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Abstract. We compute the Fock kernel for the one-mode (i.e. restricted to a
single interval) and current (i.e. extended to simple functions) Galilei algebra.
We also compute the characteristic function of a family of random variables
naturally associated with the Galilei algebra.

1. The Galilei and RHPWN Lie Algebras

Definition 1. The (one-mode) Galilei algebra G is the Lie algebra with generators
&1,8,€3,&4 and commutation relations

[€4,&1] = & ; [€4,&2] = &s.

All other commutators among generators are equal to zero.

If at and a are a Boson pair, i.e.

[a,a']=1; (a)* =al
then the Lie algebra generated by {1,p, ¢, ¢*}, where

q:i(a—aT) ; pzaT+a

is a Boson form of G since

[a.p) =5 [¢°,p) = 2iq; [¢>.q] = 0
and, in the notation of Definition 1, we may take

1 .
51:5‘12;52:*ZQQ€3:*1§£4ZP-

Notice that

@ =a; ()" =d; )" =p
In order to consider the smeared field form of {1,p,q,q?}, i.e. the current Galilei
algebra, we recall some basic facts about the x-Lie algebra of the Renormalized
Higher Powers of White Noise (see [3]-[7]).
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The quantum white noise functionals a (creation density) and a; (annihilation
density) satisfy the Boson commutation relations
[atval] =06(t—s); [aiv ai] = las, as] =0,

where ¢, s € R and § is the Dirac delta function, as well as the duality relation

(as)* = al.

For a test function f and n,k € {0,1,2,...}, the sesquilinear forms

By (/) = / f(t)af" ak dt,

where dt denotes integration with respect to Lebesgue measure p, with involution
* ki F
(Br(f)" = Bu(f)

were defined in [9]. In [3] and [4] we introduced the convolution type renormaliza-
tion
Slt—s)=6(s)6(t—s) ; 1=2,3,... (1.1)

of the higher powers of the Dirac delta function and, by restricting to test functions
f(t) such that f(0) = 0, we obtained the Renormalized Higher Powers of White
Noise (RHPW N) s—Lie algebra commutation relations

[BE(f), BK(9)] = (kN — K n) BiTRZ1(f 9).

2. The RHPWN Form of the Current Galilei Algebra

Lemma 1. Let aI and ay be as in Section 1. Define

g =i(a—af); p=af +a.
Then

[, ps] = i6(t —s) 5 [a7,ps] =2iqu 0(t — s)

[%7‘]5] = [ptvps] = [qgaqg] = [Qt27QS] =0

and

() =as; (@) =a2 5 (ps)" =ps.
Proof. The proof follows easily from the commutation and duality relations satis-

fied by the quantum white noise functionals aI and a;.
O
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Proposition 1. For step functions f,g vanishing at zero let

)+ By (f)
(f) = 2Bi(f) - B3(f) — Bi(f)
Then
[a(f),p(g)] = 2i i fgdt; [(f).plg)] =4iq(fg)
[a(f),q(9)] = [p(£),p(9)] = [¢*(f), ¢ (9)] = [¢*(f), a(g)] = 0
and

(@) =a(f) ;s (@) =(f); ()" =p(f)
Proof. For t,s € R

¢ qs 0(t — s) = —(ar — af ) (as — af) (¢ — 5)
:—aiald(t—s)+a1a55(t—s)+atal(5(t—s)—ata55(t—s)
= —a aTcStfs +aTa55t75 +aTat5 t—8)+02(t—s)—arasd(t —s
t t

Taking [, [p f(s)...dsdt of both sides and using the renormalization (1.1) we have
that

//f )62(t — s)dsdt = //f §(t—s)dsdt=f(0)=0
and so

N = [ 10 at=2B1() - B - B
For p(f) and ¢(f) we directly find that

/f qudt = /f i(a —af)dt =i (BY(f) — BL()))

and

=/f@mﬁ:/ﬂﬂ@+dwhimﬂ+%ﬁ)
R R

Moreover

[a(f),p(9)] = i[BI(f) — Bs(f), BL(9) + By(g)]
i[BY(f): Bo(g)] —i

24 [BY(f), By (9)]
= 2@Bo (fg)

= 2z/fgdt
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and
[*(f),p(9)] = [2Bi(f) - B3(f) = B3(f), BY(9) + By (9)]
= 2[Bi(f), B(9)] + 2[Bi(f), By (9)] — [B3(f), By (9) — [B3(f), BY(9)
= —2B)(f9)+2Bs(fg9)—2BY(f9)+2Bs(f9)
= 4 (By(fg9)—-Bi(f9)
= 4iq(fg).
Finally
()" = @B -BA) - B()
= 2B{(f) - Bj(f) — B3(f)
= ()

and, similarly,

Definition 2. The current Galilei algebra is the x—Lie algebra generated by

{a(f),p(f)a®(f): 15 f € So}
where Sy is the set of step functions vanishing at zero.
3. The Fock Kernel for the One-Mode Galilei Algebra
Definition 3. Let I C R with u(I) > 0 and a,b,c € C. The exponential vector
Yap,c(I) is defined by
Yape(I) = e?9 X1 gbalxr) gep(xn) @

0@ (2B1 (x1)=B3(x1)= B3 (x1)) i b (B} (x1)~Bg(x1)) pe (B (x1)+Bs(x1)) ¢

where the Fock vacuum vector ® is such that

I
B @ =B e =0: Bl e="" o

and x1 denotes the characteristic function of the set I.

Notice that

0 0

q2(XI) @/’a,b,C(I) = 9a Yab,c = De |6:0 ¢a+e,b,6(1)
0 0

CI(XI) @/’a,b,C(I) = b Yab,c = De |e:0 Zba’lﬂre,C(I)
0 0

P(XI) @/’a,b,C(I) = Je Yab,c = De |6:0 wa,b,chE(I)
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Lemma 2. For |a| <1

n(I)

(1—a) BN $ = (1—0a) "= &.
Proof.

(1—a) BN g = " m0-0)Bik) g

_ Z (—ln(l—a))n (B%(XI))TL P

n!
n=0

|
(]

= n!
= e In(1—a) % P
- 1-a %o

o~ (=In(1—a)" (u(QI))"q)
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Lemma 3. (i) Ifx, d, N and h satisfy the oscillator algebra commutation relations

[d,z] =h; [d,h] =[x,h]=0; [Nyz] =z ; [d,N]=d

then for all a,b,t,s € C

etdea:v _ 6am6tdeath

2
es (z4+ad+bh) 5T esad e(s b+s“a/2)h

and
eaNebw — eeabxeaN.
(i) If A, R and p satisfy the sl(2) algebra commutation relations
[ARl=p; [p,RI=2R; [A p]=2A
then
etB et R = ermar B (1 — at)fpeﬁA

and

a a
e A A € B T

(3.1)

(3.7)

Proof. (3.2), (3.3), (3.4) and (3.6) are, respectively, Propositions 2.2.1, 4.1.1 2.4.2
(for N = 2 D) and 3.3.2 of [10]. For (3.7) we notice that by Proposition 4.3.1 of

[10], for all A,B,s € C
es (R+Ap+BA) _ 6V(s) R eH(s) p eU(s) A

where
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V'(s) = 14+2AV(s)+ BV(s)*; V(0) =0 (Riccati ODE)
H'(s) = A+BV(s); H(0)=0
U'(s)y = Be*f® ; y)=o.

For A = —1 and B = 1 we obtain

V'(s) = 1-2V(s)+V(s)*; V(0)=0
H'(s) = —-1+V(s); H(0)=0
Us) = 282 5 U0)=0
which imply that
V($)=U(s) = 1 ¢ Hls) = ~In(s +1)
i.e.
e’ (R—p+A) _ 6-"‘51 R e In(s+1) p Eﬁ A
from which (3.7) follows by letting s = —a.
O
Corollary 1. For I CR and a,b,A,t,T,s € C
ot BYXD) o Ba(xr) — a By(xr) gt BY(x1) gat u(D)
e (Bo(xr)+a B (x1)+b u(I)) _ o5 By(x1) gsa BY(xr) g(sb+s®a/2) u(l)
€% B (x1) et Bj(x1) _ e b Bg(x1) ed Bi(x1) (3.8)

T Ba(xn) A BI(X1) = er=itar Bi(u) (1 — 4 AT)~BiGxr) er=dar B2 (xr)

A @BIOx)=Bi(xn)=B3(x1)) = A=t Bi(x1) (1 — 2 4)~Bi(xr) gy BI(x),
In particular (3.8) implies that, for |a| < 1,
(1— a)*B%(XI) eb Bo(xr) — o1 Bo(xr) (1— a)—Bi(XI)

Proof. The proof follows from Lemma 3 by noticing that for a fixed I C R, the
operators z, D, N, h defined by Bi(xs) = =, BY(x;) = D and Bi(x;) = N and
u(I)1 = h, satisfy the oscillator algebra commutation relations (3.1) while the
operators R, A, p defined by B2(xr) = 2R, B3(x1) = 2A and Bj(xs) = p, satisfy
the sl(2) algebra commutation relations (3.5) and by letting ¢ = A and £ = T in
(3.6) and (3.7).

]

Lemma 4. For I CR and a,be C

0B (x1) b By(x1) § — gab® u(l) b By(x1) .
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Proof. In [1] we showed that

BY(x,) " P00 @ = 7 (1) PO @,
Iterating we find that, for n > 0,

(BY(x,))" e Bo0D) @ = (b2 (1)) P Po0xn) .

Therefore

@B (x1) b Bo(x1) ¢ — % (BY(x,)" et Bo(xp) @

an
n!

(2 ()" P @

n=0
n=0
—  eab?ull) b By(xi) ¢

Lemma 5. For all a,b,c € C and I C R with u(I) >0 and |a| < }

n(l)

Yape(l) = (1—2a)” 2 exp (

4+ —4ac®+2ibce
I
)

a 9 c—ib _;
P
exp (2a — Bo(Xl)) exp (1 5, Bo(Xz)>
Proof. For brevity, in what follows, we drop the use of x,. Using Lemmas 2 and
4, Corollary 1, and the fact that, for all A € C, e* Bl § = ¢* B2 § = ® we have

o0 (2B (x1)=B3(x1)=B3 (x1)) ,ib (B} (x1)=B5(x1)) p¢ (B (x1)+Bs(x1))

wa,b,c(I)

b24c2 a 2 1 a 0 . 1 0 1 0
— e = n(I) eTaT B (1 _ 2(1)731 eTa=1 B, 67“730 eszl €CB0 ecB1 o

b2y | o a . .
G<T+zbc) #I) gz BY (1- 2a)73} ezaT B2 o—ib By e Bg LibBY g

242 a a X
= e( 2 Hbc)“(l)eQaleg(172a)*3}6m3360*2b33@

b2ac? |y a(emi b)2>
+ I a )
e( 2 Hiber e )emBg (1—26!)73i =0 B @

b24c2—4ac?42ibe 2 —ib pl 1
= e SR L"‘(I)ezaafl By efféaB0(1_2a)_B1@
I 2.2 4ac2i0i »
= (1 — 2@)7”(2) eb te a2l (1) eQaa—l B3 (xr) ef_éf’,, Bg(xr) P.

]

Proposition 2. (i) Let I C R with p(I) > 0 and a,b,c, A, B,C € C with |a| < 1
and |A] < % . Then, the Galilei Fock space inner product of the exponential vectors
Ya,c(I) and Yqpc(I) is given by
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<¢A,B,C(I)7wa,b,c(-[)>
- _p(D Ty — 1) aA R
= (1-2a)~"F (1—24)" (1—74(”_1)(2A_1))
24c?—4ac’ ibc B24+C2_4AC%2—2iBC
eXp(b 4c 24_4a+2 b MI)) exp<B +C ;1_144% 2 BC’H(I)>
a(C—iB)?

(¢+ib) (C—i B) A (c+ib)2
I a— = z+4 za-1) A=D1 T a—1)2 =
exp (;L( ) Ga—1»)(2A-1) (Za-1)( ) T 2a-1H2(2A-1)

A
4 47(25,—1%(2A—1)

(i) If INJ = @ then

<wA,B,C(I)a wa,b,c(J» =0

Proof. To prove (i), as in Lemma 5, we drop the use of x,. By Lemma 5

(Ya,B,crVab,e)

I — 1) b24c2—4ac42ibe B24C2_4AC2%2-2iBC
:(1—2(1)_“(2) (]_—QA)_“(z)e 2-da u(l) o Ty aa— p(I)

2 —ib 1 A 2 C—iB 1
<672aa71 By eifféa By D, e74-1 By 671*211“ By (I)>.

Using the Feinsilver-Kocik-Schott Fock kernel for the Schrodinger algebra (see [12]),
in [2] we showed that for all a,b, A, B € C, with B} (x;)® = @ o,

w()

aA\ 2 (1) aB244b B+b2 A
(253 P BY §, A B BB 3 — 124 R e
4
Therefore
a 2 —ib 1 A 2 C—iB 1
(eTa=T By o120 Bo @ e7d-1 B0 ¢ T=2x Bo o)
_p@ a(C—iB)? (é¢+ib) (C—i B) A (e+iB)2
_ (1 _ #) 2 exp p(I) Za-1(Ea-1n2 HieeheantT e n2eain
= — — A
1(2a-1)(2A-1) 4 -G EaD
and so

(Wa.5.0oYape) = (1—2a)~ 55" (1= 2 A)~"%

2, 2 2 . B2 A2 4 AA2 _o0s B A
exp(b +c 24_a4ca+21bcu(1')> exp(B +C%2-4AC%-—2iBC

D)

_p@ a(C—iB)? 14 (é4+ib) (C—i B) | A (e+ib)?
(1 - aA 2 exp nw(I) Ca—1)@2aA-1)2 (2a-—1)(2A-1) T 2a-12 (2A-1)
1(2a—1) (24-1)

a A
4 d-maonHEa-D

The proof of (ii) follows from the fact that BY and BY commute with B and B
on disjoint intervals and also BY ® = BY & = 0.

O
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4. The Fock Kernel for the Current Galilei Algebra

Using the commutativity of the Galilei algebra generators on disjoint sets, we may
extend the kernel (3.9) to exponential vectors of the form

U(f,g,h) = eI et er(h)
_ H % @ (x;,) olia0xr) peip(xy) g

- H Yay e (1)

where f =3, aixr,, g=>; bixy, and h =), ¢;xy, with I; N I; = @ for i # j,
are simple functions with |f| < % and, using Proposition 2 (ii) we obtain

<lI/(f17gl7 h1)7 \IJ(fQ,g% h2)> = Hz <'(/}a1i7b1i701i(li)? Vazi bai,czi (IZ»
—ep (<3 S (-2 (- 20) (1 b)) an)

exp (f (gf+h?—4f1 h2+21ig1 hy + gs+h3—4f2h3—2ig> ﬁa) du)

2—4 f1 2—4 fy
J1 (hg—igp)? +4 (51+_i§1)(’12*i92)+ f2 (hi+igp)?
ex 1 f (2f1-1) (2fp-1)2 (2f1-1) (2 f2—-1) 2f1-1D2(2fa—1) d
Pl C__hif K-
(2f1-1)(2f2-1)

5. Random Variables Associated with the Galilei Algebra

Definition 4. Letal and a be a Boson pair as in Section 1. The Boson-Schrédinger
algebra is the Lie algebra generated by {1,a,a’,a?, aTz,aT a} with commutation re-
lations given in the table (see also [12])

a af a2 aJr2 ata 1

a 0 1 0 2af a 0

af -1 0 —2a 0 —at 0
a? 0 2a 0 2+4ata 242 0O
> | —24F 0 —2—-4ala 0 —24t* 0
ata —a al —2a? 2aT2 0 0
1 0 0 0 0 0 0

Lemma 6. Let a' and a be a Boson pair. Let also L € R and M,N € C. Then
forall s e R

) 2 ' 2
RE (L a’+La"*—2Lat a—L+Ma+N aT) P = ewl(s) af ewg(s) at ew3(s) o
where

Ls
wis) = 57
iL(M+N)s>+ Ns
wa(s) = OLs—i
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and

+ s*—21L8°)— S n(2¢sLs+
M+ N)?(L?s*—2iLs3 3MN2_1 2¢L 1
6(2iLs+1) 2 '

ws(s) =

Proof. The proof can be found in [2].
]

Corollary 2. Let I C R with u(I) > 0. Let also « € R and u,v € C. Then for all
seR

ets (e BY(x1)+a Bi(x1)—2 a B (x1)+u BY (x1)+v By (xr)) )

— ew1(s) By (x1) gw2(s) By (x1) qws(s)

where
as
wi(s) = 2as —1
ia(utv)s®+uvs
wafs) = “HEEUE TR T
and

(u+v)?(a?s* —2ias?) — 3uvs?

In(2ias+1)
6(2ias+1) '

2

u(l) —

ws(s) =

Proof. Using the correspondence,

Bi(x1) = /() ats BY(xr) = /u(l)a; Bd(xr) = p(I)
2
Bi(x1) =a'"; BY(x1) = a®; B (x1) =ala+ 3

we see that

aB3(x1) +aBi(xr) —2aBi(x1) +u B} (x1) +v By (x1)
:La2—i—LaTz—2LaTa—L—|—Ma—|—NaJr

where L = a, M = u+/u(I), N = vy/u(I) and the proof follows from Lemma
6. O

Proposition 3. (Characteristic Function) Let \; € R; i =1,2,3. In the notation
of Corollary 2, and in view of Proposition 1, consider the random variable (i.e.
self-adjoint operator on the Galilei Fock space)

X =M ¢*(xr) + A2 q(xz) + Asp(xr)
=aBy(x1) +aBj(x1) —2a B (xr) +u B (x1) +v Bj(x1)
where o = — A1, u = A3+ 19X, v =XA3 —iAs.

Then, for all s € R, the (vacuum) characteristic function of the random variable
X is given by
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. _ AXN2 (N2 st +2i M s3) — A2 4+ )\2) g2
(@, X @) = (1-2i )\ 5) 1/2exp< s 2ihs) 2305 F ) s ,u([)).

6(1—2i)N )
Proof. Using Corollary 2 and the fact that for all z € C

eZBg(X,) D= ezB?(XI)(I) =

we have

<<I), eisX <I)> — <(I), ew1(s) Bg(xl) eulg(s) Bé(XI) ewa(s) (I)>
= <eu’12(s)B§’(x1) e®1(s) BY(x;) <I),e“’3(s) o)
= (B, e"2() )
= () (D, P)

ews(s)

Using the formula for ws(s) provided in Corollary 2 we find that

<q)76isX @>

u 2(a?s*—2ias®)—3uvs?
exp(( +v) (ag(giisil)) Suvs N(I))

_ (1 o 21)\1 8)71/2 eXp (4/\§ ()\% S4+2i)\1 53)73 (>\§+/\§)S2 /L(I)) )

=(2ias+1)""?

6(1—27 )1 5)
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