois
coextensions. For more about Hopf cyclic (co)homology we refer the reader to [7],
[12], [17] and [16].

2. Hopf Galois Extensions of Algebras

2.1. Preliminaries of Hopf Galois extensions. In this section we recall the
notion of Hopf Galois extensions. We review the results in [23] which imply that
Hopf Galois extensions are sources of producing stable anti Yetter-Drinfeld modules.
Furthermore we study the relation between the relative cyclic homology of the
algebra extension and the Hopf cyclic homology of the Hopf algebra involved in a
Hopf Galois extension.

Let H be a Hopf algebra and A a right H-comodule algebra with the coaction ρ :
A −→ A⊗H. The set of coinvariants of this coaction B = {a ∈ A, ρ(a) = a⊗1H}
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is a subalgebra of A. The algebra extension B ⊆ A is Hopf Galois if the canonical
map

β : A⊗B A −→ A⊗H, a⊗B a′ 7−→ aa′
<0>
⊗ a′

<1>
, (2.1)

is bijective. We denote such a Hopf Galois extension by A(B)H .
The map β is an isomorphism of left A-modules and right H-comodules where the
left A-module structures of A⊗BA and A⊗H are given by a(a1⊗B a2) = aa1⊗B a2
and a(a′ ⊗ h) = aa′ ⊗ h, respectively, and also the right H comodule structures of

A⊗BA and A⊗H are given by a⊗a′ 7−→ a⊗a′
<0>
⊗a′

<1>
and a⊗h 7−→ a⊗h(1)⊗h(2) ,

respectively, for all a, a′, a1, a2 ∈ A and h ∈ H. In fact an extension B ⊆ A is Hopf
Galois if A⊗BA and A⊗H are isomorphic in AMH , the category of left A-modules
and right H-comodules, by the canonical map β. The first natural question is why
we call this extension Galois and what is its relation with classical Galois extension
of fields.

Example 2.1. Classical Galois extensions of fields:
Let F ⊆ E be a field extension with the Galois group G. This extension is Galois
if and only if G acts faithfully on E. This is equivalent to | [E : F ] |=| G |.
Let | G |= n and G = {x1, · · · , xn}. Furthermore suppose {b1, · · · , bn} be the
basis of E/F and {p1, · · · , pn} be the dual basis of {xi}i in (kG)∗ where kG is the
group algebra of G. Since G is finite then (kG)∗ is a Hopf algebra and pn(xi) = δij .
Furthermore the action of G and therefore kG on E amounts to a coaction of (kG)∗

on E as follows;

E −→ E ⊗ (kG)∗, a 7−→
n∑

i=1

xi . a⊗ pi. (2.2)

One checks that E is a right (kG)∗-comodule algebra by this coaction. We define
the canonical Galois map to be;

β : E ⊗F E −→ E ⊗k (kG)∗, a⊗ b 7−→
n∑

i=1

a(xi . b)⊗ pi. (2.3)

One uses the independence of {pi} to show that β is injective. Furthermore since
both tensor products are finite-dimensional F -algebras then β is a surjection.

Example 2.2. A Hopf algebra H over the field F is a right H-comodule algebra
where the right coaction is given by the comultiplication of H. For A = H we
have B = F1H . Therefore H(F )H is a H-Galois extension with the canonical map
which is given by;

β : H ⊗F H −→ H ⊗F H, h⊗ k 7−→ hk
(1)

⊗ k
(2)

, h, k ∈ H, (2.4)

with the inverse map β−1(h⊗ k) = hS(k
(1)

)⊗ k(2)

.

The following example shows that Hopf Galois extensions are algebraic analogue of
principal bundles.

Example 2.3. Principal bundles:
Let P (M,G) denote the principal bundle of the smooth manifold P over the base
M with the structure Lie group G. There is a smooth right action of G on P
denoted by / : P ×G −→ P which is free, i.e.

u / g = u / g′ =⇒ g = g′, g, g′ ∈ G, u ∈ P. (2.5)
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If G is finite then freeness of the G-action is equivalent to the injectivity of the
following map;

β : P ×G −→ P × P, (u, g) 7−→ (u, u / g). (2.6)

One notes that the orbit space is isomorphic to the base space P/G ∼= M and the
canonical projection π : P −→ M is smooth. Now we apply a noncommutative
approach to the map β and we consider the space of functions on the principal
bundle. Let A = C∞(P ), B = C∞(M) and H = (kG)∗. We dualize the action / to
obtain a right coaction H : A −→ A⊗ (kG)∗. Therefore the following induced map

(mA ⊗ Id) ◦ (Id⊗H) : A⊗A −→ A⊗H, (2.7)

is surjective where mA denotes the multiplication of A. Now if we restrict the
tensor product in the domain of the previous map to the coinvariant space of the
coaction H, we obtain an isomorphism. This example is a motivation to define the
notion of quantum principal bundles. A right H-comodule algebra A is called a
quantum principal bundle if the Galois map β related to the coaction of H is an
isomorphism. For more about this example we refer the reader to [10], [8], [5] and
[20].

Remark 2.4. There are two major difference between Hopf Galois theory and the
classical Galois theory of field extensions. Classical Galois extensions can be char-
acterized by the normal, separable field extensions without explicitly mentioning
the Galois group. Furthermore, a Galois field extension determines uniquely the
Galois group. There is no similar result for Hopf Galois theory, although a charac-
terization exists for Hopf Galois extensions of Hopf algebroids with some finiteness
conditions. Another difference is that the fundamental theorem of Galois theory of
fields extensions does not hold for the Hopf Galois extensions of algebras. We refer
the reader for more in this regard to [1] and [29].

Hopf Galois extensions were generalized later in different ways. For example the
authors in [4] have introduced the notion of coalgebra extensions. Also see [26].
Furthermore, Galois extensions have been studied for extended versions of Hopf
algebras such as Hopf algebroids in [2] and ×-Hopf algebras in [3] and [13].

2.2. Homology theories related to Hopf Galois extensions. Basically there
are two well-known homology theories which are related to a Hopf Galois extension
A(B)H . One is the relative cyclic homology of the algebra extension B ⊆ A and
another one is the Hopf cyclic homology of the Hopf algebra H involved in the Hopf
Galois extension. In this subsection we recall that these two homology theories are
isomorphic. Here the Hopf cyclic homology of H has coefficients in a SAYD module
which is constructed by the canonical isomorphism of the Hopf Galois extension.
This shows that Hopf Galois extensions are the sources of SAYD modules. In this
subsection we recall some related results from [23] to be able to compare them with
the similar results in the dual case of Hopf Galois coextensions in Section 3.

Suppose B be an associative algebra over the field of complex numbers. Let M
and N be B-bimodules. The cyclic tensor product of M and N is defined to be
M⊗̂BN := (M ⊗B N)⊗Be B, [24]. It can be shown that

M⊗̂BN ∼=
M ⊗B N

[M ⊗B N,B]
, (2.8)
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where the bracket stands for the subspace generated by all commutators. In fact,

M⊗̂BN =
M ⊗B N

∼
, (2.9)

where ∼ is the equivalence relation defined by the following relation;

{bm⊗B n = m⊗B nb}. (2.10)

Similarly if M1, · · · ,Mn are B-bimodules then their cyclic tensor product can be
defined as

M1⊗̂ · · · ⊗̂Mn := (M1 ⊗B · · · ⊗Mn)⊗Be B. (2.11)

Now let B ⊆ A be an algebra extension and M a B-bimodule. Let Cn(A(B),M) =

M⊗̂BA
⊗̂B . One defines a simplicial module where the faces are given by

di(m⊗̂Ba1⊗̂B . . . ⊗̂Ban) =


ma1⊗̂Ba2⊗̂B · · · ⊗̂Ban, i = 0,

m⊗̂Ba1⊗̂ · · · ⊗̂Baiai+1⊗̂B · · · ⊗̂Ban, 0 < i < n,

anm⊗̂Ba1⊗̂B · · · ⊗̂Ban−1, i = n,

(2.12)
and the degeneracies are defined as follows;

si(m⊗̂Ba1⊗̂B . . . ⊗̂Ban) = m⊗̂Ba1⊗̂B · · · ⊗̂B1A⊗̂B · · · ⊗̂Ban. (2.13)

It is shown in [23] that ifM = A, then the following cyclic operator turns Cn(A(B), A)
in to a cyclic module;

tn(a0⊗̂Ba1⊗̂B . . . ⊗̂Ban) = an⊗̂Ba0⊗̂B . . . ⊗̂Ban−1. (2.14)

The cyclic homology of this cyclic module is called relative cyclic homology of the
algebra extension B ⊆ A and it is denoted by HC∗(A(B), A). Although the space
A ⊗B A has not a well-defined algebra structure, the subspace (A ⊗B A)B is an
associative algebra by the following multiplication;

(a1 ⊗B a′1)(a2 ⊗B a′2) = a1a2 ⊗B a′2a2. (2.15)

The canonical map β induces the following isomorphism;

β : (A⊗B A)B −→ AB ⊗H.
Therefore in spit of the fact that the canonical isomorphism of the Hopf Galois
extension is not an algebra map, the algebra structure (2.15) enables us to obtain
the following anti-algebra map;

κ : H −→ (A⊗B A)B , κ := β
−1 ◦ i, (2.16)

where i : H −→ AB ⊗ H is given by h 7−→ 1A ⊗ h. We denote the summation
notation κ(h) = κ1(h) ⊗ κ2(h) for the image of the map κ. Now let M be a
A-bimodule. We set;

MB = {m ∈M, bm = mb, ∀b ∈ B}, MB =
M

[M,B]
. (2.17)

The map κ enables us to define a right H-module structure on MB given by

mh = κ1(h)mκ2(h). (2.18)

Furthermore a left H-module structure on MB can be defined by

hm = κ1(h)mκ1(h). (2.19)
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In a special case when M = A, the quotient space AB is also a right H-comodule by
the original coaction of H over A. This coaction with the action defined in (2.19)
amounts AB to a left-right SAYD module over H.
For any Hopf Galois extension A(B)H , one iteratively use the map β to transfer the
cyclic structure of Cn(A(B), A) to Cn(H,AB) = H⊗n⊗HH⊗AB . The result cyclic
module on Cn(H,AB) is proved in [23] to be the cyclic module associated to Hopf
cyclic homology of Hopf algebra H with coefficients in SAYD module AB which
is introduced in (1.9). The results of this subsection have been later generalized
for Hopf Galois extensions of ×-Hopf algebras in [3] and for the Equivariant Hopf
Galois extensions of ×-Hopf algebras in [13]. We summarize the headlines of this
section to be able to compare them with the dual case of Hopf Galois coextensions
in the sequel section.

Remark 2.5. For any Hopf Galois extension A(B)H , we have;
i) The relative cyclic module of the algebra extension is a quotient space given

by,

B ⊗Be A⊗B ⊗B · · · ⊗B A = A⊗̂B · · · ⊗̂BA =
A⊗B · · · ⊗B A

∼
.

ii) The objects A⊗B A and A⊗H are isomorphic in the category of AMH .
iii) The subspace AB is an subalgebra of A.
iv) The subspace (A⊗B A)B is an algebra.
v) The subspace AB is a left (A⊗B A)B-module and a right H-module.

vi) The quotient space AB is a right (A⊗B A)B-module and a left H-module.
vii) The quotient space AB

∼= B ⊗Be A is a left-right SAYD module over H.
viii) HC∗(H,AB) ∼= HC∗(A(B), A).

3. Hopf Galois Coextensions of Coalgebras

In this section we use the notions and tools for Hopf algebras and Hopf cyclic co-
homology to prove that Hopf Galois coextensions of coalgebras are the sources of
stable anti Yetter-Drinfeld modules. Furthermore we show that the Hopf cyclic
cohomology of the Hopf algebra involved in a Hopf Galois coextension with coeffi-
cients in a SAYD module, which is dual to AB , is isomorphic to the relative cyclic
cohomology of coalgebra coextension. These are the dual of the results in [23] for
Hopf Galois extensions which are explained in Subsection 2.2. The authors in [14]
have proved similar results for ×-Hopf coalgebras.

3.1. Preliminaries of Hopf Galois coextensions. Let H be a Hopf algebra
and C a right H-module coalgebra with the action / : C ⊗H −→ C. The set

I = {c / h− ε(h)c}, (3.1)

is a two-sided coideal of C and therefore D = C
I is a coalgebra. The natural

surjection π : C � D is called a right H-Galois coextension if the canonical map

β : C ⊗H −→ C �DC, c⊗ h 7−→ c
(1)

⊗ c
(2)

/ h, (3.2)

is a bijection. Such a Hopf Galois coextensions is denoted by C(D)H . Here the
D-bicomodule structure of C is given by

c 7−→ π(c
(1)

)⊗ c
(2)

, c 7−→ c
(1)

⊗ π(c
(2)

). (3.3)
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Since by the definition of D for all h ∈ H and c ∈ C we have

π(c / h) = ε(h)π(c), (3.4)

the map β defined in (3.2) is well-defined. We denote the inverse of Galois map β
by the following summation notation;

β−1(c�Dc
′) := β−(c�Dc

′)⊗ β+(c�Dc
′), (3.5)

where Imβ− ∈ C and Imβ+ ∈ H. If there is no confusion we can simply write
β = β−⊗β+. Since C �DC is not a coalgebra, the map β is not an isomorphism of
coalgebras . Instead it is an isomorphism of left C-comodules and right H-modules.
The map β is a left C-comodule map where the left C-comodule structures of
C �DC and C ⊗H are given by

c�Dc
′ 7−→ c

(1)

⊗ c
(2)

�Dc
′, c⊗ h 7−→ c

(1)

⊗ c
(2)

⊗ h.

Furthermore it is a right H-module map where the right H module structures of
C �DC and C ⊗H are given by

(c�Dc
′) / h = c�Dc

′ / h, (c⊗ h) / h′ = c⊗ hh′.

The first H-action introduced above is well-defined by (3.4). In fact the coextension
π : C � D is Hopf Galois if C ⊗ H and C �DC are isomorphic in CMH , the
category of left C-comodules and right H-modules, by the canonical map β. One
notes that the categories CMH and AMH related to Hopf Galois extensions and
coextensions are dual to each other.

Lemma 3.1. Let C(D)H be a Hopf Galois coextension with canonical bijection β.
Then the following properties hold.

i) β−
(1) ⊗ β−

(2)

/ β+ = IdC �DC .

ii) β−(c
(1)

�Dc
(2)

/ h)⊗ β+(c
(1)

�Dc
(2)

/ h) = c⊗ h, c ∈ C, h ∈ H.
iii) β−(c1�Dc2) / β+(c1�Dc2) = ε(c1)c2.
iv) ε(β−(c1�Dc2))ε(β+(c1�Dc2)) = ε(c1)ε(c2).
v) β−(c1�Dc2 / h)⊗ β+(c1�Dc2 / h) = β−(c1�Dc2)⊗ β+(c1�Dc2)h.

vi) [β−(c1�Dc2)]
(1) ⊗ [β−(c1�Dc2)]

(2) ⊗ β+(c1�Dc2) =

c1
(1) ⊗ β−(c1

(2)

�Dc2)⊗ β+(c1
(2)

�Dc2).

vii) β−(c1�Dc2)
(1)⊗β−(c1�Dc2)

(2)⊗β−(c1�Dc2)
(3)

/β+(c1�Dc2)
(1)⊗β−(c1�Dc2)

(4)

/

β+(c1�Dc2)
(2)

= c1
(1) ⊗ c1

(2)

�Dc2
(1) ⊗ c2

(2)

.

Proof. The relations i) and ii) are equivalent to ββ−1 = Id and β−1β = Id,
respectively. The relation iii) is obtained by applying ε ⊗ Id on the both hand
sides of i). The relation iv) is proved by applying ε ⊗ ε on the both hand sides
of i) and H-module coalgebra property of C. The relation v) is equivalent to the
right H-module property of the map β−1. The relation vi) is equivalent to the left
C-comodule map property of the map β−1 where the left C comodule structures of

C⊗H and C �DC are given by c⊗h 7−→ c
(1)⊗c(2)⊗h and c1⊗c2 7−→ c1

(1)⊗c1
(2)⊗c2,

respectively. The relation vii) holds by applying ∆C ⊗∆C on the both hand sides
of relation (i) and using H-module coalgebra property of C. �
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3.2. Hopf Galois coextensions as sources of stable anti-Yetter-Drinfeld
modules. In this subsection we show that Hopf Galois coextensions are sources of
stable anti Yetter-Drinfeld modules.

For any D-bicomodule C, we set

CD =
{
c ∈ C, c<0>ϕ(c<1>) = c<0>ϕ(c<−1>)

}
ϕ∈D∗ , (3.6)

where D∗ is the linear dual of D. We set

CD =
C

W
, (3.7)

where
W =

{
c<0>ϕ(c<1>)− c<0>ϕ(c<−1>), c ∈ C

}
ϕ∈D∗ .

For any coalgebra coextension π : C � D, we precisely obtain

CD :=
{
c ∈ C, c

(1)

ϕ(π(c
(2)

)) = c
(2)

ϕ(π(c
(1)

)), c ∈ C
}
ϕ∈D∗

, (3.8)

and

W =
{
c
(1)

ϕ(π(c
(2)

))− c
(2)

ϕ(π(c
(1)

)), c ∈ C
}
ϕ∈D∗

. (3.9)

Lemma 3.2. Let C(D)H be a Hopf Galois coextension with the corresponding H-
action / : C⊗H −→ C. Then / induces the following H-action, J: CD⊗H −→ CD.

Proof. It is enough to show that c / h ∈ CD for all c⊗ h ∈ CD ⊗H. Indeed,

(c / h)
(1)

ϕ(π(c / h)
(2)

)) = c
(1)

/ h
(1)

ϕ(π(c
(2)

/ h
(2)

))

= c
(1)

/ h
(1)

ϕ(π(c
(2)

))ε(h
(2)

) = c
(1)

/ hϕ(π(c
(2)

))

= c
(2)

/ hϕ(π(c
(1)

)) = c
(2)

/ h
(2)

ϕ(π(c
(1)

))ε(h
(1)

)

= c
(2)

/ h
(2)

ϕ(π(c
(1)

/ h
(1)

)) = (c / h)
(2)

ϕ(π(c / h)
(1)

)).

We use the H-module coalgebra property of C in the first equality and c ∈ CD in
the fourth equality.

�

One can define a D-bicomodule structure on C �DC as follows;

c�Dc
′ 7−→ c�Dc

′(1) ⊗ π(c′
(2)

), c�Dc
′ 7−→ π(c

(1)

)⊗ c
(2)

�Dc
′. (3.10)

It is easy to check that the coactions defined in (3.10) are well-defined. We set

(C2DC)D =
C �DC

W
, (3.11)

where
W = 〈c⊗ c′

(1)

ϕ(π(c′
(2)

))− c
(2)

⊗ c′ϕ(π(c
(1)

))〉, (3.12)

and ϕ ∈ D∗, c ⊗ c′ ∈ C �DC. We denote the elements of the quotient by an
over line. Although C �DC is not a coalgebra, it is proved in [1, section 6.4, page
93-95] that the quotient space (C �DC)D is a coassociative coalgebra where the
coproduct and counit maps are given by

∆(c⊗ c′) = c(1) �Dc′
(2) ⊗ c(2) �Dc′

(1) . ε(c⊗ c′) = ε(c)ε(c′). (3.13)

The following lemma can be similarly proved as [14][Lemma 4.4].
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Lemma 3.3. If C(D)H be a Hopf-Galois coextension, then β induces a bijection
β̄ : CD ⊗H −→ (C2DC)D where

β̄(c̄⊗ h) = β(c⊗ h).

The following lemma can be similarly proved as [14][Lemma 4.5].

Lemma 3.4. Let C(D)H be a Hopf-Galois coextension. Define

κ := (ε⊗ IdH) ◦ β̄−1 : (C2DC)D −→ H.

The map κ is an anti coalgebra map.

The anti coalgebra map property of the map κ is equivalent to

κ(c⊗ c′)
(1)

⊗ κ(c⊗ c′)
(2)

= κ(c(2) ⊗ c′(1))⊗ κ(c(1) ⊗ c′(2)). (3.14)

The following lemma introduces some properties of the map κ.

Lemma 3.5. If C(D)H be a Hopf Galois coextension then the map κ has the
following properties.

i) κ(c(1) / h�Dc
(2) / g) = ε(c)S(h)g, c ∈ C, g, h ∈ H,

ii) κ(c�Dc′)h = κ(c�Dc′ / h), h ∈ H,
iii) κ(c / h�Dc′) = S(h)κ(c�Dc′), h ∈ H,
iv) c

(1)

/ κ(c(2) �Dc′) = ε(c)c′, c⊗ c′ ∈ C �DC.

Proof. The following computation proves the relation i).

κ(c
(1)

/ h�Dc
(2)

/ g) = κ(c
(1)

/ h
(1)

�Dc
(2)

/ ε(h
(2)

)g)

= κ(c
(1)

/ h
(1)

�Dc
(2)

/ h
(2)

S(h
(3)

)g) = κ(c
(1)

/ h
(1)

�D(c
(2)

/ h
(2)

) / S(h
(3)

)g)

= κ((c / h
(1)

)
(1)

�D(c / h
(1)

)
(2)

/ S(h
(2)

)g) = ε(c / h
(1)

)S(h
(2)

)g

= ε(c)ε(h
(1)

)S(h
(2)

)g = ε(c)S(h)g.

We used Lemma 3.1(ii) in the fifth equality. The relation ii) is obvious by the right
H-module map property of β−1 in Lemma 3.1(v). To prove iii), it is enough to show
that the maps mH ◦ (SH ⊗κ) and κ◦ (/⊗ IdC)◦ (tw⊗ IdC), appearing in both hand
sides of iii), have the same inverse in the convolution algebra Homk(H⊗ C2DC,H).
Here mH denotes the multiplication map of H. To do this, first we show that the
map mH ◦ tw ◦ (IdH ⊗[S−1 ◦ κ]) is a left inverse for mH ◦ (S ⊗ κ), with respect to
the convolution product denoted by ?. Let h⊗ c⊗ c′ ∈ H ⊗ (C2DC)D. We have;

[mH ◦ tw ◦ (IdH ⊗[S−1 ◦ κ]) ? mH ◦ (S ⊗ κ)](h⊗ c⊗ c′)

= S−1(κ(c(1) ⊗ c′(2)))h
(1)

S(h
(2)

)κ(c(2) ⊗ c′(1))

= ε(h)S−1(κ(c(1) ⊗ c′(2)))κ(c(2) ⊗ c′(1))

= ε(h)S−1[κ((c⊗ c′)
(1)

)]κ((c⊗ c′)
(2)

)

= ε(h)S−1[κ(c⊗ c′)
(2)

]κ(c⊗ c′)
(1)

= ε(h)ε(κ(c⊗ c′))

= ε(h)ε(κ(c(1) ⊗ c′(2)))ε(κ(c(2) ⊗ c′(1)))
= ε(h)ε(c)ε(c′)1H = η ◦ ε(h⊗ c⊗ c′).
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Here η is the unit map of H. In the previous calculation, we use the anti coalgebra
map property of κ in the fourth equality and 3.1(iv) in the seventh equality. Now
we show that the map mH ◦ tw ◦ (IdH ⊗[S−1 ◦ κ]) is a right inverse for the map
mH ◦ (S ⊗ κ). For the convenience in the following computation, we denote β−1(c⊗
d) = β− ⊗ β+.

[mH ◦ (S ⊗ κ) ? mH ◦ tw ◦ (IdH ⊗[S−1 ◦ κ])](h⊗ c⊗ c′)

= S(h
(1)

)κ(c(1) ⊗ c′(2))S−1(κ(c(2) ⊗ c′(1)))h
(2)

= S(h
(1)

)κ(β−
(1) ⊗ β−(4) / β+

(2))S−1(κ(β−
(2) ⊗ β−(3) / β+

(1)))h
(2)

= S(h
(1)

)κ(β−
(1) ⊗ β−(3) / β+

(2))S−1(ε(β−
(2))β+

(1))h
(2)

= S(h
(1)

)κ(β−
(1) ⊗ β−(2) / β+

(2))S−1(β+
(1))h

(2)

= S(h
(1)

)ε(β−)β+
(2)

S−1(β+
(1))h

(2)

= ε(β−)ε(β+)S(h
(1)

)h
(2)

= ε(c)ε(c′)ε(h)1H = η ◦ ε(h⊗ c⊗ c′).

We used Lemma 3.1(vii) in the second equality, Lemma 3.1(ii) and definition of
κ in the third and fifth equalities and Lemma 3.1(iv) in the penultimate equality.
Therefore we have shown that mH ◦ tw ◦ (IdH ⊗[S−1 ◦ κ]) is a two-sided inverse for
mH ◦ (S ⊗ κ). Now we check mH ◦ tw ◦ (IdH ⊗[S−1 ◦ κ]) is a left inverse for the
map κ ◦ (/⊗ IdC) ◦ (tw ⊗ IdC) with respect to the convolution product.

[mH ◦ tw ◦ (H ⊗ [S−1 ◦ κ]) ? κ ◦ (/⊗ IdC) ◦ (tw ⊗ IdC)](h⊗ c⊗ c′)

= mH ◦ tw ◦ (h
(1)

⊗ S−1(κ(c
(1)

⊗ c′
(2)

)))κ ◦ (/⊗ C)(c
(2)

⊗ h
(2)

⊗ c′
(1)

)

= S−1(κ(c
(1)

⊗ c′
(2)

))h
(1)

κ(c
(2)

/ h
(2)

⊗ c′
(1)

)

= S−1(κ(β−
(1) ⊗ β−(4) / β+

(2)))h
(1)

κ(β−
(2) / h(2) ⊗ β−(3) / β+

(1))

= S−1(κ(β−
(1) ⊗ β−(3) / β+

(2)))h
(1)

ε(β−
(2)

)S(h
(2)

)β+
(1)

= S−1(κ(β−
(1) ⊗ β−(2) / β+

(2)))ε(h)β+
(1)

= S−1(ε(β−)β+
(2)

)ε(h)β+
(1)

= ε(β−)ε(h)ε(β+)1H = ε(c)ε(h)ε(c′)1H = ι ◦ ε(h⊗ c⊗ c′).

We used Lemma 3.1(vii) in the third equality, Lemma 3.5(i) in the fourth equality,
definition of κ and Lemma 3.1(ii) in the sixth equality and Lemma 3.1(iv) in the
eighth equality. Here we show that mH ◦ tw ◦ (IdH ⊗[S−1 ◦κ]) is a right inverse for
κ ◦ (/⊗ IdC) ◦ (tw ⊗ IdC).
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[κ ◦ (/⊗ IdC) ◦ (tw ⊗ IdC) ? mH ◦ tw ◦ (IdH ⊗[S−1 ◦ κ])](h⊗ c⊗ c′)

= κ(c
(1)

/ h
(1)

⊗ c′
(2)

)S−1(κ(c
(2)

⊗ c′
(1)

))h
(2)

= κ(β−
(1) / h(1) ⊗ β−(4) / β+

(2))S−1(κ(β−
(2) ⊗ β−(3) / β+

(1)))h
(2)

= κ(β−
(1) / h(1) ⊗ β−(3) / β+

(2))S−1(ε(β−
(2)

)β+
(1)

)h
(2)

= κ(β−
(1) / h(1) ⊗ β−(2) / β+

(2)))S−1(β+
(1)

)h
(2)

= ε(β−)S(h
(1)

)β+
(2)

S−1(β+
(1)

)h
(2)

= ε(β−)ε(β+)S(h
(1)

)h
(2)

= ε(c)ε(c′)ε(h)1H = ι ◦ ε(h⊗ c⊗ c′).

We used Lemma 3.1(vii) in the second equality, Lemma 3.5(i) and the definition of
κ in the third equality, Lemma 3.5(i) in the fifth equality and Lemma 3.1(iv) in the
penultimate equality. Therefore mH ◦ tw ◦ (IdH ⊗[S−1 ◦ κ]) is a two-sided inverse
for κ ◦ (/⊗ IdC) ◦ (tw ⊗ IdC) with respect to the convolution product. Therefore
we have shown

κ ◦ (µC ⊗ C) ◦ (tw ⊗ C) = µH ◦ (S ⊗ κ).

To prove the relation iv), we apply Id⊗ε ⊗ Id on the both hand sides of Lemma
3.1(vi) and therefore we obtain;

β−(c⊗ c′)⊗ β+(c⊗ c′) = ε(β−(c(2) ⊗ c′))c
(1)

⊗ β+(c(2) ⊗ c′)

= c
(1)

⊗ κ(c(2) ⊗ c′). (3.15)

By applying the right action of H on the previous equation we obtain;

c
(1)

/ κ(c(2) ⊗ c′) = ε(β−(c(2) ⊗ c′))c
(1)

/ β+(c(2) ⊗ c′)
= β−(c⊗ c′) / β+(c⊗ c′) = ε(c)c′.

We used the Lemma 3.1(iii) on the last equality.
�

Lemma 3.6. If C(D)H be a Hopf Galois coextension, then CD is a right (C2DC)D-
comodule and a left H-comodule by the following coactions,

HCD

: CD −→ CD ⊗ (C2DC)D, c 7−→ c
(2)

⊗ c(3) �Dc
(1) ,

and

OCD

: CD −→ H ⊗ CD, c 7−→ κ(c(3) �Dc
(1))⊗ c

(2)

. (3.16)

Proof. First we show that the coaction HCD

is well-defined. The following com-

putation proves c
(2) ⊗ c(3) ⊗ c(1) ∈ CD ⊗ C ⊗ C.

c
(3)

ϕ(π(c
(2)

))⊗ c(4) ⊗ c(1) = c
(3)

⊗ c(4) ⊗ c(1)ϕ(π(C(2)))

= c
(3)

⊗ c(4)(2)ϕ(π(c(4)(1))⊗ ε(c(1))c(2) = c
(2)

ϕ(π(c
(3)

))⊗ c(4) ⊗ c(1) .
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We used the definition of W given in (3.12). Furthermore since C is a coalgebra on

a field then c ∈ CD implies c
(1) ⊗ π(c

(2)

) = c
(2) ⊗ π(c

(1)

). Therefore we have;

c
(1)

⊗ c
(2)

⊗ c
(3)

⊗ π(c
(4)

) = c
(2)

⊗ c
(3)

⊗ c
(4)

⊗ π(c
(1)

), (3.17)

which implies

c
(2)

⊗ c(3) ⊗ c(1) ∈ C ⊗ C �DC.

The following computation shows that HCD

defines a coassociative coaction.

[HCD

⊗ Id(C2DC)D ] ◦ HCD

(c) = (HCD

⊗ Id(C2DC)D )(c
(2)

⊗ c(3) ⊗ c(1))

= (c
(3)

⊗ c(4) ⊗ c(2) ⊗ c(5) ⊗ c(1)) = c
(2)

⊗ c(3)(1) ⊗ c(1)(2) ⊗ c(3)(2) ⊗ c(1)(1)

= (IdCD ⊗∆)(c
(2)

⊗ c(3) ⊗ c(1)) = (IdCD ⊗∆) ◦ HCD

(c).

The counitality of the coaction induced by HCD

can be shown as follows.

(IdCD ⊗ε) ◦ %C
D

(c) = (IdCD ⊗ε)(c
(2)

⊗ c(3) ⊗ c(1)) = c
(2)

ε(c
(3)

)ε(c
(1)

) = IdCD (c).

Therefore CD is a right coassociative and counital (C2DC)D-comodule.

The following computation shows that OCD

defines a coassociative H-coaction on
CD.

(IdH ⊗OCD

) ◦ OCD

(c) = (IdH ⊗OCD

)(κ(c(3) ⊗ c(1))⊗ c
(2)

)

= κ(c(5) ⊗ c(1))⊗ κ(c(4) ⊗ c(2))⊗ c
(3)

= κ(c(3) ⊗ c(1))
(1)

⊗ κ(c(3) ⊗ c(1))
(2)

⊗ c
(2)

= (∆⊗ IdH)(κ(c(3) ⊗ c(1))⊗ c
(2)

) = (∆⊗ IdH) ◦ OCD

(c).

We used the anti coalgebra map property of κ in the third equality. To prove the
counitality of the coaction for all c ∈ CD we have;

(ε⊗ IdCD ) ◦ %C
D

(c) = (ε⊗ IdCD )(κ(c(3) ⊗ c(1))⊗ c
(2)

) =

ε ◦ κ(c(3) ⊗ c(1))⊗ c
(2)

= ε(c
(3)

)ε(c
(1)

)⊗ c
(2)

= idCD (c).

We used the anti coalgebra map property of κ in the third equality. Therefore CD

is a left H-comodule. �

Lemma 3.7. Let C(D)H be Hopf Galois coextension. Then CD is a left (C2DC)D-
comodule and a right H-comodule by the following coactions,

HCD : CD −→ (C2DC)D ⊗ CD, c 7−→ c(1) �Dc
(3) ⊗ c

(2)

,

and

OCD : CD −→ CD ⊗H, c 7−→ c
(2)

⊗ κ(c(1) �Dc
(3)). (3.18)
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Proof. Since CD = C
W is a coalgebra this coaction is well-defined. The following

computation shows that this coaction is coassociative.

(∆C �DCD
⊗ IdC) ◦ HCD (c)

= (t(1) ⊗ t(3))
(1)

⊗ (t(1) ⊗ t(3))
(2)

⊗ t
(2)

= t
(1)(1)

⊗ t
(3)(2)

⊗ t
(1)(2)

⊗ t
(3)(1)

⊗ t
(2)

= t
(1)

⊗ t
(5)

⊗ t
(2)

⊗ t
(4)

⊗ t
(3)

= t
(1)

⊗ t
(3)

⊗ t
(2)(1)

⊗ t
(2)(3)

⊗ t
(2)(2)

= (IdC �DCD
⊗HC) ◦ HC .

The counitality of the coaction is obvious. Similar to Lemma 3.6 we can show that
the anti coalgebra map κ turns this coaction to a right coaction of H on CD. �

The following theorem shows that the Hopf Galois coextensions of coalgebras are
the sources of stable anti Yetter-Drinfeld modules.

Theorem 3.8. Let C(D)H be a Hopf Galois coextension. Then CD is a right-

left SAYD module over H by the coaction OCD

defined in (3.18) and the action J
defined in Lemma 3.2.

Proof. The AYD condition holds because for all c ∈ CD and h ∈ H, we have

S(h
(3)

)c
<−1>

h
(1)

⊗ c
<0>
J h

(2)

= S(h
(3)

)κ(c(3) ⊗ c(1))h
(1)

⊗ c
(2)

J h
(2)

= κ(c(3) J h(3) ⊗ c(1))h
(1)

⊗ c
(2)

J h
(2)

= κ(c(3) J h(3) ⊗ c(1) J h(1))⊗ c
(2)

J h
(2)

= κ((c J h)(3) ⊗ (c J h)(1))⊗ (c J h)
(2)

= OCD

(c J h).

We used Lemma 3.5(iii) in the second equality, Lemma 3.5(ii) in the third equality
and right H-module coalgebra property of C in the fourth equality. The following
computation shows the stability condition.

c<0> J c<−1> = c
(2)

J κ(c(3) ⊗ c(1)) =

c
(2)(1)

J κ(c(2)(2) ⊗ c(1)) = ε(c
(2)

)c
(1)

= c.

The penultimate equality holds by Lemma 3.5(iv). �

The following statement which is proved in [14][Remark 5.4] will be used in the
sequel subsection.

Lemma 3.9. For any coalgebra coextension π : C −→ D we have;

CD ∼= D�DeC,

where the isomorphism is given by

ξ(d�Dec) = εD(d)c, and ξ−1(c) = π(c
(1)

)�Dec
(2)

.

3.3. Cohomology theories related to Hopf Galois coextensions. In this
subsection we show that the Hopf cyclic cohomology of the Hopf algebra involved
in the coextensions with coefficients in the SAYD module CD is isomorphic to the
relative cyclic cohomology of coalgebra coextensions.
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Definition 3.10. Let D be a coalgebra and let M and N be a D-bicomodules. The
cyclic cotensor product of M and N is defined by

M �̂DN := (M �DN)�DeD ∼= D�De(M �DN). (3.19)

The cyclic cotensor product also can be defined for a finite number of arbitrary
D-bicomodules M1, . . . ,Mn as follows;

(M1 �̂ d . . . �̂DMn) := (M1�D . . . �DMn)�DeD. (3.20)

One has

(M1 �̂ d . . . �̂DMn) ∼= (M1� d . . . �DMn)D. (3.21)

Let π : C � D be a coalgebra coextension and M be a C-bicomodule. Therefore
M is a D-bicomodule by the following comodule structures;

c 7−→ π(c<−1>)⊗ c<0> , c 7−→ c<0> ⊗ π(c<1>). (3.22)

For all n ∈ N and 0 ≤ i ≤ n, we define cofaces

di : M �̂DC
�̂Dn −→M �̂DC

�̂D(n+1), (3.23)

which are given by

di(m2Dc12D . . .2Dcn) =


m

<0>
2Dm<1>

2Dc12D . . .2Dcn, i = 0,

m2Dc12D . . .2D∆(ci)2D . . .2Dcn, 0 < i < n,

m
<0>

2Dc12D . . .2Dcn2Dm<−1>
, i = n.

(3.24)
Also for 0 ≤ i ≤ n− 1 we define the codegeneracies

si : M �̂DC
�̂Dn −→M �̂DC

�̂D(n−1), (3.25)

which are given by

si(m2Dc12D . . .2Dcn) := m2Dc12D . . .2Dε(ci+1)2D . . .2Dcn. (3.26)

One can easily check that for 0 ≤ i ≤ n − 1, the cofaces di are well-defined. To
show that the last coface is well-defined, one notes that the condition

m⊗ c1 ⊗ · · · ⊗ cn ∈ (M �C � · · · �C)D,

implies

π(m<−1>)⊗m<0> ⊗ c1 ⊗ · · · ⊗ cn = π(cn
(2)

)⊗m⊗ c1 ⊗ · · · cn−1 ⊗ cn
(1)

. (3.27)

The following computation proves that the last coface is well-defined.

m
<0>
⊗ c1 ⊗ · · · ⊗ cn−1 ⊗ cn

(1)

⊗ π(cn
(2)

)⊗m
<−1>

= m<0><0> ⊗ c1 ⊗ · · · cn−1 ⊗ cn ⊗ π(m<−1>)⊗m<0><−1>

= m
<0>
⊗ c1 ⊗ · · · cn−1 ⊗ π(m

<−1>

(1)

)⊗m
<−1>

(2)

.

We used (3.27) in the first equality and the coassociativity of C-coaction of M in
the second equality.
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Theorem 3.11. Let π : C � D be a coalgebra coextension and M be a D-
bicomodule.
a) The module Cn(C(D),M) = M �̂DC

�̂Dn is a cosimplicial object with the co-
faces and codegeneracies as defined in (3.24) and (3.25).
b) Let M = C and set

t : C �̂DC
�̂Dn −→ C �̂DC

�̂Dn,

which is given by

tn(c0 ⊗ c1 ⊗ . . .⊗ cn) = c1 ⊗ . . .⊗ cn ⊗ c0. (3.28)

Then (Cn(C(D), C), di, si, tn) is a cocyclic module.

The cyclic cohomology of the preceding cocyclic module is called relative cyclic co-
homology of coalgebra coextension C(D). The Theorem 3.11 is the dual statement
of [23][Theorem 1.5]. In fact

Cn(C(D), C) = D�De C �D · · · �DC︸ ︷︷ ︸
n+1 times

. (3.29)

For any Hopf Galois coextension C(D)H the canonical map β : C ⊗H −→ C2DC
induces the following bijection,

βn : C ⊗H⊗n −→ C2D(n+1)

c⊗h1⊗ . . .⊗hn 7−→ c
(1)

⊗c
(2)

/h1
(1)

⊗c
(3)

/h1
(2)

h2
(1)

⊗ . . .⊗c
(n+1)

/h1
(n)

. . . hn−1
(2)

hn.

By applying D�De− on the both sides of the map βn we obtain the following
isomorphism of C-bicomodules;

ϕ : CD ⊗H⊗n ∼= D�DeC ⊗H⊗n −→ D2DeC �DC
2Dn ∼= C2Dn+1,

which is given by

c⊗ h1 ⊗ . . .⊗ hn 7−→

c
(1)

⊗ c
(2)

/ h1
(1)

⊗ c
(3)

/ h1
(2)

h2
(1)

⊗ . . .⊗ c
(n)

/ h1
(n−1)

. . . hn−1
(1)

⊗

c
(n+1)

/ h1
(n)

. . . hn−1
(2)

hn. (3.30)

The inverse map

ϕ−1 : C2Dn+1 −→ CD ⊗H⊗n,

is given by

c0 ⊗ . . .⊗ cn 7−→

c0
(1)

⊗ κ(c0
(2)

⊗ c1
(1)

)⊗ κ(c1
(2)

⊗ c2
(1)

)⊗ . . .⊗ κ(cn−2
(2)

⊗ cn−1
(1)

)⊗

κ(cn−1
(2)

⊗ cn). (3.31)

By Theorem 3.8, the subspace CD is a right-left SAYD module over H. Using the
cocyclic module (1.10), the Hopf cyclic cohomology of H with coefficients in CD is



212 MOHAMMAD HASSANZADEH

computed by the following cocyclic module;

δi(c⊗ h̃) = h1 ⊗ · · ·hi ⊗ 1H ⊗ hi+1 ⊗ · · ·hn ⊗ c, 0 ≤ i ≤ n,

δn+1(c⊗ h̃) = h1
(1)

⊗ · · · ⊗ hn
(1)

⊗ S(h1
(2)

· · ·hn
(2)

)κ(c(3) �Dc
(1))⊗ c

(2)

,

σi(c⊗ h̃) = h1 ⊗ · · · ⊗ hihi+1 ⊗ · · · ⊗ hn ⊗ c,

σn(c⊗ h̃) = h1 ⊗ · · · ⊗ hn−1ε(hn)⊗ c,

τn(c⊗ h̃) = h2
(1)

⊗ · · · ⊗ hn
(1)

⊗ S(h1
(2)

· · ·hn
(2)

)κ(c(3) �Dc
(1))⊗ c

(2)

/ h1
(1)

,
(3.32)

where c⊗h̃ = c⊗h1⊗· · ·⊗hn. We denote the above cocyclic module by Cn(H,CD).
Now using the isomorphism ϕ given in (3.30) we define the following map,

ψ : Cn(H,CD) −→ Cn(C(D), C), (3.33)

which is given by

h1 . . .⊗ hn ⊗ c 7−→

c
(1)

⊗ c
(2)

/ h1
(1)

⊗ c
(3)

/ h1
(2)

h2
(1)

⊗ . . .⊗ c
(n)

/ h1
(n−1)

. . . hn−1
(1)

⊗

c
(n+1)

/ h1
(n)

. . . hn−1
(2)

hn, (3.34)

with the inverse map;

c0 ⊗ . . .⊗ cn 7−→

κ(c0
(2)

⊗ c1
(1)

)⊗ κ(c1
(2)

⊗ c2
(1)

)⊗ . . .⊗ κ(cn−2
(2)

⊗ cn−1
(1)

)⊗

κ(cn−1
(2)

⊗ cn)⊗ c0
(1)

. (3.35)

Now we are ready to state the main result.

Theorem 3.12. Let C(D)H be a Hopf Galois coextension. The map ψ introduced
in (3.34) induces an isomorphism between the cocyclic modules Cn(H,CD) and
Cn(C(D), C) and we obtain

HCn(H,CD) ∼= HCn(C(D), C). (3.36)

Proof. It is straight forward and easy to prove that the map ψ commutes with
all cofaces, except the last one, and also codegeneracies. Here we show that ψ
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commutes with the cyclic operator and therefore with the last coface map.

tn(ψ(h1 ⊗ . . .⊗ hn ⊗ c))

= tn(c
(1)

⊗ c
(2)

/ h1
(1)

⊗ c
(3)

/ h1
(2)

h2
(1)

⊗ . . .⊗ c
(n)

/ h1
(n−1)

. . . hn−1
(1)

⊗

c
(n+1)

/ h1
(n)

. . . hn−1
(2)

hn)

= c
(2)

/ h1
(1)

⊗ c
(3)

/ h1
(2)

h2
(1)

⊗ . . .⊗ c
(n)

/ h1
(n−1)

. . . hn−1
(1)

⊗

c
(n+1)

/ h1
(n)

. . . hn−1
(2)

hn ⊗ c
(1)

= c
(2)

h1
(1)

⊗ c
(3)

h1
(2)

h2
(1)

⊗ · · · ⊗ c
(n+1)

h1
(n)

· · ·hn−1
(1)

hn⊗

c
(n+2)

/ κ(c(n+3) �Dc
(1))

= c
(2)

h1
(1)

⊗ c
(3)

h1
(2)

h2
(1)

⊗ · · · ⊗ c
(n+1)

h1
(n)

· · ·hn
(1)

⊗

c
(n+2)

h1
(n+1)

h2
(n)

· · ·hn
(2)

S(hn
(3)

) · · ·S(h1
(n+2)

)κ(c(n+3) � c(1))

= c
(2)

h1
(1)

⊗ c
(3)

h1
(2)

h2
(1)

⊗ · · · ⊗ c
(n+1)

h1
(n)

· · ·hn
(1)

⊗

c
(n+2)

h1
(n+1)

h2
(n)

· · ·hn
(2)

S(h1
(n+2)

· · ·hn
(3)

)κ(c(n+3) �Dc
(1))

= (c
(2)

h1
(1)

)
(1)

⊗ (c
(2)

h1
(1)

)
(2)

h2
(1)

⊗ · · · ⊗ (c
(2)

h1
(1)

)
(n)

h2
(1)(n−1)

· · ·hn
(1)(1)

⊗

(c
(2)

h1
(1)

)
(n+1)

h2
(1)(n)

· · ·hn
(1)(2)

S(h1
(2)

· · ·hn
(2)

)κ(c(3) �Dc
(1))

= ψ(h2
(1)

⊗ · · · ⊗ hn
(1)

⊗ S(h1
(2)

· · ·hn
(2)

)κ(c(3) �Dc
(1))⊗ c

(2)

/ h1
(1)

)

= ψτ(h1 ⊗ . . .⊗ hn ⊗ c).

We used the Lemma 3.5(iv) in third equality. �

We summarize the headlines of this section in the following remark which are the
dual ones in Remark 2.5.

Remark 3.13. For any Hopf Galois coextension C(D)H , the following statements
hold.

i) The relative cocyclic module of coalgebra coextensions is a subspace which is
given by,

D ⊗De C �D · · · �DC︸ ︷︷ ︸
n+1 times

= C �̂D · · · �̂DC = (C �D · · · �DC)D.

ii) The objects C ⊗H and C �DC are isomorphic in the category of CMH .
iii) The quotient space CD = C

W is a coalgebra.
iv) The quotient space (C �DC)D is a coalgebra.
v) The quotient space CD is a left (C �DC)D-comodule and a right H-comodule.

vi) The subspace CD is a right (C �DC)D-comodule and a left H-comodule.
vii) The subspace CD ∼= D�DeC is a right-left SAYD module over H.
viii) HC∗(H,CD) ∼= HC∗(C(D), C).
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[2] G. Böhm, Galois theory for Hopf algebroids, Ann. Univ. Ferrara Sez. VII (N.S.),
51 (2005), 233–262. math.RA/0409513.
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