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Abstract. All rings are commutative with identity and all modules are unital.
Let R be a ring, M an R-module and R(M), the idealization of M. Ho-
mogeneuous ideals of R(M) have the form I(+)N where I is an ideal of R,
N a submodule of M such that IM C N. In particular, [N : M](+)N is a
homogeneous ideal of R(M). The purpose of this paper is to investigate how
properties of the ideal [N : M](+)N are related to those of N. We determine
when R(M) is a p-ring, strongly Laskerin ring, Hilbert ring or satisfies Prop-
erty (U) or Property (FU). It is also shown that if all homogeneous ideals
of R(M) have a certain prescribed property, then all ideals of R(M) have the
same property.

1. Introduction

Let R be a commutative ring and M an R-module. M is a multiplication module
if every submodule N of M has the form IM for some ideal I of R. Equivalently,
N = [N : MM, [16]. A submodule K of M is multiplication if and only if
NNK =[N : K|K for all submodules N of M, [26, Lemma 1.3]. A submodule
N of M is called a pure submodule of M if IN = N N IM for every ideal I of
R, [18]. An ideal [ is pure if and only if I is multiplication and idempotent. As
a generalization of pure submodules and idempotent ideals, the author and Smith
[10] introduced the concept of idempotent submodules: A submodule N of M is
idempotent in M if N = [N : M]N. It is shown [10, Theorem 1.1] that if M is
a multiplication module with pure annihilator then N is pure if and only if N is
idempotent and multiplication. An R-module M is projective if and only if it is
a direct summand of a free R-module. It is proved, [27, Theorems 2.1 and 2.2]
that a finitely generated ideal I of R is projective (resp. flat) if and only if I is
multiplication and annl = Re for some idempotent e of R (resp. annl is a pure
ideal of R). More generally, if M is a finitely generated multiplication module
and annM = Re for some idempotent e, then M is projective, [28, Theorem 11],
and multiplication modules with pure annihilator are flat, [5, Theorem 8] and [24,
Theorem 4.1].

Let R be a ring and M an R-module. Let S be the set of regular elements of
R and Rg the total quotient ring of R. For a nonzero ideal I of R, let I~ = {z
€ Rs : I C R}. I is an invertible ideal if IT-! = R. Let

T={teS:tm=0 for some m € M implies m = 0}.
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T is a multiplicatively closed subset of S, and if M is torsion-free then T'=S. In
particular, if M is faithful multiplication then T'= S, [17, Lemma 4.1]. Let N be
a nonzero submodule of M and let N™! = {# € Ry : tN C M}. N~!is an R-
submodule of Ry, RC N~'and NN~! C M. Following [25], N is invertible in M
if NNt = M. Tt is shown, [7, Proposition 2.1] that if IV is an invertible submodule
of a finitely generated faithful multiplication R-module, then N is multiplication.
It is also shown if N is a submodule of a multiplication module M and [N : M]
is an invertible ideal of R then N is invertible in M. The converse is true if we
assume further that M is finitely generated and faithful, [7, Proposition 2.1] and
[25, Remark 3.2 and Lemma 3.3].

Let N be a submodule of M and I an ideal of R. The residual submodule N by
T'is [Ny Il={me M:ImC N}, [21]. Obviously [N : IM|M C {N :p; I]. The
reverse inclusion is true if M is multiplication. If M is a faithful multiplication
module then [0 :3; I] = (annl)M.

Let R be a commutative ring with identity and M an R-module. The R-module
R(M) = R(+)M becomes a commutative ring with identity under the product
(rym)(r',m') = (rr',7'm + rm'), called the idealization of M. The idealization of
a module is a well-established method to facilitate interaction between a ring on
the one hand and a module over a ring on the other. The basic constraction is to
embed the module M as an ideal in a ring R(M) which contains R as a subring.
This technique was used with great success by Nagata. For a comprehensive survy
on idealization, [23], [20], [13], [2], [3] and [4] can be consulted. 0(+)M is an ideal
of R(M) satisfying (0(+)M)? = 0, and the structure of 0(+)M as an ideal of R(M)
is essentially the same as the R-module structure of M. Every ideal contained in
0(+)M has the form 0(+)N for some submodule N of M, and every ideal contains
0(+)M has the form I(+)M for some ideal I of M. Prime (maximal) ideals of
R(M) have the form P(+)M, where P is a prime (maximal) ideal of R. An ideal
H of R(M) is called homogeneous if H = I(+)N where I is an ideal of R and N a
submodule of M. In this case I(+)N = (R(+)M)(I(+)N) = I(+)(IM + N) gives
that IM C N. These ideals play a special role in studying properties of R(M) and
showing how these properties are related to those of R and M. Ideals of R(M)
need not be homogeneous, [13]. If I(+)N and J(+)K are homogeneous ideals of
R(M), then

LN gy J(H)K] =L TN N = KJ(+H)[N ]

is homogeneous, [4, Lemma 1]. In particular, ann(I(4+)N) = (annlNannN)(+)[0 :as
I] and if M is faithful multiplication then ann(f (+)N) = annN (+)(annl)M.

Let N be a submodule of M. Then [N : M](4+)N is a homogeneous ideal of
R(M) since [N : M|M C N. In the first part of this paper we give some conditions
under which some properties of [N : M](+)N transfer to N and conversely. We
show for example that if M is multiplication and [N : M](+)N is a multiplication
ideal of R(M) then N is a multiplication submodule of M. The converse is true if
we assume further that M is finitely generated and faithful. We also show that if M
is finitely generated faithful multiplication and [N : M](4+)N is cancellation (resp.
weak cancellation, join principal) then N is cancellation (resp. wesk cancellation,
join principal). In the second part we show how properties of R(M) are related
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to those of R and M. For example we prove that R(M) is a p-ring if and only if
R is a p-ring and M is a py-module.

All rings are assumed to be commutative with 1 and all modules are unital. For
the basic concepts used, we refer the reader to [18]-[23].

2. Some Properties of the Ideal [N : M|(+)N

Let R be a ring, M an R-module and N a submodue of M. Albu and Smith [1]
proved that N is irreducible (resp. completely irreducible) if and only if the ideal
[N : M](+)N is irreducible (resp. completely irreducible). It is also shown that N
is a primal submodule of M with adjoint prime ideal P if and only if [N : M](+)N
is a primal ideal of R(M) with adjoint prime ideal P(+)M. In this section we give
some conditions under which the properties of the homgeneous ideal [N : M](+)N
transfer to the submodule N and conversely.

Theorem 1. Let R be a ring, M an R-module and N a submodule of M.

(1) Let M be cyclic. If [N : M|(+)N is a principal ideal of R(M) then N is
a cyclic submodule of M. The converse is true if we assume further that M s
faithful.

(2) Let M be finitely generated. If [N : M|(+)N is a finitely generated ideal of
R(M) then N is a finitely generated submodule of M. The converse is true if we
assume further that M is faithful and multiplication.

(3) Let M be multiplication. If [N : M](4+)N is a multiplication ideal of R(M)
then N is a multiplication submodule of M. The converse is true if we assume
further that M 1is finitely generated and faithful.

(4) If [N : M](+)N is an invertible ideal of R(M) then N is an invertible
submodule of M. The converse is true if we assume that M is finitely generated
faithful multiplication.

(5) Let M be faithful. If [N : M|(+)N is a faithful ideal of R(M) then N is
a faithful submodule of M. The converse is true if we assume further that M is
multiplication.

Proof. (1) Let [N : M|(+)N = R(M)(a,n) = Ra(+)(Rn + aM) for some a € R,
n € M. Then [N : M] = Ra. Since M is cyclic (hence multiplication), N = aM
is cyclic.  Conversely, let N be cyclic and M faithful cyclic. It follows by [28,
Proposition 13] that [N : M] is a principal ideal of R. Let [N : M] = Ra for some
a € R. Then [N : M](+)N = [N : M](+)[N : M]M = Ra(+)aM = R(M)(a,0) is
a principal ideal of R(M).

(2) Let [N : M](+)N = iR(M)(ai,ni) for some a; € [N : M| and n; € N.
Since =
R(M)(ai,ni) = R(M)((ai,0) + (0,n;)) S R(M)(ai,0) + R(M)(0, n;)
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[N : M](+)N C ZRai(—&—)ZRni +a;M. Hence N C ZRW +a;M. Since
i=1

i=1 i=1
n

n;, € N and ;M C [N : M]M C N, we get that N = ZRW +a;M. As M

=1
is finitely generated, N is finitely generated. Conversely, suppose NV is a finitely
generated submodule of a finitely generated faithful multiplication R-module M.
It follows by [28, Theorem 10] and [8, Proposition 2.2] that [N : M] is a finitely

generated ideal of R. Let [N : M] = ZRM for some a; € R. Then

i=1

[N: M)(+)N =[N : M](+)[N : M|M = zn:Rai(-l-)zn:RaiM
i=1 i=1

= ZRaiH)aiM = ZR(M)(aZ«, 0),

so that [N : M](4+)N is finitely generated.

(3) Let M be multiplication and [N : M](+)N be a multiplication ideal of
R(M). Let K be a submodule of N. Then [K : M](+)K is an ideal of R(M) that
is contained in [N : M](+)N. Hence [K : M|(+)K = H([N : M](+)N) for some
ideal H of R(M). It follows that
[K s MI()K+0(+)N = H([N : M|(+)N)+0(+)N = (H+0(+)M)([N : M](+)N).
Let H +0(+)M = I(+)M for some ideal I of R. Then

[K : M](+)N = (I(+)M)([N : M](+)N) = I[N : M](+)N.
This gives that [K : M] = I[N : M] and hence K = [K : M]|M = I[N : M|M =
IN, so N is multiplication. For the converse, if N is multipication then [N : M]
is a multiplication ideal of R, [28, Theorem 10] and [8, Proposition 2.2]. It is
shown in [4, Theorem 9] that if I(+)N is a homogeneous ideal of R such that I

is a multiplication ideal of R and N a multiplication submodule of M such that
annl + [IM : N] = R then I(4+)N is multiplication. Using this fact we have

ann[N : M)+ [[N : M]M : N] = annN + [N : N| =R,

so [N : M](+)N is multiplication.

(4) Assume [N : M](+)N is invertible, then it is multiplication. We show that
[N : M] is a multiplication ideal of R. Let I C [N : M| be an ideal of R. Then
IM C N, and hence I(+)IM C [N : M(+)N. There exists an ideal H of R(M)
such that I(+)IM = H([N : M(+)N). It follows that

I(+)N = I(+)IM+0(+)N = H([N : M](+)N)4+0(+)N = (H+0(+)M)([N : M](+)N).
Let H 4+ 0(+)M = A(+)M for some ideal A of R. Then
I(+)N = (A(+)M)([N : M](+)N) = A[N : M](+)N.

Hence I = A[N : M], and hence [N : M] is a multiplication ideal of R. Also
[N : M](+)N has a regular element, say (a,m) for some a € [N : M] and m € M.
It follows that a is a regular element and hence [N : M] is an invertible ideal of
R. Hence N = [N : M]M is an invertible submodule of M, [7, Proposition 2.1].
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Conversely, suppose M is a finitely generated faithful multiplication module and N
invertible. By [7, Proposition 2.1], N is multiplication and by (3), [N : M](+)N is
a multiplication ideal of R(M). Since N is invertible, we infer from [7, Proposition
2.1] and [25, Lemma 3.2] that [N : M] is invertible. Let a € [N : M] be a regular
element. It follows by [4, Lemma 6] that (a,0) € [N : M](+)N is a regular element.
So [N : M](4+)N is an invertible ideal of R(M).

(5) If M is faithful, then by [4, Lemma 1] we have that

0 =ann([N : M](+)N) = ann[N : M]NanuN (+)[0 :pr [N : M]] = anuN(+)[0 :ar [V : M]).

So annN = 0. If M is faithful multiplication and annN = 0, then again by [4,
Lemma 1] 0 = annN(+)(annN)M = ann([N : M|(+)N). O

The next theorem shows how the purity, idempotent and direct sum properties
transfer from [N : M](+)N to N and conversely.

Theorem 2. Let R be a ring, M an R-module and N a submodule of M.

(1) If [N : M](+)N is an idempotent ideal of R(M) then N is an idempotent
submodule of M. The converse is true if M 1is finitely generated faithful and
multiplication.

(2) If [N : M](+)N is a pure ideal of R(M) then N is a pure submodule of M.
The converse is true if M is finitely generated faithful and multiplication.

(3) Let M be faithful multiplication. If [N : M](+)N is a direct summand in
R(M) then N is a direct summand in M. The converse is true if we assume
further that M 1is finitely generated.

Proof. (1) Let [N : M](+)N be idempotent. Then
[N« MJ(+)N = ([N : M](+)N)* = [N : MJ*(+)[N : M]N,

so that N = [N : M|N, and hence N is idempotent. Conversely, let M be finitely
generated faithful and multiplication. Then [N : M| = [[N : M|N : M] = [N :
M]?. Hence

[N - MJ(+)N = [N : M]*(+)[N : M]N = ([N : M](+)N)?,

(+
and hence [N : M](+)N is idempotent.
(2) Let [N : M](4+)N be a pure ideal of R(M). Let I be an ideal of R. Then

I[N : M[(+)IN = (I(+)IM)([N : M|(+)N)
— (I(+)IM) N ([N : M)(+)N) = I 0[N : M](+)IM A N.

Hence IN = IM N N and this shows that N is pure in M. Conversely, let M
be finitely generated, faithful and multiplication. If N is pure in M, then by [10,
Theorem 1.1}, N is multiplication and idempotent. It follows by part (1) and
Threorem 1(3) that [N : M|(+)N is idempotent and multiplication. So it is pure
by [10, Theorem 1.1].

(3) Let [N : M](+)N be a direct summand in R(M). Then R(M) = [N :
M](4+)N @ H for some ideal H of R(M). It follows that R(M) = [N : M](+)N +
H +0(+)M. Assume that H 4+ 0(+)M = I(+)M for some ideal I of R. Then
R(M) =[N : M|+ I(+)M, and hence R = [N : M] + I. Tt follows that M =

(+
(+
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N+ IM. Next, since R(M) =[N : M](+)N + H is multiplication, we infer from
[9, Theorem 2.1] that

O(+)M =0(+)M + ([N : M|(+)NNH) =[N : M|(+)M N H + 0(+)M
=[N:M|(+)MNI(+)M = ([N : M]NI)(+)M.

Hence 0 = [N : M]NI. As M is faithful multiplication, we infer from [17, Corollary
1.7) that 0 = ([N : M]NI)M = NNIM. Hence M = N @ IM and N is a direct
summand in M. Conversely, let M be finitely generated faithful and multiplication.
If N is direct summand in M, then M = N@® K for some submodule K of M. Hence
M =N+K and 0= NNK. It follows by [28, Proposition 4] and [9, Corollary1.2]
that
R=[M:M|=[(N+K): M]|=[N:M|+[K: M].
Also
0=[0:M]=[(NNK): M]=[N:M|N[K : M].
This implies that R =[N : M] & [K : M]. So
R(M) =[N :M]+[K:M|(+)N + K =[N : M](+)N + [K : M](+)K.
Finally
[N: MI(+)NN[K: M](+)K =[N : M]N[K : M](+) NN K = 0.

Hence R(M) = [N : M](+)N @ [K : M](+)K. So [N : M](+)N is a direct
summand in R(M). This finishes the proof of the theorem. |

The next result shows how projectivity and flatness of the ideal [N : M](+)N
transfer to IV and conversely.

Theorem 3. Let R be a ring, M an R-module and N a submodule of M.

(1) Let M be locally cyclic projective. If [N : M](+)M is a projective ideal of
R(M) then N is a projective submodule of M.

(2) Let M be finitely generated faithful multiplication. Then [N : M|(+)N is a
finitely generated projective ideal of R(M) if and only if N is a finitely generated
projective submodule of M.

(8) Let M be finitely generated faithful multiplication. Then [N : M](+)N is
a finitely generated flat ideal of R(M) if and only if N is a finitely generated flat
submodule of M.

Proof. (1) Assume [N : M](+)M is projective. Then F = [N : M](+)M & H for
some ideal H of R(M) and some free ideal F' of R(M). Hence F = [N : M](+)M +
Hand 0= [N : M|(+)M NH. Now F+0(+)M =[N : M|(+)M + H + 0(+)M.
Let F+0(+)M = I(+)M and H + 0(+)M = J(+)M for some ideals I and J
of R. Then I(+)M = [N : M|+ J(+)M, and hence I = [N : M]+ J. Since
F =[N : M](+)N + H is free (hence multiplication), we infer from [9, Theorem
2.1] that

O(+)M =0(+)M + ([N : M|(+)M N H) =
[N:M)(+) M NH+0(+)M =[N : M|NJ(+)M.

Hence 0 = [N : M]NJ, and hence I = [N : M] & J. To prove that [N : M]
is a projective ideal of R, we need to show that I is a free ideal of R. Since
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O(H)M C [N : M{(+)M C F, F = F + 0(+)M = I(+)M. Since F is free,
it follows by [3, Theorem 9] that I is free. Finally, since M is locally cyclic
projective, M is multiplication and projective, [8, Theorem 3.4] and [11, Theorem
1.3]. Hence N =[N : M]M = [N : M| ® M is a projective submodule of M.

(2) Let [N : M](4+)N be a finitely generated projective (hence multiplication)
ideal of R(M). It follows by Theorem 1 that N is a finitely generated multiplication
submodule of M. By [27, Theorem 2.1] and [4, Lemma 1] we have that

Re(+)eM = R(M)(e,0) = ann([N : M](+)N) = annN(+)(annN) M.

for some idempotent e of R. So Re = annN and by [28, Theorem 11] N is
finitely generated projective.  Conversely, let M be a finitely generated faith-
ful multiplication module. Since N is finitely generated projective, it follows by
[8, Proposition 3.7] that N is finitely generated multiplication. By Theorem 1,
[N : M](+)N is a finitely generated multiplication ideal of R(M). Also by 8,
Proposition 3.7], [N : M] is a finitely generated projective ideal of R. Hence
annN = ann[N : M] = Re for some idempotent e of R. As M is faithful multipli-
cation, we get from [4, Lemma 1] that

R(M)(e,0) = Re(+)eM = annN (+)(annN)M = ann([N : M|(+)N).

By [13, Theorem 3.7] and [4, Lemma 6], (e,0) is an idempotent element in R(M).
So [N : M](4+)N is a finitely generated projective ideal of R(M).

(3) Suppose [N : M](+)N is a finitely generated flat ideal of R(M). Then
[N : M)(+)N is a finitely generated multiplication ideal of R, and by Theorem
1, N is a finitely generated multiplication submodule of M. Moreover, ann([N :
M](4)N) is a pure ideal of R(M). Since M is faithful multiplication, ann([N :
M](4+)N) = annN(+)(annN)M. Tt follows by Theorem 2 that annN is a pure
ideal of R. So N is a flat submodule of M, [24, Theorem 4.1] and [5, Theorem 8§].
Conversely, suppose M is finitely generated faithful multiplication. Since N is flat,
N is multiplication by [8, Theorem 3.7] and by Theorem 1, [N : M](+)N is finitely
generated multiplication. Moreover, [N : M] is a finitely generated flat ideal of R
and hence ann N = ann[N : M] is a pure ideal of R. As M is faithful multiplication
ann([N : M](+)N) = annN(+)(annN)M and by Theorem 2 ann([N : M](+)N)
is a pure ideal of R(M). This finally shows that [N : M](+)N is a flat ideal of
R(M). O

Generalizing the case for ideals, an R-module M is called cancellation (resp.
weak cancellation) if IM = JM for some ideals I and J of R then I = J (resp.
I+annM = J+annM). Equivalentely [IM : M| =1I (vesp. [IM : M| = I+annM)
for every ideal I of R. An R-module M is cancellation if and only if M is faithful
weak cancellation. Examples of cancellation modules include free modules and
finitely generated faithful multiplication modules, [28, Corollary to Theorem 9]. A
submodule IV of an R-module M is called join principal if [(IN+K) : N| =I+[K :
N] for every ideal I of R and every submodule K of M, [12]. We now give a result
showing how the cancellation (resp. weak cancellation, join principal) properties
transfer from [N : M](4+)N to N.

Theorem 4. Let R be a ring, M finitely generated faithful multiplication R-module
and N a submodule of M.
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(1) If [N : M](+)N is a cancellation ideal of R(M) then N is a cancellation
submodule of M.

(2) If [N : M](+)N is a weak cancellation ideal of R(M) then N is a weak
cancellation submodule of M.

(8) If [N : M](+)N is a join principal ideal of R(M) then N is a join principal
submodule of M.

(4) N is a cancellation multiplication submodule of M if and only if [N :
M](4+)N is a cancellation multiplication ideal of R(M).

Proof. (1) Let I be an ideal of R. Then
I(+)M = [(I(+) M) ([N : M](+)N) gy [N : M] (+)N]
— [(TIN « M](+)N) trany [N M) (+)N]
=[I[N:M]:[N: M (+)M
Since M is finitely generated faithful multiplication module,
I=[I[N:M]:[N:M]=[IN:NJ,

and hence N is cancellation.
(2) Let I be an ideal of R. Then

(I +annN) (+)M = I(+)M + ann([N : M| (+)N)
= [I(+)M) ([N : M](+)N) :rary [N : M] (+)N]
=[I[N:M]:[N:M]](+)M.
Since M is finitely generated faithful multiplication,
I'+anuN =[I[N:M]:[N:M]]|=[IN:N],

and hence N is weak cancellation.
(3) Suppose [ is an ideal of R and K a submodule of M. Then

[(L(+)M)([N : M](+)N) + [K : M])(+)M gy [N+ M](+)N]
=I(+)M + [[K : M|(+)M :pary [N : M](+)N].

But
(Z(+H)M)([N : MI(+)N) + [K : M])(+)M gy [N 2 M](+)N]
= [I[N: M]+[K : M{(+)M gy [N+ M](+)N]
=[(I[N: M] + [K : M]) : [N : M](+)M,
and

I(+)M + [[K : MJ(#)M sy [N : MI(+)N]
=I(+)M+[[K:M]:[N:M(+)IM =1+][K:M]:[N:M](+)M.
Since M is finitely generated faithful multiplication,
[IN+K):N|=[(I[N:M]+[K:M]):[N: M
=1+[K:M]:[N:M]|=1+[K:N].
Hence N is join principal.

(4) Suppose [N : M](4+)N is multiplication and cancellation. It follows by The-
orem 1 and the first part of this theorem that N is multiplication and cancellation.
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For the converse, let H; and Hs be ideals of R(M) such that Hy([N : M](+)N) =
Hy([N : M](+)N). Hence

(Hy + 0(+)M)(IN : M](+)N) = Hy([N : M](+)N) + 0(+)N
= Hy([N : M](+)N) 4 0(+)N = (Hy + 0(+)M)([N : M](+)N).

Let H1+0(+)M = I(+)M and Ho+0(+)M = J(+)M for some ideals I and J of R.
It follows that I[N : M|(+)N = J[N : M|(+)N, and hence I[N : M] = J[N : M].
This implies that IN = JN. Since N is cancellation, we get that I = J and hence
Hy +0(+)M = Hy 4+ 0(4+)M. Next, since N is cancellation, N is faithful and by
Theorem 1, [N : M](+)N is faithful. Moreover, N is multiplication and hence
[N : M](+)N is multiplication. It follows by [15, Corollary 1.7] that

(HiNO(+)M)([N : M](+)N) = Hi ([N : M](+)N) N (0(+)M)([N : M](+)N)
= Hy([N : M](+)N)NO(+)N.
Since Hy ([N : M](+)N) = Hy([N : M](+)N), we infer that
(HiNO(+)M)([N : M](+)N) = (H2 N O(+)M)([N : M](+)N).

Let H; NO(+)M = 0(+)K and Ho N0(4+)M = 0(+)L for some submodules K and
L of M. It follows that

0(+)[N : M]K = (0(+)K)(N : M](+)N) = (0(+)L)([N : M](+)N) = 0(+)[N : M]L.

Hence [N : M]K = [N : M|L and hence [N : M][K : M] = [N : M][L : M]. As
N is cancellation and M finitely generated faithful multiplication, [N : M] is a
cancellation ideal of R and hence [K : M| = [L : M]. This gives that K = L, and
hence 0(+)K = 0(+)L. So HiNO(+)M = H>N0(+)M. Finally, using the modular
law, one gets that

Hy = (Hy +0(+)M)N Hy = (Hy + 0(+)M) N Hy
= Hy + (HiNO(+)M) = Hy + (H2 NO(+)M) = Hs.
Hence [N : M](+)N is a cancellation ideal of R(M). O

The dual notion of the concept of multiplication modules was introduced by
Ansari-Toroghy and Farshadifar in [14] and some properties of this class of modules
have been considered. An R-module M is said to be a comultiplication module if
for every submodule N of M there exists an ideal I of R such that N = [0 :ps I].
It is shown that M is a comultiplication module if and only if for each submodule
N of M, we have N = [0 :py annN|. It is clear that if M is a comultiplication
module then every submodule of M is comultiplication. An ideal I of a ring R is
comultiplication if I = ann(annl). We end this section by a result showing how
the comultiplication property transfers from I(+)N to its components I and N and
conversely.

Theorem 5. Let R be a ring, M faithful multiplication R-module, I an ideal of R
and N a submodule of M such that IM C N.

(1) 0(+)N is a comultiplication ideal of R(M) if and only if N is a comultipli-
cation submodule of M.

(2) I is a comultiplication ideal of R if and only if I(+)IM is a comultiplication
ideal of R(M).
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(3) I(+)N is a comultiplication ideal of R(M) if and only if I is a comultipli-
cation ideal of R and N is a comultiplication submodule of M.

(4) Assuming further that M is finitely generated. Then N is a comultiplication
submodule of M if and only if [N : M|(+)N is a comultiplication ideal of R(M).

Proof. (1) Suppose N is a comultiplication submodule of M. Since M is faithful
multiplication, we infer that N = [0 :py annN] = ann(annN)M. It follows that

[0 :g(ary ann(0(+)N)] = [0 :g(ar) annN (+) M]
= ann(annN) NannM (+)[0 :p;r annV]
= 0(+)ann(annN)M = 0(+)N.

Hence 0(4+)N is a comultiplication ideal of R(M). The statement is reversible.
(2) Let I be a comultiplication ideal R. It follows that I = ann(annl). Since
M is a faithful multiplication module, we obtain that

[0 :g(ary ann(I(+)IM)] = [0 :g(ar) annl(+)(annl)M|
= ann(ann/) Nann((ann/ M) (+)ann(annl ) M
= ann(ann/)(+)ann(annl )M = I(+)IM.

So I(+)IM is a comultiplication ideal of R(M). The statement is reversible.

(3) Suppose I(+)N is a comultiplication ideal of R(M). Then each of 0(4+)N
and I(4)IM is comultiplication. So by the first two parts of the theorem we have
that IV is a comultiplication submodule of M and I is a comultiplication ideal of
R. Conversely assume that N is a comultiplication submodule of M and I is a
comultiplication ideal of R. It follows that 0(+)N and I(4)IM are comultiplication
ideals of R(M). Now O(+)NNI(+)IM = 0(+)IM and

[0 :r(ary ann(0(+)IM)] = [0 : g(ary annd M (+) M ]
= [0 :r(ary annl () M] = ann(annl) N annM (4)[0 :ps annl]
= 0(+)ann(annl)M = 0(+)I M.

This shows that 0(+)N N I(+)IM is a comultiplication ideal of R(M), and by [15,
Theorem 2.15], I(+)N = 0(+)N + I(+)IM is a comultiplication ideal of R(M).
(4) Suppose N is a comultiplication submodule of M. Then N = [0 :j; annN] =
ann(annN)M. Since M is finitely generated faithful multiplication , it follows that
[N : M] = [ann(annN)M : M| = ann(annN) = ann(ann[N : M]). Hence [N : M]
is a comultiplication ideal of R. This gives that [N : M](+)N is a comultiplication
ideal of R(M). The converse follows immediately by part (3) of the theorem. O

3. Some Properties of the Ring R(M)

In this section we investigate how properties of R(M) are related to those of
R and M. A well-known property possessed by each commutative ring is that if
an ideal I of R is contained in the union of the prime ideals P; of R, then I is
contained in a particular P;, As a strong version of this result, we call a ring R to
be a p-ring if I, Ay As, ..., A, are ideals of R such that I C UA,, then I is contained
in some A;,[20]. As a generalization of this concept to the module case, we say
that an R-module M is a u-module if N, K1, ..., K,, are submodules of M such that
N C UK; then N C K, for some r. For porperties of p-rings, see [20, p. 87].
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Theorem 6. Let R be a ring and M an R-module. Then R(M) is a p-ring if and
only if R is a p-ring and M is a p-module.

Proof. Suppose R(M) is a p-ring. Let I, A;,..., A, be ideals of R such that
I CUA;. Then I(+)M C UA,(+)M = U(A;(+)M). Tt follows that I(+)M C
A (4+)M for some k and hence I C A. So R is a p-ring. Next, let N, Ky, ..., K,
be submodules of M such that N C UK;. Then 0(+)N C 0(+) U K; = U0(+) K.
Hence there exists m such that 0(+)N C 0(+)K,, and hence N C K,,,, so M is
a p-module. Conversely let H, Hy, ..., H,, be ideals of R(M) such that H C UH,.
Let H. = HN H;. Then H = UH]. To show that R(M) is a p-ring, it it enough
to show that H = H/, for some n. Now

H+0(+)M = (UH]) + 0(+)M = U(H, 4+ 0(+)M).

Let H +0(+)M = I(+)M and H] + 0(+)M = A;(+)M for some ideals I and A;
of R. Then I(+)M = UA;(+)M and hence I = UA;. So there exists k such that
I C Ay CUA; =1. Hence I = A and this gives that

H+0(+)M = I(+)M = Ap(+)M = H, + 0(+)M.

On the other hand HNO(+)M = UH;NO(+)M = U(H;NO(+)M). Let HNO(+)M =
0(+)N and H/NO(+)M = 0(+)K; for some submodules N and K; of M. Tt follows
that 0(+)N = U0(+)K; = 0(+) UK;. Hence N = UK;. There exists [ such that
N C K; and this gives that N C K; CUK; = N. So N = K; and hence
HNO(+)M =0(+)N =0(+)K; = H NO(+)M.

This implies that

H+0(+)M = Hj, + 0(+)M C (H,, + H)) + 0(+)M C H + 0(+)M,
so that H 4+ 0(+)M = (H;, + H]) + 0(+)M. Similarly,

HNO(+)M = H;N0(+)M C (H;, + H))N0(+)M € HNO(+)M,
and hence HNO(+)M = (H},+H])N0(+)M. Using the modular law, one obtains
that
H=(H+0(+)M)NH = (H,+ H +0(+)M)NH = (H, + H)) + (HNO0(+)M)

= (Hj, + Hy) + ((Hy + Hy) N 0(+)M) = Hj, + Hj,

and this shows that R(M) is a p-ring. O

Matsuda defines two properties for a ring R : R satisfies Property (U) if each
regular ideal of R is a union of regular pr1n01pal ideals of R, and R satisfies Property
(FU) if Reg(I) C U J; implies I C U J; for each finite family of regular ideals

i=1
1,J1,...,Jn of R, where Reg(I) denotes the set of regular elements of I. He shows

that Property (U) implies Property (FU) but not conversely, see [20, p. 195].
The next Theorem shows how Properties (U) and (FU) transfer from R(M) to
R and conversely.

Theorem 7. Let R be a ring and M an R-module.
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(1) Let M be faithful multiplication. If R(M) satisfies Property (U) then R
satisifes Property (U). The converse is true if we assume further that M is divis-
ible.

(2) Let M be faithful multiplication. If R(M) satisfies Property (FU) then
R satisifes Property (FU). The converse is true if we assume further that M is
divisible.

Proof. (1) Suppose R(M) satisfies Property (U). Let I be a regular ideal of R.
Since M is faithful multiplication, it follows by [4, Lemma 6] that I(4+)M is a
regular ideal of R(M). Hence I(+)M = UR(M)(aq, Ma), where R(M)(aq, mq) is
a regular principal ideal of R(M). It follows that

I(+)M = UR(M)(aa,ma) C U(Rag(+)Rmea+aaM) = URao(+)U(Rma +aa M),

and hence I C URa, C I. So I = URa,. Finally, since (aq, m,) is regular,
aq is regular and this shows that R satisfies Property (U). Conversely, assume R
satisfies Property(U). Let H be a regular ideal of R(M). Since M is divisible, [13
Theorem 3.9] shows that H is homogeneous, and has the form I(4+)M for some
ideal I of R such that INS # ¢ where S = R— (Z(R)U Z(M)), Z(R) is the set of
zero divisors of R and Z (M) the set of zero divisors on M. Note that Z(M) = {t
€ R :tm = 0 for some nonzero m € M} and if M is faithful multiplication, hence
torsion free, [17, Lemma 4.1], we get that Z(M)C Z(R)). Since H = I(+)M is
regular, it follows that [ is a regular ideal of R. Let a € I be regular. Since M
is divisble, M = aM C IM C M, so that M = IM and hence H = I(+)IM. Let
I = URa,, for some regular principal ideals Ra, of R. It follows that

H=I1(+)IM = URan(+) UaaM = URay(+)aoM = UR(M)(aq,0).

Since a,, is regular and M faithful multiplication, we infer from [4, Lemma 6] that
(@q,0) is regular and this shows that R(M) satisfies Property (U).

(2) Suppose R(M) satisfies Property (FU). Let I be a regular ideal of R and
{9} = Reg(I). Since M is faithful multiplication, I(+)M is a regular ideal of
R(M), [4, Lemma 6], and {(ga,ma)} are the regular elements of I(+)M, where
me € M. Forif (b,k) is any regular element of I(+ )M then b is a regular element

of I and b € {go}. Assume now {g,} = Reg(l) C U Ji, where J; are regular ideals
i=1

of R. Hence {(g,,mqa)} = Reg(I(+)M) C U Ji(+)M, where J;(+)M are regular
=1

ideals of R(M), [4, Lemma 6}. Since R(M) satisfies Property (FU), I(+)M C

U Ji(+)M, and hence I C U Ji.  So R satisifes Property (FU). Conversely,

assume R satisfies Property (FU) Let H be a regular ideal of R(M). Since M is
divisible, H = I(+)IM for some regular ideal I of R such that I NS # ¢, where
S=R-Z(R). Assume {(9a,na)} be the set of regular elements of I(+)IM such

that {(ga,na)} C U H; for some regular ideals H; of R. Again, since M is divisible,
= Ji(+) ;M for some regular ideals J; or R. Since (ga, na) is regular in R(M),
Jo is regular in R. Hence {g,} = Reg(I), and hence {g} C U Ji. As R satisfies

i=1
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Property (FU), I C U J; and hence H = I(+)IM C U Ji(+)J;M = |J H;. Hence
i=1 i=1 i1

R(M) satisfies Property (FU). O

A ring R is called Laskerian if every ideal of R is a finite intersection of primary
ideals of R and it is called strongly Laskerian if R is Laskerian and for every prime
ideal P of R, there exists a positive integer n such that (v P)* C P. R is said
to be primary if R contains at most one proper prime ideal of R. On the other
hand, a ring R is called an RM-ring (restricted minimum condition) if R is one
dimensional Noetherian ring. For details about Laskerian, primary and RM-rings,
see [19]. The next result shows how the Laskerian, primary and RM-properties
transfer from R(M) to R and conversely.

Proposition 8. Let R be a ring and M an R-module.

(1) If R(M) is strongly Laskerian then R is strongly Laskerian. The converse
is true if every ideal of R(M) contains 0(+)M.

(2) R(M) is a primary ring if and only if R is.

(8) If R(M) is an RM-ring then so too is R and the converse in true if M s
finitely generated.

Proof. (1) Assume R(M) is strongly Laskerian. Let I be an ideal of R. Then
I(+)M is an ideal of R(M) and hence I(+)M = ﬂ H; for some primary ideals H;

of R(M). Since 0(+)M C I(+)M C H; for all i, H = J;(+)M for some ideals
Ji of R. Since J;(+)M is primary, we obtain from [20 Theorem 25.2] that J; is

primary. Also I(+)M = ﬂ Ji(+)M gives that I = ﬂ J; and this shows that R is
=1

Laskerian. Now, let P be a prime ideal of R. Then P(+)M is a prime ideal of
R(M). There exists a positive integer n such that (v/P(+)M)™ C P(+)M. Tt
follows by [13, Theorem 3.2] that /P(+)M = v/P(+)M and hence

(VP)"(+)(VP)* M = (VP(+)M)" C P(+)M.

This shows that (v/P)® C P and hence R is strongly Laskerian. Conversely, let
H be an ideal of R(M). Since H contains 0(+)M, H = H+0(+)M = I(+)M for
some ideal I of R. But R is Laskerian. Thus I = () J; for some primary ideals

i=1

J; of R. Hence H = ﬂJ( )M. By [20, Theorem 25.2] , J;(+)M is primary

ideals of R and hence R( ) is Laskerian. Now let P(+)M be a prime ideal of
R(M). Then P is a prime ideal of R. There exists a positive integer n such that
(vVP)* C P. Hence

P(+)M)" = (VP(+)M)" = (VP)"(+)(VP)""'M C P(+)M,

and this shows that R(M) is strongly Laskerian.

(2) This follows from the fact that P is a proper prime ideal of R if and only if
P(+)M is a proper prime ideal of R(M).

(3) Suppose R(M) is an RM-ring Then R(M) is one dimensional ring and hence
R is one dimensional ring. For if 0 # P is a prime ideal of R then 0 # P(4+)M



144 MAJID M. ALI

is a prime ideal of R(M). Hence P(+)M is a maximal ideal of R(M) and this
implies that P is a maximal ideal of R. Since R(M) is Noetherian, it follows by
[2, Proposition 10] and [13, Theorem 4.8] that R is Noetherian and hence R is
an RM-ring. Conversely, let R be an RM-ring. Since R is Noetherian and M
finitely generated, R(M) is Noetherian, [13, Theorem 4.8]. The fact that R(M) is
an RM-ring follows from the fact that 0 # P(4+)M is a prime (maximal) ideal of
R(M) if and only if 0 # P is a prime (maximal) ideal of R. O

A ring R is called semisimple if its Jacobson radical is zero. R is called a Hilbert
ring if for each prime ideal P of R, R/P has a zero Jacobson radical. Equivalently,
R is Hilbert if every proper prime ideal of R is the intersection of maximal ideals
of R. Examples of Hilbert rings include principal ideal domains with finitely
many maximal ideals and zero-dimensional rings with identity. Finally, a ring R
is called a G-ring if it has a nonzero pesudoradical (the pesudoradical of a ring R
is the intersection of nonzero prime ideals of R). For properties of semisimple,
Hilbert and G-rings, see [19]. The next result shows how semisimple, Hilbert and
G-properties of R(M) are related to those of R.

Proposition 9. Let R be a ring and M an R-module.

(1) If R(M) is semisimple, then too is R and in this case R(M) = R.
(2) R is a Hilbert ring if and only if R(M) is.
(8) If R is a G-ring then so too is R(M).

Proof. (1) Let R(M) be semisimple. Then NP;(+)M = 0 where P;(+)M are the
maximal ideals of R(M). Tt follows that NP; = 0 and M = 0. So R & R(M) is
semisimple.

(2) Let R(M) be Hilbert. Let P be a proper ideal. Then P(+)M is a proper
prime ideal of R(M). It follows that R(+)M/P(+)M = R/P has zero Jacobson
radical. So R is Hilbert. The statement is reversible. Equivalently, if R(M)
is Hilbert then for each proper prime ideal P of R (and hence each proper prime
ideal P(+)M of R(M)), P(+)M = () wu(+)M. Therefore P = [ g,

o maximal p maximal
and hence R is Hilbert. The converse is now obvious.

(3) Let R be a G-ring. Then () P # 0, where the intersection runs over nonzero
0£P
prime ideals of R. Since for each 0 # P, where P is a prime ideal of R, 0 # P(+)M
is a prime ideal of R(M). Hence (| P(+)M # 0, and this gives that R(M)
0#P(+)M
is a G-ring. O

According to [19, p. 32] a ring R is called a u-ring if for every proper ideal I of
R, VI #R.

Proposition 10. Let R be a ring and M an R-module. Then R(M) is a u-ring
if and only if R 1is.

Proof. Let R(M) be a u-ring. Let I be a proper ideal of R. Then I(+)M is
a proper ideal of R(M), and hence VI(+)M = \/I(+)M # R(M), [13, Theorem

3.2]. Hence VI # R and R is a u-ring. Conversely, assume that R is a u-ring.
Let H be a proper ideal of R(M). Since 0 = (0(+)M)? C H, we obtain that



MULTIPLICATION MODULES AND HOMOGENEOUS IDEALIZATION IV 145

0(+)M C vH and hence vVH = I(4+)M for some ideal I of R. So
VH = \|VH = \JT(+)M = VI(+)M # R(M),

and this shows that R(M) is a u-ring. O

A ring R is called a multiplication ring if every ideal of R is multiplication, [21].
It is called a herditary ring if every ideal of R is projective, [18]. A ring R is said
to be flat if every finitely generated (and hence every ideal of R) is flat. It is called
von Neumann regular ring if every ideal of R is pure. For properties of flat rings
and von Neumann regular rings, see [18]. Finally a ring R is called a Priifer ring
if every finitely generated regular ideal of R is invertible, [20] and [21]. We close
our work by giving a result showing the important role of homogeneous ideals to
study some properties of R(M).

Theorem 11. Let R be a ring and M an R-module.

(1) If every homogeneous ideal of R(M) is finitely generated (resp. multipli-
cation) then R(M) is a Noetherian (resp. multiplication) ring, and hence R is
Noetherian (resp. multiplication).

(2) If every homogeneous ideal of R(M) is projective (resp. finitely generated
flat, pure) then R(M) = R is a herditary (resp. flat, von Neumann regular) ring.

(8) If every homogeneous ideal of R(M) is principal then R(M) is a PIR, and
hence R is a PIR.

(4) Let M be divisible. If every finitely generated reqular homogeneous ideal of
R(M) is invertible then R(M) is a Prifer ring, and hence R is a Prifer ring.

Proof. (1) Let H be an ideal of R(M). Then H + 0(+)M and H N0(+)M are
homogeneous ideals of R(M). So H + 0(+)M and H NO(+)M are finitely gen-
erated (resp. multiplication). It follows by [22, Ex. 23, p. 13| and [28, Theorem
8] that H is a finitely generated (resp. multiplication) ideal of R(M). Hence
R(M) is Noetherian (resp. multiplication). Next, 0(+)M is a finitely generated
(resp. multiplication) ideal of R(M). It follows by [12, Theorem 3.1] that M is
finitely generated (resp. multiplication). The fact that R is Noetherian (resp.
multiplication) follows by [13, Theorem 4.8] and [4, Theorem 11].

(2) Let H be an ideal of R(M). Then H +0(+)M and H N0(+)M are homoge-
neous ideals of R(M). Assume HNO(+)M = 0(+)N for some submodule N of M.
It is shown, [4, Proposition 4] that if 0(+)N is projective (resp. finitely generated
flat, pure) then N = 0. This implies that H N0(+)M = 0, and hence H ¢ 0(+)M
is projective (resp. finitely generated flat, pure). It follows that H is projective
(resp. finitely generated flat, pure), and hence R(M) is a herditary (resp. flat, von
Neumann regular) ring. Next, since 0(4)M is projective (resp. finitely generated
flat, pure), M = 0 and hence R(M) = R.

(3) Suppose that H is an ideal of R(M). Then H + 0(+)M and H N O(+)M
are principal ideals of R(M) since they are homogeneous. Since H + 0(+)M is
principal (hence multiplication), we infer from [9, Corollary 2.2] that

HO(+)M) = (H +0(+)M)(HNO(+)M),

and hence H(0(+)M) is principal. But 0(4+)M is homogeneous, and hence is
principal. So H is principal and hence R(M) is PIR. The fact that R is a PIR
follows from [4, Theorem 11].
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(4) Let H be a finitely generated regular ideal of R(M). Since M is divisible, it
follows by [13, Theorem 3.9] that H is homogeneous. So H is invertible and hence
R(M) is a Priifer ring. It follows by [3, Theorem 15] that R is a Priifer ring. O
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