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Abstract. Max-plus algebras and more general semirings have many useful

applications and have been actively investigated. On the other hand, structural

matrix rings are also well known and have been considered by many authors.
The main theorem of this article completely describes all optimal ideals in the

more general structural matrix semirings. Originally, our investigation of these

ideals was motivated by applications in data mining for the design of centroid-
based classification systems, as well as for the design of multiple classification

systems combining several individual classifiers.

1. Introduction

Semirings have been actively investigated, because they are important in math-
ematics and have many useful applications, see [10, 11]. As a special example of a
semiring, let us only mention the max-plus algebra, which plays crucial roles in the
study of discrete event systems, see [3, 10]. On the other hand, structural matrix
rings have also been considered in the literature and many interesting results have
been obtained (see, for example, [5, 8, 12, 22, 23]).

The present article is devoted to the investigation of the more general structural
matrix semirings. Our main theorem gives a complete description of all ideals with
largest weights in structural matrix semirings. Originally our investigation of these
ideals was motivated by their applications to the design of classification systems,
or classifiers, considered in data mining. We refer to the monograph [24] for more
information on the design of classifiers and their roles in data mining. More detailed
explanations are also given in Section 2 below. In particular, special sets satisfying
certain optimal properties are required for the design of centroid-based classifiers,
as well as for the design of multiple classifiers combining several individual or initial
classifiers, see [19, 20].

The paper is organised as follows. An overview of applications of matrix con-
structions for classification of data is given in Section 2 as motivation for this re-
search. The main result of this paper is Theorem 1 in Section 3, which completely
describes all ideals with largest weights in structural matrix semirings. A complete
proof is given in Section 4.
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2. Motivation and Preliminaries

This section contains a concise review of the main definitions required for our
new theorem. We use standard notions and terminology and refer the readers to
[5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 21, 24, 26] for more detailed
discussions of these concepts and examples of recent results.

The design of efficient classifiers is very important in data mining, see [24].
Max-plus algebras, more general semirings, and matrix constructions over them
can be used in order to generate convenient sets of centroids for centroid-based
classifiers and to design combined multiple classifiers capable of correcting the errors
of individual initial classifiers.

Classification deals with known classes of data. These classes are represented
by given samples of data. The samples are used for supervised training of the
classifier to enable it to recognize new elements of the same known classes. The
classification process begins with feature extraction and representation of data in
a standard vector space Fn, where F can be regarded as a semifield.

A semifield is a semiring, where the set of nonzero elements forms a group
with respect to multiplication. Recall that a semiring is a set F with two binary
operations, addition + and multiplication ·, such that the following conditions are
satisfied:
(S1) (F,+) is a commutative semigroup with zero 0,
(S2) (F, ·) is a semigroup,
(S3) multiplication distributes over addition,
(S4) zero 0 annihilates F , i.e., 0 · F = F · 0 = 0.

It is also often assumed that every semiring satisfies an additional property
(S5) (F, ·) has an identity element 1.

Our results remain valid without assuming (S5), and so we consider more general
semirings, which do not have to satisfy (S5). In analogy with a similar situation
in ring theory, we then call every semiring satisfying (S5) a semiring with identity
element. As usual, such more general terminology adds the convenience of allow-
ing us to consider more general subsets as subsemirings without assuming that all
subsemirings contain the identity element. Both terminologies are essentially equiv-
alent, since it is always easy to adjoin an identity element in a standard fashion to
every semiring that does not have one.

Every centroid-based classifier selects special elements c1, . . . , ck in Fn, called
centroids (see, for example, [4]). For i = 1, . . . , k, each centroid ci defines its class
N(ci) consisting of all vectors v such that ci is the nearest centroid of v. Every
vector is assigned to the class of its nearest centroid.

On the other hand, multiple classifiers are often used in analysis of data to com-
bine individual initial classifiers (see, for example, [27]). A well-known method for
the design of multiple classifiers consists in designing several simpler initial or indi-
vidual classifiers, and then combining them into one multiple classification scheme
with several classes. This method is very effective, and is often recommended for
various applications, see [24], Section 7.5 and [19]. The main advantage of us-
ing combined multiple classifiers is in their ability to correct errors of individual
classifiers and produce correct classifications despite individual classification errors.

Denote the number of initial classifiers being combined by n. If o1, . . . , on are
the outputs of the initial classifiers, then the sequence (o1, . . . , on) is called a vector
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of outputs of the initial classifiers. In order to define the multiple classifier and
enable correction of errors of the initial classifiers, a set of centroids c1, . . . , ck is
again selected in Fn. For i = 1, . . . , k, the class N(ci) of the centroid ci is again
defined as the set of all observations with the vector outputs of the initial classifiers
having ci as its nearest centroid.

The design of multiple classifiers by combining individual classifiers is quite com-
mon in the literature. We refer to [19, 20] and [24] for a list of properties required
of the sets of centroids. In particular, it is essential to find sets of centroids with
large weights and small numbers of generators. The weight wt(v) of v ∈ Fn is the
number of nonzero components or coordinates in v. The weight of a set C ⊆ Fn

is the minimum weight of a nonzero element in C. For additional references and
discussion of experimental research related to these properties we refer the readers
to [19, 20].

The information rate of a class set C in Fm can be defined as log|F |(|C|)/m. It
reflects the proportion of output of the individual initial classifiers used to produce
the outcomes of the multiple classification, as opposed to additional efforts spent
on increasing reliability and correcting classification errors.

All sequences of the centroid set C can be written down in a matrix M to
discuss their properties. If M has two identical columns, this means that two
initial classifiers produce identical outputs. This duplication is very inefficient, even
though it could help to correct classification errors. Therefore, in a situation like
this, one of these classifiers can be removed and a better scheme can be devised.
Likewise, it is undesirable to have strong correlation or functional dependencies
between very small sets of columns in M or between the initial classifiers.

According to [24], Section 7.5, for a classifier with a class set C to be efficient,
the class C must satisfy the following most essential basic properties:
(1) The set C must have a large weight.
(2) The information rate of C must be large.
(3) A small set of generators for the set C is essential in order to simplify computer

storage and manipulation of the set.
(4) If all vectors of C are recorded in a matrix M , then there should not be strong

correlation or functional dependencies between small sets of columns of M . In
particular, the matrix M should not have duplicate columns.

Thus, in particular, it is essential to find sets of centroids with large weights and
small numbers of generators. For additional references and discussion of experi-
mental research related to these properties we refer the readers to [19, 20, 26, 27].

The max-plus algebra is the set R∪{−∞} with two binary operations, max and
+. It is very important in the investigation of discrete event systems, see [3]. The
max-plus algebra is also sometimes called the schedule algebra, see [10]. Our main
results remain valid in the more general case of all semifields, and so we record
them in this setting.

Let F be a semiring. Consider the semiring Mm(F ) of all m×m matrices over
F . Let % be a binary relation on the set [1 : m] = {1, . . . ,m}. For i, j ∈ [1 : m]
denote by ei,j the standard elementary matrix in Mm(F ) with 1 in the intersection
of i-th row and j-th column and zeros in all other entries. It is well known and easy
to verify that the set M%(F ) =

⊕
(i,j)∈% Fei,j is a subsemiring of Mm(F ) if and

only if the relation % is transitive. In this case M%(F ) is called a structural matrix
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semiring. Many interesting results on structural matrix rings have been obtained
in the literature (see, for example, [5, 8, 12, 22, 23]). Known facts and references
concerning structural matrix rings can be also found in [14].

If |%| = n, then the additive semigroup of M%(F ) is isomorphic to Fn and
we can introduce multiplication in Fn by identifying it with M%(F ). Further we
consider sets of centroids as subsets generated in M%(F ). Every set of elements
g1, . . . , gk ∈ M%(F ) generates the set C(g1, . . . , gk) of all sums of these elements
and their multiples:

C(g1, . . . , gk) =

=


m1∑
j=1

`1,jg1r1,j + · · ·+
mk∑
j=1

`k,jgkrk,j

∣∣∣∣∣∣∣ `i,j , ri,j ∈M%(F ) ∪ {1}

 . (1)

The set C(g1, . . . , gk) is called an ideal generated by g1, . . . , gk. The concept of an
ideal is very important and has been actively investigated in several branches of
modern mathematics. In particular, it is used in the investigation of modules over
rings (see, for example, [1, 2]) and ring constructions (see, for example, [13, 14]).

3. Main Results

Let % be a binary relation on the set [1 : m]. We introduce the following binary
relations

%` = {(i, j) ∈ % | ∃k ∈ [1 : m] : (k, i) ∈ %}, (2)

%r = {(i, j) ∈ % | ∃k ∈ [1 : m] : (j, k) ∈ %}. (3)

and put

MZ = |% \ (%r ∪ %`)|. (4)

For any i ∈ [1 : m], let us define the sets

%(i) = {j | (i, j) ∈ %}, (5)

%−1(i) = {j | (j, i) ∈ %}, (6)

R(i) = {j | (i, j) ∈ % \ %r}, (7)

L(i) = {j | (j, i) ∈ % \ %`}. (8)

We introduce the following nonnegative integers

ML = max{|L(i)| : i = 1, . . . ,m}, (9)

MR = max{|R(i)| : i = 1, . . . ,m}. (10)

Denote by GZ the set of all elements g =
∑

(i,j)∈%\(%r∪%`)
fi,jei,j ∈M%(F ), where

0 6= fi,j ∈ F . Let GL be the set of all elements g =
∑

j∈L(i) fjej,i ∈ M%(F ), where

i runs over the set of all integers i such that |L(i)| = ML, and where 0 6= fj ∈ F .
Denote by GR the set of all elements g =

∑
j∈R(i) fjei,j ∈M%(F ), where i runs over

the set of all integers i such that |R(i)| = MR, and where 0 6= fj ∈ F . Our main
theorem describes all sets C(g1, . . . , gk) with the largest weight in M%(F ).

Theorem 1. Let M%(F ) be a structural matrix semiring over a semifield F . Sup-
pose that C = C(g1, . . . , gk) is an ideal with the largest weight in M%(F ). Then the
following conditions are satisfied:
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(i) wt(C) = max{1,MZ ,ML,MR};
(ii) if wt(C) > 1, then C ∩ (GZ ∪ GL ∪ GR) contains an element of weight wt(C);

(iii) wt(C(g)) = wt(g) = MZ , for all g ∈ GZ ;
(iv) wt(C(g)) = wt(g) = ML, for all g ∈ GL;
(v) wt(C(g)) = wt(g) = MR, for all g ∈ GR.

4. Proofs

For any semiring F , the left annihilator of F is the set

Ann`(F ) = {x ∈ F | xF = 0}, (11)

and the right annihilator of F is the set

Annr(F ) = {x ∈ F | Fx = 0}. (12)

Lemma 2. For any structural matrix semiring M%(F ) over a semifield F , the
following equalities are satisfied:

Annr(M%(F )) = M%\%`
(F ), (13)

Ann`(M%(F )) = M%\%r
(F ). (14)

Proof. Take any element r in Annr(M%(F )). It can be recorded as

r =
∑

(i,j)∈%

fi,jei,j ,

where fi,j ∈ F . Consider any pair (i, j) in %`. There exists k ∈ [1 : m] such that
(k, i), (k, j) ∈ %. Hence ek,i ∈ M%(F ) and fi,jek,iei,j is a summand of the product
ek,ir in M%(F ). Since r ∈ Annr(M%(F )), we get fi,j = 0. It follows that r belongs
to M%\%`

(F ), and so Annr(M%(F )) ⊆M%\%`
(F ).

To prove the reversed inclusion, let us pick any element r in M%\%`
(F ). It can

be written down as r =
∑

(i,j)∈%\%`
fi,jei,j , where fi,j ∈ F . In order to verify that

M%(F )r = 0, it suffices to show that ea,br = 0 for all (a, b) ∈ %. Suppose to the
contrary that ea,br 6= 0 for some (a, b) ∈ %. Then it is clear that at least one of
the summands ea,bfi,jei,j is nonzero for some (i, j) ∈ % \ %`. The definition of a
structural matrix semiring implies that fi,j 6= 0, b = i, (a, i) = (a, b) ∈ % and
(a, j) ∈ %. Hence (i, j) ∈ %`. This contradicts the choice of (i, j) in % \ %` and
shows that ea,br = 0 for all (a, b) ∈ %. Therefore M%(F )r = 0, which means that
r ∈ Annr(M%(F )). Thus Annr(M%(F )) ⊇M%\%`

(F ).
These two inclusions show that equality (13) always holds. The proof of equal-

ity (14) is dual and we omit it. �

Proof of Theorem 1. (iii): Consider any element g ∈ GZ . By definition, we
know that

g =
∑

(i,j)∈%\(%r∪%`)

fi,jei,j ∈M%(F ),

where 0 6= fi,j ∈ F . Clearly, wt(g) = |% \ (%r ∪ %`)| = MZ . Since % \ (%r ∪ %`) =
(% \ %r)∩ (% \ %`), Lemma 2 and (1) show that C(g) coincides with the linear space
Fg spanned by g. Since F is a semifield, it follows that all nonzero elements of
C(g) have weights equal to the weight of g. Hence wt(C(g)) = wt(g) in this case,
and so condition (iii) holds.
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(iv): Choose any element g ∈ GL. It can be represented in the form

g =
∑

j∈L(i)

fjej,i,

where 1 ≤ i ≤ m, |L(i)| = ML and 0 6= fj ∈ F . Hence we get wt(g) = |L(i)| = ML.
It remains to verify that wt(C(g)) = wt(g). To this end, we choose any nonzero
element x in C(g) and are going to verify that wt(x) ≥ wt(g). It follows from (1)
that

x =

k∑
j=1

`jgrj , (15)

for some `j , rj ∈M%(F )∪{F}, where we may assume that only nonzero summands
`jr`j are included in the sum. Since (j, i) 6∈ %` for all j ∈ L(i), it follows from
Lemma 2 that `jg = 0 for every `j ∈ M%(F ). Therefore we may assume that all
the `j are equal to 1 in the expression (15) for x above.

Keeping in mind that M%(F ) =
⊕

(a,b)∈% Fea,b, the distributive law allows us

to assume without loss of generality that every element rj ∈M%(F ) in the expres-
sion (15) for x belongs to the union ∪a,bFea,b. Since grj 6= 0, it follows that then
all the rj belong to ∪(i,b)∈%Fei,b. The transitivity of % shows that %(i) ⊆ %(j) for all
j in L(i). Since grj 6= 0, we see that all the rj belong to ∪b∈%(i)Fei,b. Since F is a
semifield, it follows that wt(grj) = wt(g) for all j ∈ L(i). Therefore wt(x) ≥ wt(g),
as required. Thus, condition (iv) holds.

(v): The proof of condition (v) is dual to that of (iv), and so we omit it.
(ii): Suppose that wt(C) > 1. Choose a nonzero element g of minimal weight

in C and consider several cases.
Case 1. g /∈ Annr(M%(F )) ∪ Ann`(M%(F )). By Lemma 2, we get

g /∈M%\%`
(F ) ∪M%\%r

(F ).

Therefore there exist (a, b), (c, d) ∈ % such that ea,bgec,d 6= 0. However, ea,bgec,d ∈ C
and wt(ea,bgec,d) = 1. Hence wt(C) = 1. This contradicts the assumption that
wt(C) > 1 and shows that Case 1 is impossible.

Case 2. g ∈ Ann`(M%(F )) ∩ Annr(M%(F )). Lemma 2 implies that

r ∈M%\%`
(F ) ∩M%\%`

(F ).

It follows from the maximality of wt(C) and condition (iii), which we have already
proved above, that wt(g) = MZ . Therefore g ∈ GZ . Since wt(g) = wt(C), this
means that condition (ii) holds in this case.

Case 3. g ∈ Annr(M%(F )) \ Ann`(M%(F )). Then gei,t 6= 0 for some (i, t) ∈ %.
Obviously, wt(gei,t) ≤ wt(g). By the minimality of the weight wt(g) in C, we get
wt(gei,t) = wt(g), because gei,t ∈ C. Therefore there exists a subset S ⊆ %−1(i)
such that g =

∑
j∈S fjej,i, where 0 6= fj ∈ F . Clearly, |S| = wt(g). Since g ∈

M%(F ), we get S ⊆ %−1(i). Lemma 2 and g ∈ Annr(M%(F )) show that (j, i) ∈ %\%`
for all j ∈ S. Therefore S ⊆ L(i).

The maximality of wt(C) = wt(g) = |S| and condition (iv) proved above imply
that wt(g) ≥ ML. By the definition of ML, we get ML ≥ |S| = wt(g). Therefore
|S| = ML and S = L(i). It follows that g ∈ GL. This means that condition (ii)
holds true in this case, too.
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Case 4. g ∈ Ann`(M%(F )) \ Annr(M%(F )). In this case a dual proof to the
proof of Case 3 demonstrates that g ∈ GR. Therefore condition (ii) always holds
true.

(i): Clearly, condition (ii) implies that wt(C) ≤ max{1,MZ ,ML,MR}. On the
one hand, the maximality of wt(C) and conditions (iii), (iv), (v), (vi) show that

wt(C) ≥ max{1,MZ ,ML,MR}.

Therefore condition (i) is satisfied. This completes our proof. 2
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