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Abstract. All rings are commutative with identity and all modules are unital.

Let R be a ring, M an R-module and R(M), the idealization of M . Ho-

mogeneuous ideals of R(M) have the form I(+)N where I is an ideal of R,
N a submodule of M such that IM ⊆ N . In particular, [N : M ] (+)N is a

homogeneous ideal of R(M). The purpose of this paper is to investigate how
properties of the ideal [N : M ](+)N are related to those of N . We determine

when R(M) is a µ-ring, strongly Laskerin ring, Hilbert ring or satisfies Prop-

erty (U) or Property (FU). It is also shown that if all homogeneous ideals
of R(M) have a certain prescribed property, then all ideals of R(M) have the

same property.

1. Introduction

Let R be a commutative ring and M an R-module. M is a multiplication module
if every submodule N of M has the form IM for some ideal I of R. Equivalently,
N = [N : M ]M , [16]. A submodule K of M is multiplication if and only if
N ∩K = [N : K]K for all submodules N of M , [26, Lemma 1.3]. A submodule
N of M is called a pure submodule of M if IN = N ∩ IM for every ideal I of
R, [18]. An ideal I is pure if and only if I is multiplication and idempotent. As
a generalization of pure submodules and idempotent ideals, the author and Smith
[10] introduced the concept of idempotent submodules: A submodule N of M is
idempotent in M if N = [N : M ]N . It is shown [10, Theorem 1.1] that if M is
a multiplication module with pure annihilator then N is pure if and only if N is
idempotent and multiplication. An R-module M is projective if and only if it is
a direct summand of a free R-module. It is proved, [27, Theorems 2.1 and 2.2]
that a finitely generated ideal I of R is projective (resp. flat) if and only if I is
multiplication and annI = Re for some idempotent e of R (resp. annI is a pure
ideal of R). More generally, if M is a finitely generated multiplication module
and annM = Re for some idempotent e, then M is projective, [28, Theorem 11],
and multiplication modules with pure annihilator are flat, [5, Theorem 8] and [24,
Theorem 4.1].

Let R be a ring and M an R-module. Let S be the set of regular elements of
R and RS the total quotient ring of R. For a nonzero ideal I of R, let I−1 = {x
∈ RS : xI ⊆ R}. I is an invertible ideal if II−1 = R. Let

T = {t ∈ S : tm = 0 for some m ∈M implies m = 0}.
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T is a multiplicatively closed subset of S, and if M is torsion-free then T = S. In
particular, if M is faithful multiplication then T = S, [17, Lemma 4.1]. Let N be
a nonzero submodule of M and let N−1 = {x ∈ RT : xN ⊆ M}. N−1 is an R-
submodule of RT , R ⊆ N−1 and NN−1 ⊆M . Following [25], N is invertible in M
if NN−1 = M . It is shown, [7, Proposition 2.1] that if N is an invertible submodule
of a finitely generated faithful multiplication R-module, then N is multiplication.
It is also shown if N is a submodule of a multiplication module M and [N : M ]
is an invertible ideal of R then N is invertible in M . The converse is true if we
assume further that M is finitely generated and faithful, [7, Proposition 2.1] and
[25, Remark 3.2 and Lemma 3.3].

Let N be a submodule of M and I an ideal of R. The residual submodule N by
I is [N :M I] = {m ∈M : Im ⊆ N}, [21]. Obviously [N : IM ]M ⊆ {N :M I]. The
reverse inclusion is true if M is multiplication. If M is a faithful multiplication
module then [0 :M I] = (annI)M .

Let R be a commutative ring with identity and M an R-module. The R-module
R(M) = R(+)M becomes a commutative ring with identity under the product
(r,m)(r′,m′) = (rr′, r′m+ rm′), called the idealization of M . The idealization of
a module is a well-established method to facilitate interaction between a ring on
the one hand and a module over a ring on the other. The basic constraction is to
embed the module M as an ideal in a ring R(M) which contains R as a subring.
This technique was used with great success by Nagata. For a comprehensive survy
on idealization, [23], [20], [13], [2], [3] and [4] can be consulted. 0(+)M is an ideal
of R(M) satisfying (0(+)M)2 = 0, and the structure of 0(+)M as an ideal of R(M)
is essentially the same as the R-module structure of M . Every ideal contained in
0(+)M has the form 0(+)N for some submodule N of M , and every ideal contains
0(+)M has the form I(+)M for some ideal I of M . Prime (maximal) ideals of
R(M) have the form P (+)M , where P is a prime (maximal) ideal of R. An ideal
H of R(M) is called homogeneous if H = I(+)N where I is an ideal of R and N a
submodule of M . In this case I(+)N = (R(+)M)(I(+)N) = I(+)(IM +N) gives
that IM ⊆ N . These ideals play a special role in studying properties of R(M) and
showing how these properties are related to those of R and M . Ideals of R(M)
need not be homogeneous, [13]. If I(+)N and J(+)K are homogeneous ideals of
R(M), then

[I(+)N :R(M) J(+)K] = [I : J ] ∩ [N : K](+)[N :M J ]

is homogeneous, [4, Lemma 1]. In particular, ann(I(+)N) = (annI∩annN)(+)[0 :M
I] and if M is faithful multiplication then ann(I (+)N) = annN(+)(annI)M.

Let N be a submodule of M . Then [N : M ](+)N is a homogeneous ideal of
R(M) since [N : M ]M ⊆ N . In the first part of this paper we give some conditions
under which some properties of [N : M ](+)N transfer to N and conversely. We
show for example that if M is multiplication and [N : M ](+)N is a multiplication
ideal of R(M) then N is a multiplication submodule of M . The converse is true if
we assume further that M is finitely generated and faithful. We also show that if M
is finitely generated faithful multiplication and [N : M ](+)N is cancellation (resp.
weak cancellation, join principal) then N is cancellation (resp. wesk cancellation,
join principal). In the second part we show how properties of R(M) are related
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to those of R and M . For example we prove that R(M) is a µ-ring if and only if
R is a µ-ring and M is a µ-module.

All rings are assumed to be commutative with 1 and all modules are unital. For
the basic concepts used, we refer the reader to [18]-[23].

2. Some Properties of the Ideal [N : M ](+)N

Let R be a ring, M an R-module and N a submodue of M . Albu and Smith [1]
proved that N is irreducible (resp. completely irreducible) if and only if the ideal
[N : M ](+)N is irreducible (resp. completely irreducible). It is also shown that N
is a primal submodule of M with adjoint prime ideal P if and only if [N : M ](+)N
is a primal ideal of R(M) with adjoint prime ideal P (+)M . In this section we give
some conditions under which the properties of the homgeneous ideal [N : M ](+)N
transfer to the submodule N and conversely.

Theorem 1. Let R be a ring, M an R-module and N a submodule of M .

(1) Let M be cyclic. If [N : M ](+)N is a principal ideal of R(M) then N is
a cyclic submodule of M . The converse is true if we assume further that M is
faithful.

(2) Let M be finitely generated. If [N : M ](+)N is a finitely generated ideal of
R(M) then N is a finitely generated submodule of M . The converse is true if we
assume further that M is faithful and multiplication.

(3) Let M be multiplication. If [N : M ](+)N is a multiplication ideal of R(M)
then N is a multiplication submodule of M . The converse is true if we assume
further that M is finitely generated and faithful.

(4) If [N : M ](+)N is an invertible ideal of R(M) then N is an invertible
submodule of M . The converse is true if we assume that M is finitely generated
faithful multiplication.

(5) Let M be faithful. If [N : M ](+)N is a faithful ideal of R(M) then N is
a faithful submodule of M . The converse is true if we assume further that M is
multiplication.

Proof. (1) Let [N : M ](+)N = R(M)(a, n) = Ra(+)(Rn + aM) for some a ∈ R,
n ∈ M . Then [N : M ] = Ra. Since M is cyclic (hence multiplication), N = aM
is cyclic. Conversely, let N be cyclic and M faithful cyclic. It follows by [28,
Proposition 13] that [N : M ] is a principal ideal of R. Let [N : M ] = Ra for some
a ∈ R. Then [N : M ](+)N = [N : M ](+)[N : M ]M = Ra(+)aM = R(M)(a, 0) is
a principal ideal of R(M).

(2) Let [N : M ](+)N =

n∑
i=1

R(M)(ai, ni) for some ai ∈ [N : M ] and ni ∈ N .

Since

R(M)(ai, ni) = R(M)((ai, 0) + (0, ni)) ⊆ R(M)(ai, 0) +R(M)(0, ni)

= Rai(+)aiM + 0(+)Rni = Rai(+)Rni + aiM,
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[N : M ](+)N ⊆
n∑
i=1

Rai(+)

n∑
i=1

Rni + aiM . Hence N ⊆
n∑
i=1

Rni + aiM . Since

ni ∈ N and aiM ⊆ [N : M ]M ⊆ N , we get that N =

n∑
i=1

Rni + aiM. As M

is finitely generated, N is finitely generated. Conversely, suppose N is a finitely
generated submodule of a finitely generated faithful multiplication R-module M .
It follows by [28, Theorem 10] and [8, Proposition 2.2] that [N : M ] is a finitely

generated ideal of R. Let [N : M ] =

n∑
i=1

Rai for some ai ∈ R. Then

[N : M ](+)N = [N : M ](+)[N : M ]M =

n∑
i=1

Rai(+)

n∑
i=1

RaiM

=

n∑
i=1

Rai(+)aiM =

n∑
i=1

R(M)(ai, 0),

so that [N : M ](+)N is finitely generated.
(3) Let M be multiplication and [N : M ](+)N be a multiplication ideal of

R(M). Let K be a submodule of N . Then [K : M ](+)K is an ideal of R(M) that
is contained in [N : M ](+)N . Hence [K : M ](+)K = H([N : M ](+)N) for some
ideal H of R(M). It follows that

[K : M ](+)K+0(+)N = H([N : M ](+)N)+0(+)N = (H+0(+)M)([N : M ](+)N).

Let H + 0(+)M = I(+)M for some ideal I of R. Then

[K : M ](+)N = (I(+)M)([N : M ](+)N) = I[N : M ](+)N.

This gives that [K : M ] = I[N : M ] and hence K = [K : M ]M = I[N : M ]M =
IN , so N is multiplication. For the converse, if N is multipication then [N : M ]
is a multiplication ideal of R, [28, Theorem 10] and [8, Proposition 2.2]. It is
shown in [4, Theorem 9] that if I(+)N is a homogeneous ideal of R such that I
is a multiplication ideal of R and N a multiplication submodule of M such that
annI + [IM : N ] = R then I(+)N is multiplication. Using this fact we have

ann[N : M ] + [[N : M ]M : N ] = annN + [N : N ] = R,

so [N : M ](+)N is multiplication.
(4) Assume [N : M ](+)N is invertible, then it is multiplication. We show that

[N : M ] is a multiplication ideal of R. Let I ⊆ [N : M ] be an ideal of R. Then
IM ⊆ N , and hence I(+)IM ⊆ [N : M(+)N . There exists an ideal H of R(M)
such that I(+)IM = H([N : M(+)N). It follows that

I(+)N = I(+)IM+0(+)N = H([N : M ](+)N)+0(+)N = (H+0(+)M)([N : M ](+)N).

Let H + 0(+)M = A(+)M for some ideal A of R. Then

I(+)N = (A(+)M)([N : M ](+)N) = A[N : M ](+)N.

Hence I = A[N : M ], and hence [N : M ] is a multiplication ideal of R. Also
[N : M ](+)N has a regular element, say (a,m) for some a ∈ [N : M ] and m ∈M .
It follows that a is a regular element and hence [N : M ] is an invertible ideal of
R. Hence N = [N : M ]M is an invertible submodule of M , [7, Proposition 2.1].
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Conversely, suppose M is a finitely generated faithful multiplication module and N
invertible. By [7, Proposition 2.1], N is multiplication and by (3), [N : M ](+)N is
a multiplication ideal of R(M). Since N is invertible, we infer from [7, Proposition
2.1] and [25, Lemma 3.2] that [N : M ] is invertible. Let a ∈ [N : M ] be a regular
element. It follows by [4, Lemma 6] that (a, 0) ∈ [N : M ](+)N is a regular element.
So [N : M ](+)N is an invertible ideal of R(M).

(5) If M is faithful, then by [4, Lemma 1] we have that

0 = ann([N : M ](+)N) = ann[N : M ]∩annN(+)[0 :M [N : M ]] = annN(+)[0 :M [N : M ]].

So annN = 0. If M is faithful multiplication and annN = 0, then again by [4,
Lemma 1] 0 = annN(+)(annN)M = ann([N : M ](+)N). �

The next theorem shows how the purity, idempotent and direct sum properties
transfer from [N : M ](+)N to N and conversely.

Theorem 2. Let R be a ring, M an R-module and N a submodule of M.

(1) If [N : M ](+)N is an idempotent ideal of R(M) then N is an idempotent
submodule of M . The converse is true if M is finitely generated faithful and
multiplication.

(2) If [N : M ](+)N is a pure ideal of R(M) then N is a pure submodule of M .
The converse is true if M is finitely generated faithful and multiplication.

(3) Let M be faithful multiplication. If [N : M ](+)N is a direct summand in
R(M) then N is a direct summand in M . The converse is true if we assume
further that M is finitely generated.

Proof. (1) Let [N : M ](+)N be idempotent. Then

[N : M ](+)N = ([N : M ](+)N)2 = [N : M ]2(+)[N : M ]N,

so that N = [N : M ]N , and hence N is idempotent. Conversely, let M be finitely
generated faithful and multiplication. Then [N : M ] = [[N : M ]N : M ] = [N :
M ]2. Hence

[N : M ](+)N = [N : M ]2(+)[N : M ]N = ([N : M ](+)N)2,

and hence [N : M ](+)N is idempotent.
(2) Let [N : M ](+)N be a pure ideal of R(M). Let I be an ideal of R. Then

I[N : M ](+)IN = (I(+)IM)([N : M ](+)N)

= (I(+)IM) ∩ ([N : M ](+)N) = I ∩ [N : M ](+)IM ∩N.

Hence IN = IM ∩ N and this shows that N is pure in M . Conversely, let M
be finitely generated, faithful and multiplication. If N is pure in M , then by [10,
Theorem 1.1], N is multiplication and idempotent. It follows by part (1) and
Threorem 1(3) that [N : M ](+)N is idempotent and multiplication. So it is pure
by [10, Theorem 1.1].

(3) Let [N : M ](+)N be a direct summand in R(M). Then R(M) = [N :
M ](+)N ⊕H for some ideal H of R(M). It follows that R(M) = [N : M ](+)N +
H + 0(+)M . Assume that H + 0(+)M = I(+)M for some ideal I of R. Then
R(M) = [N : M ] + I(+)M , and hence R = [N : M ] + I. It follows that M =
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N + IM . Next, since R(M) = [N : M ](+)N +H is multiplication, we infer from
[9, Theorem 2.1] that

0(+)M = 0(+)M + ([N : M ](+)N ∩H) = [N : M ](+)M ∩H + 0(+)M

= [N : M ](+)M ∩ I(+)M = ([N : M ] ∩ I)(+)M.

Hence 0 = [N : M ]∩I. As M is faithful multiplication, we infer from [17, Corollary
1.7] that 0 = ([N : M ] ∩ I)M = N ∩ IM . Hence M = N ⊕ IM and N is a direct
summand in M . Conversely, let M be finitely generated faithful and multiplication.
If N is direct summand in M , then M = N⊕K for some submodule K of M . Hence
M = N +K and 0 = N ∩K. It follows by [28, Proposition 4] and [9, Corollary1.2]
that

R = [M : M ] = [(N +K) : M ] = [N : M ] + [K : M ].

Also

0 = [0 : M ] = [(N ∩K) : M ] = [N : M ] ∩ [K : M ].

This implies that R = [N : M ]⊕ [K : M ]. So

R(M) = [N : M ] + [K : M ](+)N +K = [N : M ](+)N + [K : M ](+)K.

Finally

[N : M ](+)N ∩ [K : M ](+)K = [N : M ] ∩ [K : M ](+)N ∩K = 0.

Hence R(M) = [N : M ](+)N ⊕ [K : M ](+)K. So [N : M ](+)N is a direct
summand in R(M). This finishes the proof of the theorem. �

The next result shows how projectivity and flatness of the ideal [N : M ](+)N
transfer to N and conversely.

Theorem 3. Let R be a ring, M an R-module and N a submodule of M .

(1) Let M be locally cyclic projective. If [N : M ](+)M is a projective ideal of
R(M) then N is a projective submodule of M .

(2) Let M be finitely generated faithful multiplication. Then [N : M ](+)N is a
finitely generated projective ideal of R(M) if and only if N is a finitely generated
projective submodule of M .

(3) Let M be finitely generated faithful multiplication. Then [N : M ](+)N is
a finitely generated flat ideal of R(M) if and only if N is a finitely generated flat
submodule of M .

Proof. (1) Assume [N : M ](+)M is projective. Then F = [N : M ](+)M ⊕H for
some ideal H of R(M) and some free ideal F of R(M). Hence F = [N : M ](+)M +
H and 0 = [N : M ](+)M ∩H. Now F + 0(+)M = [N : M ](+)M +H + 0(+)M .
Let F + 0(+)M = I(+)M and H + 0(+)M = J(+)M for some ideals I and J
of R. Then I(+)M = [N : M ] + J(+)M , and hence I = [N : M ] + J . Since
F = [N : M ](+)N + H is free (hence multiplication), we infer from [9, Theorem
2.1] that

0(+)M = 0(+)M + ([N : M ](+)M ∩H) =

[N : M ](+)M ∩H + 0(+)M = [N : M ] ∩ J(+)M.

Hence 0 = [N : M ] ∩ J , and hence I = [N : M ] ⊕ J . To prove that [N : M ]
is a projective ideal of R, we need to show that I is a free ideal of R. Since
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0(+)M ⊆ [N : M ](+)M ⊆ F , F = F + 0(+)M = I(+)M . Since F is free,
it follows by [3, Theorem 9] that I is free. Finally, since M is locally cyclic
projective, M is multiplication and projective, [8, Theorem 3.4] and [11, Theorem
1.3]. Hence N = [N : M ]M ∼= [N : M ]⊗M is a projective submodule of M .

(2) Let [N : M ](+)N be a finitely generated projective (hence multiplication)
ideal of R(M). It follows by Theorem 1 that N is a finitely generated multiplication
submodule of M . By [27, Theorem 2.1] and [4, Lemma 1] we have that

Re(+)eM = R(M)(e, 0) = ann([N : M ](+)N) = annN(+)(annN)M.

for some idempotent e of R. So Re = annN and by [28, Theorem 11] N is
finitely generated projective. Conversely, let M be a finitely generated faith-
ful multiplication module. Since N is finitely generated projective, it follows by
[8, Proposition 3.7] that N is finitely generated multiplication. By Theorem 1,
[N : M ](+)N is a finitely generated multiplication ideal of R(M). Also by [8,
Proposition 3.7], [N : M ] is a finitely generated projective ideal of R. Hence
annN = ann[N : M ] = Re for some idempotent e of R. As M is faithful multipli-
cation, we get from [4, Lemma 1] that

R(M)(e, 0) = Re(+)eM = annN(+)(annN)M = ann([N : M ](+)N).

By [13, Theorem 3.7] and [4, Lemma 6], (e, 0) is an idempotent element in R(M).
So [N : M ](+)N is a finitely generated projective ideal of R(M).

(3) Suppose [N : M ](+)N is a finitely generated flat ideal of R(M). Then
[N : M)(+)N is a finitely generated multiplication ideal of R, and by Theorem
1, N is a finitely generated multiplication submodule of M . Moreover, ann([N :
M ](+)N) is a pure ideal of R(M). Since M is faithful multiplication, ann([N :
M ](+)N) = annN(+)(annN)M . It follows by Theorem 2 that annN is a pure
ideal of R. So N is a flat submodule of M , [24, Theorem 4.1] and [5, Theorem 8].
Conversely, suppose M is finitely generated faithful multiplication. Since N is flat,
N is multiplication by [8, Theorem 3.7] and by Theorem 1, [N : M ](+)N is finitely
generated multiplication. Moreover, [N : M ] is a finitely generated flat ideal of R
and hence annN = ann[N : M ] is a pure ideal of R. As M is faithful multiplication
ann([N : M ](+)N) = annN(+)(annN)M and by Theorem 2 ann([N : M ](+)N)
is a pure ideal of R(M). This finally shows that [N : M ](+)N is a flat ideal of
R(M). �

Generalizing the case for ideals, an R-module M is called cancellation (resp.
weak cancellation) if IM = JM for some ideals I and J of R then I = J (resp.
I+annM = J+annM). Equivalentely [IM : M ] = I (resp. [IM : M ] = I+annM)
for every ideal I of R. An R-module M is cancellation if and only if M is faithful
weak cancellation. Examples of cancellation modules include free modules and
finitely generated faithful multiplication modules, [28, Corollary to Theorem 9]. A
submodule N of an R-module M is called join principal if [(IN+K) : N ] = I+[K :
N ] for every ideal I of R and every submodule K of M , [12]. We now give a result
showing how the cancellation (resp. weak cancellation, join principal) properties
transfer from [N : M ](+)N to N .

Theorem 4. Let R be a ring, M finitely generated faithful multiplication R-module
and N a submodule of M .
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(1) If [N : M ](+)N is a cancellation ideal of R(M) then N is a cancellation
submodule of M .

(2) If [N : M ](+)N is a weak cancellation ideal of R(M) then N is a weak
cancellation submodule of M .

(3) If [N : M ](+)N is a join principal ideal of R(M) then N is a join principal
submodule of M .

(4) N is a cancellation multiplication submodule of M if and only if [N :
M ](+)N is a cancellation multiplication ideal of R(M).

Proof. (1) Let I be an ideal of R. Then

I(+)M =
[
(I (+)M) ([N : M ] (+)N) :R(M) [N : M ] (+)N

]
=
[
(I [N : M ] (+)N) :R(M) [N : M ] (+)N

]
= [I [N : M ] : [N : M ]] (+)M

Since M is finitely generated faithful multiplication module,

I = [I [N : M ] : [N : M ]] = [IN : N ] ,

and hence N is cancellation.
(2) Let I be an ideal of R. Then

(I + annN) (+)M = I(+)M + ann( [N : M ] (+)N)

=
[
(I(+)M) ([N : M ] (+)N) :R(M) [N : M ] (+)N

]
= [I [N : M ] : [N : M ]] (+)M.

Since M is finitely generated faithful multiplication,

I + annN = [I [N : M ] : [N : M ]] = [IN : N ] ,

and hence N is weak cancellation.
(3) Suppose I is an ideal of R and K a submodule of M . Then

[((I(+)M)([N : M ](+)N) + [K : M ])(+)M :R(M) [N : M ](+)N ]

= I(+)M + [[K : M ](+)M :R(M) [N : M ](+)N ].

But

[((I(+)M)([N : M ](+)N) + [K : M ])(+)M :R(M) [N : M ](+)N ]

= [I[N : M ] + [K : M ](+)M :R(M) [N : M ](+)N ]

= [(I[N : M ] + [K : M ]) : [N : M ](+)M,

and

I(+)M + [[K : M ](+)M :R(M) [N : M ](+)N ]

= I(+)M + [[K : M ] : [N : M ]](+)M = I + [[K : M ] : [N : M ]](+)M.

Since M is finitely generated faithful multiplication,

[(IN +K) : N ] = [(I[N : M ] + [K : M ]) : [N : M ]]

= I + [[K : M ] : [N : M ]] = I + [K : N ].

Hence N is join principal.
(4) Suppose [N : M ](+)N is multiplication and cancellation. It follows by The-

orem 1 and the first part of this theorem that N is multiplication and cancellation.
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For the converse, let H1 and H2 be ideals of R(M) such that H1([N : M ](+)N) =
H2([N : M ](+)N). Hence

(H1 + 0(+)M)([N : M ](+)N) = H1([N : M ](+)N) + 0(+)N

= H2([N : M ](+)N) + 0(+)N = (H2 + 0(+)M)([N : M ](+)N).

Let H1+0(+)M = I(+)M and H2+0(+)M = J(+)M for some ideals I and J of R.
It follows that I[N : M ](+)N = J [N : M ](+)N , and hence I[N : M ] = J [N : M ].
This implies that IN = JN . Since N is cancellation, we get that I = J and hence
H1 + 0(+)M = H2 + 0(+)M . Next, since N is cancellation, N is faithful and by
Theorem 1, [N : M ](+)N is faithful. Moreover, N is multiplication and hence
[N : M ](+)N is multiplication. It follows by [15, Corollary 1.7] that

(H1 ∩ 0(+)M)([N : M ](+)N) = H1([N : M ](+)N) ∩ (0(+)M)([N : M ](+)N)

= H1([N : M ](+)N) ∩ 0(+)N.

Since H1([N : M ](+)N) = H2([N : M ](+)N), we infer that

(H1 ∩ 0(+)M)([N : M ](+)N) = (H2 ∩ 0(+)M)([N : M ](+)N).

Let H1 ∩ 0(+)M = 0(+)K and H2 ∩ 0(+)M = 0(+)L for some submodules K and
L of M . It follows that

0(+)[N : M ]K = (0(+)K)(N : M ](+)N) = (0(+)L)([N : M ](+)N) = 0(+)[N : M ]L.

Hence [N : M ]K = [N : M ]L and hence [N : M ][K : M ] = [N : M ][L : M ]. As
N is cancellation and M finitely generated faithful multiplication, [N : M ] is a
cancellation ideal of R and hence [K : M ] = [L : M ]. This gives that K = L, and
hence 0(+)K = 0(+)L. So H1∩0(+)M = H2∩0(+)M . Finally, using the modular
law, one gets that

H1 = (H1 + 0(+)M) ∩H1 = (H2 + 0(+)M) ∩H1

= H2 + (H1 ∩ 0(+)M) = H2 + (H2 ∩ 0(+)M) = H2.

Hence [N : M ](+)N is a cancellation ideal of R(M). �

The dual notion of the concept of multiplication modules was introduced by
Ansari-Toroghy and Farshadifar in [14] and some properties of this class of modules
have been considered. An R-module M is said to be a comultiplication module if
for every submodule N of M there exists an ideal I of R such that N = [0 :M I].
It is shown that M is a comultiplication module if and only if for each submodule
N of M , we have N = [0 :M annN ]. It is clear that if M is a comultiplication
module then every submodule of M is comultiplication. An ideal I of a ring R is
comultiplication if I = ann(annI). We end this section by a result showing how
the comultiplication property transfers from I(+)N to its components I and N and
conversely.

Theorem 5. Let R be a ring, M faithful multiplication R-module, I an ideal of R
and N a submodule of M such that IM ⊆ N .

(1) 0(+)N is a comultiplication ideal of R(M) if and only if N is a comultipli-
cation submodule of M .

(2) I is a comultiplication ideal of R if and only if I(+)IM is a comultiplication
ideal of R(M).
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(3) I (+)N is a comultiplication ideal of R(M) if and only if I is a comultipli-
cation ideal of R and N is a comultiplication submodule of M .

(4) Assuming further that M is finitely generated. Then N is a comultiplication
submodule of M if and only if [N : M ](+)N is a comultiplication ideal of R(M).

Proof. (1) Suppose N is a comultiplication submodule of M . Since M is faithful
multiplication, we infer that N = [0 :M annN ] = ann(annN)M. It follows that

[0 :R(M) ann(0(+)N)] = [0 :R(M) annN(+)M ]

= ann(annN) ∩ annM(+)[0 :M annN ]

= 0(+)ann(annN)M = 0(+)N.

Hence 0(+)N is a comultiplication ideal of R(M). The statement is reversible.
(2) Let I be a comultiplication ideal R. It follows that I = ann(annI). Since

M is a faithful multiplication module, we obtain that[
0 :R(M) ann(I(+)IM)

]
=
[
0 :R(M) annI(+)(annI)M

]
= ann(annI) ∩ ann((annIM)(+)ann(annI)M

= ann(annI)(+)ann(annI)M = I(+)IM.

So I(+)IM is a comultiplication ideal of R(M). The statement is reversible.
(3) Suppose I(+)N is a comultiplication ideal of R(M). Then each of 0(+)N

and I(+)IM is comultiplication. So by the first two parts of the theorem we have
that N is a comultiplication submodule of M and I is a comultiplication ideal of
R. Conversely assume that N is a comultiplication submodule of M and I is a
comultiplication ideal of R. It follows that 0(+)N and I(+)IM are comultiplication
ideals of R(M). Now 0(+)N ∩ I(+)IM = 0(+)IM and

[0 :R(M) ann(0(+)IM)] = [0 :R(M) annIM(+)M ]

= [0 :R(M) annI(+)M ] = ann(annI) ∩ annM(+)[0 :M annI]

= 0(+)ann(annI)M = 0(+)IM.

This shows that 0(+)N ∩ I(+)IM is a comultiplication ideal of R(M), and by [15,
Theorem 2.15], I(+)N = 0(+)N + I(+)IM is a comultiplication ideal of R(M).

(4) Suppose N is a comultiplication submodule of M . Then N = [0 :M annN ] =
ann(annN)M. Since M is finitely generated faithful multiplication , it follows that
[N : M ] = [ann(annN)M : M ] = ann(annN) = ann(ann[N : M ]). Hence [N : M ]
is a comultiplication ideal of R. This gives that [N : M ](+)N is a comultiplication
ideal of R(M). The converse follows immediately by part (3) of the theorem. �

3. Some Properties of the Ring R(M)

In this section we investigate how properties of R(M) are related to those of
R and M . A well-known property possessed by each commutative ring is that if
an ideal I of R is contained in the union of the prime ideals Pi of R, then I is
contained in a particular Pi. As a strong version of this result, we call a ring R to
be a µ-ring if I, A1,A2, ..., An are ideals of R such that I ⊆ ∪Ai, then I is contained
in some Ai, [20]. As a generalization of this concept to the module case, we say
that an R-module M is a µ-module if N,K1, ...,Kn are submodules of M such that
N ⊆ ∪Ki then N ⊆ Kr for some r. For porperties of µ-rings, see [20, p. 87].
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Theorem 6. Let R be a ring and M an R-module. Then R(M) is a µ-ring if and
only if R is a µ-ring and M is a µ-module.

Proof. Suppose R(M) is a µ-ring. Let I, A1, ..., An be ideals of R such that
I ⊆ ∪Ai. Then I(+)M ⊆ ∪Ai(+)M = ∪(Ai(+)M). It follows that I(+)M ⊆
Ak(+)M for some k and hence I ⊆ Ak. So R is a µ-ring. Next, let N,K1, ...,Kn

be submodules of M such that N ⊆ ∪Ki. Then 0(+)N ⊆ 0(+) ∪Ki = ∪0(+)Ki.
Hence there exists m such that 0(+)N ⊆ 0(+)Km and hence N ⊆ Km, so M is
a µ-module. Conversely let H,H1, ...,Hn be ideals of R(M) such that H ⊆ ∪Hi.
Let H ′i = H ∩Hi. Then H = ∪H ′i. To show that R(M) is a µ-ring, it it enough
to show that H = H ′n for some n. Now

H + 0(+)M = (∪H ′i) + 0(+)M = ∪(H ′i + 0(+)M).

Let H + 0(+)M = I(+)M and H ′i + 0(+)M = Ai(+)M for some ideals I and Ai
of R. Then I(+)M = ∪Ai(+)M and hence I = ∪Ai. So there exists k such that
I ⊆ Ak ⊆ ∪Ai = I. Hence I = Ak and this gives that

H + 0(+)M = I(+)M = Ak(+)M = H ′k + 0(+)M.

On the other hand H∩0(+)M = ∪H ′i∩0(+)M = ∪(H ′i∩0(+)M). Let H∩0(+)M =
0(+)N and H ′i∩0(+)M = 0(+)Ki for some submodules N and Ki of M . It follows
that 0(+)N = ∪0(+)Ki = 0(+) ∪Ki. Hence N = ∪Ki. There exists l such that
N ⊆ Kl and this gives that N ⊆ Kl ⊆ ∪Ki = N . So N = Kl and hence

H ∩ 0(+)M = 0(+)N = 0(+)Kl = H ′l ∩ 0(+)M.

This implies that

H + 0(+)M = H ′k + 0(+)M ⊆ (H ′k +H ′l) + 0(+)M ⊆ H + 0(+)M,

so that H + 0(+)M = (H ′k +H ′l) + 0(+)M . Similarly,

H ∩ 0(+)M = H ′l ∩ 0(+)M ⊆ (H ′k +H ′l) ∩ 0(+)M ⊆ H ∩ 0(+)M,

and hence H ∩0(+)M = (H ′k+H ′l)∩0(+)M . Using the modular law, one obtains
that

H = (H + 0(+)M) ∩H = (H ′k +H ′l + 0(+)M) ∩H = (H ′k +H ′l) + (H ∩ 0(+)M)

= (H ′k +H ′l) + ((H ′k +H ′l) ∩ 0(+)M) = H ′k +H ′l ,

and this shows that R(M) is a µ-ring. �

Matsuda defines two properties for a ring R : R satisfies Property (U) if each
regular ideal of R is a union of regular principal ideals of R, and R satisfies Property

(FU) if Reg(I) ⊆
n⋃
i=1

Ji implies I ⊆
n⋃
i=1

Ji for each finite family of regular ideals

I, J1, ..., Jn of R, where Reg(I) denotes the set of regular elements of I. He shows
that Property (U) implies Property (FU) but not conversely, see [20, p. 195].

The next Theorem shows how Properties (U) and (FU) transfer from R(M) to
R and conversely.

Theorem 7. Let R be a ring and M an R-module.
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(1) Let M be faithful multiplication. If R(M) satisfies Property (U) then R
satisifes Property (U). The converse is true if we assume further that M is divis-
ible.

(2) Let M be faithful multiplication. If R(M) satisfies Property (FU) then
R satisifes Property (FU). The converse is true if we assume further that M is
divisible.

Proof. (1) Suppose R(M) satisfies Property (U). Let I be a regular ideal of R.
Since M is faithful multiplication, it follows by [4, Lemma 6] that I(+)M is a
regular ideal of R(M). Hence I(+)M = ∪R(M)(aα,mα), where R(M)(aα,mα) is
a regular principal ideal of R(M). It follows that

I(+)M = ∪R(M)(aα,mα) ⊆ ∪(Raα(+)Rmα+aαM) = ∪Raα(+)∪ (Rmα+aαM),

and hence I ⊆ ∪Raα ⊆ I. So I = ∪Raα. Finally, since (aα,mα) is regular,
aα is regular and this shows that R satisfies Property (U). Conversely, assume R
satisfies Property(U). Let H be a regular ideal of R(M). Since M is divisible, [13,
Theorem 3.9] shows that H is homogeneous, and has the form I(+)M for some
ideal I of R such that I ∩S 6= φ where S = R− (Z(R)∪Z(M)), Z(R) is the set of
zero divisors of R and Z(M) the set of zero divisors on M . Note that Z(M) = {t
∈ R : tm = 0 for some nonzero m ∈ M} and if M is faithful multiplication, hence
torsion free, [17, Lemma 4.1], we get that Z(M)⊆ Z(R)). Since H = I(+)M is
regular, it follows that I is a regular ideal of R. Let a ∈ I be regular. Since M
is divisble, M = aM ⊆ IM ⊆M , so that M = IM and hence H = I(+)IM . Let
I = ∪Raα for some regular principal ideals Raα of R. It follows that

H = I(+)IM = ∪Raα(+) ∪ aαM = ∪Raα(+)aαM = ∪R(M)(aα, 0).

Since aα is regular and M faithful multiplication, we infer from [4, Lemma 6] that
(aα, 0) is regular and this shows that R(M) satisfies Property (U).

(2) Suppose R(M) satisfies Property (FU). Let I be a regular ideal of R and
{gα} = Reg(I). Since M is faithful multiplication, I(+)M is a regular ideal of
R(M), [4, Lemma 6], and {(gα,mα)} are the regular elements of I(+)M , where
mα ∈M . For if (b, k) is any regular element of I(+)M , then b is a regular element

of I and b ∈ {gα}. Assume now {gα} = Reg(I) ⊆
n⋃
i=1

Ji, where Ji are regular ideals

of R. Hence {(g
α
,mα)} = Reg(I(+)M) ⊆

n⋃
i=1

Ji(+)M , where Ji(+)M are regular

ideals of R(M), [4, Lemma 6]. Since R(M) satisfies Property (FU), I(+)M ⊆
n⋃
i=1

Ji(+)M , and hence I ⊆
n⋃
i=1

Ji. So R satisifes Property (FU). Conversely,

assume R satisfies Property (FU). Let H be a regular ideal of R(M). Since M is
divisible, H = I(+)IM for some regular ideal I of R such that I ∩ S 6= φ, where
S = R−Z(R). Assume {(gα, nα)} be the set of regular elements of I(+)IM such

that {(gα, nα)} ⊆
n⋃
i=1

Hi for some regular idealsHi of R. Again, sinceM is divisible,

Hi = Ji(+)JiM for some regular ideals Ji or R. Since (gα, nα) is regular in R(M),

gα is regular in R. Hence {gα} = Reg(I), and hence {gα} ⊆
n⋃
i=1

Ji. As R satisfies
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Property (FU), I ⊆
n⋃
i=1

Ji and hence H = I(+)IM ⊆
n⋃
i=1

Ji(+)JiM =
n⋃
i−1

Hi. Hence

R(M) satisfies Property (FU). �

A ring R is called Laskerian if every ideal of R is a finite intersection of primary
ideals of R and it is called strongly Laskerian if R is Laskerian and for every prime
ideal P of R, there exists a positive integer n such that (

√
P )n ⊆ P . R is said

to be primary if R contains at most one proper prime ideal of R. On the other
hand, a ring R is called an RM -ring (restricted minimum condition) if R is one
dimensional Noetherian ring. For details about Laskerian, primary and RM -rings,
see [19]. The next result shows how the Laskerian, primary and RM -properties
transfer from R(M) to R and conversely.

Proposition 8. Let R be a ring and M an R-module.

(1) If R(M) is strongly Laskerian then R is strongly Laskerian. The converse
is true if every ideal of R(M) contains 0(+)M .

(2) R(M) is a primary ring if and only if R is.
(3) If R(M) is an RM -ring then so too is R and the converse in true if M is

finitely generated.

Proof. (1) Assume R(M) is strongly Laskerian. Let I be an ideal of R. Then

I(+)M is an ideal of R(M) and hence I(+)M =
n⋂
i=1

Hi for some primary ideals Hi

of R(M). Since 0(+)M ⊆ I(+)M ⊆ Hi for all i, Hi = Ji(+)M for some ideals
Ji of R. Since Ji(+)M is primary, we obtain from [20, Theorem 25.2] that Ji is

primary. Also I(+)M =
n⋂
i=1

Ji(+)M gives that I =
n⋂
i=1

Ji and this shows that R is

Laskerian. Now, let P be a prime ideal of R. Then P (+)M is a prime ideal of

R(M). There exists a positive integer n such that (
√
P (+)M)n ⊆ P (+)M . It

follows by [13, Theorem 3.2] that
√
P (+)M =

√
P (+)M and hence

(
√
P )n(+)(

√
P )n−1M = (

√
P (+)M)n ⊆ P (+)M.

This shows that (
√
P )n ⊆ P and hence R is strongly Laskerian. Conversely, let

H be an ideal of R(M). Since H contains 0(+)M , H = H + 0(+)M = I(+)M for

some ideal I of R. But R is Laskerian. Thus I =
n⋂
i=1

Ji for some primary ideals

Ji of R. Hence H =
n⋂
i=1

Ji(+)M. By [20, Theorem 25.2] , Ji(+)M is primary

ideals of R and hence R(M) is Laskerian. Now let P (+)M be a prime ideal of
R(M). Then P is a prime ideal of R. There exists a positive integer n such that

(
√
P )n ⊆ P. Hence√

P (+)M)n = (
√
P (+)M)n = (

√
P )n(+)(

√
P )n−1M ⊆ P (+)M,

and this shows that R(M) is strongly Laskerian.
(2) This follows from the fact that P is a proper prime ideal of R if and only if

P (+)M is a proper prime ideal of R(M).
(3) Suppose R(M) is an RM -ring Then R(M) is one dimensional ring and hence

R is one dimensional ring. For if 0 6= P is a prime ideal of R then 0 6= P (+)M



144 MAJID M. ALI

is a prime ideal of R(M). Hence P (+)M is a maximal ideal of R(M) and this
implies that P is a maximal ideal of R. Since R(M) is Noetherian, it follows by
[2, Proposition 10] and [13, Theorem 4.8] that R is Noetherian and hence R is
an RM -ring. Conversely, let R be an RM -ring. Since R is Noetherian and M
finitely generated, R(M) is Noetherian, [13, Theorem 4.8]. The fact that R(M) is
an RM -ring follows from the fact that 0 6= P (+)M is a prime (maximal) ideal of
R(M) if and only if 0 6= P is a prime (maximal) ideal of R. �

A ring R is called semisimple if its Jacobson radical is zero. R is called a Hilbert
ring if for each prime ideal P of R, R/P has a zero Jacobson radical. Equivalently,
R is Hilbert if every proper prime ideal of R is the intersection of maximal ideals
of R. Examples of Hilbert rings include principal ideal domains with finitely
many maximal ideals and zero-dimensional rings with identity. Finally, a ring R
is called a G-ring if it has a nonzero pesudoradical (the pesudoradical of a ring R
is the intersection of nonzero prime ideals of R). For properties of semisimple,
Hilbert and G-rings, see [19]. The next result shows how semisimple, Hilbert and
G-properties of R(M) are related to those of R.

Proposition 9. Let R be a ring and M an R-module.

(1) If R(M) is semisimple, then too is R and in this case R(M) ∼= R.
(2) R is a Hilbert ring if and only if R(M) is.
(3) If R is a G-ring then so too is R(M).

Proof. (1) Let R(M) be semisimple. Then ∩Pi(+)M = 0 where Pi(+)M are the
maximal ideals of R(M). It follows that ∩Pi = 0 and M = 0. So R ∼= R(M) is
semisimple.

(2) Let R(M) be Hilbert. Let P be a proper ideal. Then P (+)M is a proper
prime ideal of R(M). It follows that R(+)M/P (+)M ∼= R/P has zero Jacobson
radical. So R is Hilbert. The statement is reversible. Equivalently, if R(M)
is Hilbert then for each proper prime ideal P of R (and hence each proper prime
ideal P (+)M of R(M)), P (+)M =

⋂
µ maximal

µ(+)M . Therefore P =
⋂

µ maximal

µ,

and hence R is Hilbert. The converse is now obvious.
(3) Let R be a G-ring. Then

⋂
06=P

P 6= 0, where the intersection runs over nonzero

prime ideals of R. Since for each 0 6= P , where P is a prime ideal of R, 0 6= P (+)M
is a prime ideal of R(M). Hence

⋂
0 6=P (+)M

P (+)M 6= 0, and this gives that R(M)

is a G-ring. �

According to [19, p. 32] a ring R is called a u-ring if for every proper ideal I of

R,
√
I 6= R.

Proposition 10. Let R be a ring and M an R-module. Then R(M) is a u-ring
if and only if R is.

Proof. Let R(M) be a u-ring. Let I be a proper ideal of R. Then I(+)M is

a proper ideal of R(M), and hence
√
I(+)M =

√
I(+)M 6= R(M), [13, Theorem

3.2]. Hence
√
I 6= R and R is a u-ring . Conversely, assume that R is a u-ring.

Let H be a proper ideal of R(M). Since 0 = (0(+)M)2 ⊆ H, we obtain that
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0(+)M ⊆
√
H and hence

√
H = I(+)M for some ideal I of R. So

√
H =

√√
H =

√
I(+)M =

√
I(+)M 6= R(M),

and this shows that R(M) is a u-ring. �

A ring R is called a multiplication ring if every ideal of R is multiplication, [21].
It is called a herditary ring if every ideal of R is projective, [18]. A ring R is said
to be flat if every finitely generated (and hence every ideal of R) is flat. It is called
von Neumann regular ring if every ideal of R is pure. For properties of flat rings
and von Neumann regular rings, see [18]. Finally a ring R is called a Prüfer ring
if every finitely generated regular ideal of R is invertible, [20] and [21]. We close
our work by giving a result showing the important role of homogeneous ideals to
study some properties of R(M).

Theorem 11. Let R be a ring and M an R-module.

(1) If every homogeneous ideal of R(M) is finitely generated (resp. multipli-
cation) then R(M) is a Noetherian (resp. multiplication) ring, and hence R is
Noetherian (resp. multiplication).

(2) If every homogeneous ideal of R(M) is projective (resp. finitely generated
flat, pure) then R(M) ∼= R is a herditary (resp. flat, von Neumann regular) ring.

(3) If every homogeneous ideal of R(M) is principal then R(M) is a PIR, and
hence R is a PIR.

(4) Let M be divisible. If every finitely generated regular homogeneous ideal of
R(M) is invertible then R(M) is a Prüfer ring, and hence R is a Prüfer ring.

Proof. (1) Let H be an ideal of R(M). Then H + 0(+)M and H ∩ 0(+)M are
homogeneous ideals of R(M). So H + 0(+)M and H ∩ 0(+)M are finitely gen-
erated (resp. multiplication). It follows by [22, Ex. 23, p. 13] and [28, Theorem
8] that H is a finitely generated (resp. multiplication) ideal of R(M). Hence
R(M) is Noetherian (resp. multiplication). Next, 0(+)M is a finitely generated
(resp. multiplication) ideal of R(M). It follows by [12, Theorem 3.1] that M is
finitely generated (resp. multiplication). The fact that R is Noetherian (resp.
multiplication) follows by [13, Theorem 4.8] and [4, Theorem 11].

(2) Let H be an ideal of R(M). Then H + 0(+)M and H ∩ 0(+)M are homoge-
neous ideals of R(M). Assume H ∩0(+)M = 0(+)N for some submodule N of M .
It is shown, [4, Proposition 4] that if 0(+)N is projective (resp. finitely generated
flat, pure) then N = 0. This implies that H ∩ 0(+)M = 0, and hence H ⊕ 0(+)M
is projective (resp. finitely generated flat, pure). It follows that H is projective
(resp. finitely generated flat, pure), and hence R(M) is a herditary (resp. flat, von
Neumann regular) ring. Next, since 0(+)M is projective (resp. finitely generated
flat, pure), M = 0 and hence R(M) ∼= R.

(3) Suppose that H is an ideal of R(M). Then H + 0(+)M and H ∩ 0(+)M
are principal ideals of R(M) since they are homogeneous. Since H + 0(+)M is
principal (hence multiplication), we infer from [9, Corollary 2.2] that

H(0(+)M) = (H + 0(+)M)(H ∩ 0(+)M),

and hence H(0(+)M) is principal. But 0(+)M is homogeneous, and hence is
principal. So H is principal and hence R(M) is PIR. The fact that R is a PIR
follows from [4, Theorem 11].
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(4) Let H be a finitely generated regular ideal of R(M). Since M is divisible, it
follows by [13, Theorem 3.9] that H is homogeneous. So H is invertible and hence
R(M) is a Prüfer ring. It follows by [3, Theorem 15] that R is a Prüfer ring. �
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