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Abstract. When a square matrix A, is diagonalizable, (for example, when A

is Hermitian or has distinct eigenvalues), then An can be written as a sum of
the nth powers of its eigenvalues with matrix weights. However, if a 1 occurs

in its Jordan form, then the form is more complicated: An can be written as

a sum of polynomials of degree n in its eigenvalues with coefficients depending
on n. In this case to a first approximation for large n, An is proportional

to nm−1λn with a constant matrix multiplier, where λ is the eigenvalue of
maximum modulus and m is the maximum multiplicity of λ.

1. Introduction and Summary

Let A be an s× s complex matrix with eigenvalues λ1, · · · , λs ordered so that

r1
def= |λ1| = · · · = |λN | > r0

def= |λN+1| ≥ · · · ≥ |λs|. (1.1)

If all eigenvalues have the same modulus then (1.1) should be interpreted as

r1
def= |λ1| = · · · = |λs|

with N = s. If A is Hermitian, or more generally if it has diagonal Jordan form,
then for n ≥ 1, An =

∑s
j=1 λn

j Wj , for certain matrices {Wj}. Let us write rj and
θj for the amplitude and phase of λj , that is,

λj = rj eiθj (1.2)

for 1 ≤ j ≤ s. Then this implies the approximations

An = rn
1 Cn + rn

0 En, An = λn
1W1 + rn

0 Fn (1.3)

(with the latter holding if N = 1), where

Cn =
N∑

j=1

einθj Wj

with ||En||, ||Fn|| and ||Cn|| bounded as n increases. These cases are covered in
Sections 2 and 3. Otherwise, An can be written as a sum of polynomials in each
eigenvalue:

An =
r∑

j=1

fj(λj),
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where

fj(λ) =
mj−1∑
k=0

(
n

k

)
λn−k Wjk

for n ≥ 1 and certain matrices {Wjk}. Here mj is the dimension of the jth Jordan
block of A and r is the number of blocks. So, λj has multiplicity at least mj .
Suppose the blocks for λ1 are ordered so that

m = m1 = · · · = mM > mj , M < j ≤ N (1.4)

with (1.4) interpreted as

m = m1 = · · · = mN

when all Jordan blocks have dimension m. Then for n ≥ 1,

An =
(

n

m− 1

)
rn
1 [Cn + n−1E∗

n],

where

Cn =
M∑

j=1

ei(n−m+1)θj Wj,m−1

with ||E∗
n|| and ||Cn|| bounded as n increases. For example, if there is only one

Jordan block with eigenvalue λ1 then

An =
(

n

m− 1

)
λn

1 [W1,m−1 + n−1F ∗
n ],

where ||F ∗
n || is bounded as n increases. Details are given in Section 4. Section

5 gives results similar to (1.3) for (AAT )n and related forms for large n based
on the singular-value decomposition (SVD). In this section A need not be square.
Throughout this note, an = O(bn) means that an integer m and a positive constant
K exist such that for all n ≥ m, |an| ≤ K|bn|.

2. An for A Hermitian

Consider the case where A is Hermitian, that is AT = A, where AT is the
transpose of the complex conjugate of A. Then the eigenvalues are real,

A = HΛHT =
s∑

j=1

λjpjp
T
j , (2.1)

where Λ = dλ1, · · · , λsc, H = (p1, · · · , ps), and pj is the eigenvector of λj , that is,
a solution of Apj = λjpj . The eigenvectors can be taken as orthogonal and scaled
to have unit norm, so that pT

j pk = δjk and
∑s

j=1 pjp
T
j = Is, where δjj = 1 and

δjk = 0 for j 6= k. If A is real symmetric then H can be taken as real. So, by (1.1)
we have the well known expression

An = HΛnHT =
s∑

j=1

λn
j pjp

T
j . (2.2)

It follows that An = rn
1 Cn + rn

0 En, n = 0, 1, · · · , where Cn =
∑N

j=1 sn
j pjp

T
j , sj =

sign(λj) and ||En|| is bounded as n increases. So, for n ≥ 1, if N = 1 then
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An = λn
1D + rn

0 Fn, where D = p1p
T
1 and ||Fn|| is bounded as n increases. On the

other hand, if N ≥ 2 then the multiplier Cn alternates between C+, its form for
n even, and C−, its form for n odd, where C+ =

∑s
j=1 pjp

T
j , C− =

∑
sj=1 pjp

T
j −∑

sj=−1 pjp
T
j . Also if det(A) 6= 0 then (2.2) extends to n = −1,−2, · · · , and in fact

to complex n. For example, A−1 = HΛ−1HT =
∑s

j=1 λ−1
j pjp

T
j . Section 5 gives

results similar to those of Section 3 but for (AAT )n, (AAT )nA. These are based
on the SVD of A which need not be square.

3. Diagonal Jordan Form

Now suppose that A has diagonal Jordan form, that is A = PΛP−1 for some
matrix P and Λ of (2.1). Such a matrix is said to be diagonalizable. If A and
its eigenvalues are real, then P can be taken as real. Writing P = (p1, · · · , ps),
QT = P−1 = (q1, · · · , qs)T , we have qT

j pk = δjk,
∑s

j=1 pjq
T
j = Is. By (1.1) and

(1.2), for n ≥ 1,

An = PΛnP−1 =
s∑

j=1

λn
j pjq

T
j = rn

1 Cn + rn
0 En, (3.1)

where Cn =
∑N

j=1 einθj pjq
T
j and ||En|| is bounded as n increases. For example,

if N = 1 then An = λn
1D + rn

0 Fn, where D = p1q
T
1 and ||Fn|| is bounded as

n increases. On the other hand, if N = 2 then An = λn
1Dn + rn

0 Fn, where Dn =
p1q

T
1 +ein(θ2−θ1)p2q

T
2 and ||Fn|| is bounded as n increases. In particular if θ2−θ1 =

2π/K for some K = 1, 2, · · · , then Dn takes K distinct forms: Dn = Dm when
n modulo(K) = m, m = 0, 1, · · · ,K − 1. If det(A) 6= 0 then (3.1) extends to n =
−1,−2, · · · , and to complex n. For example, A−1 = PΛ−1P−1 =

∑s
j=1 λ−1

j pjq
T
j .

4. General Jordan Form

Now suppose that A has non-diagonal Jordan form, that is, it has one or more
multiple eigenvalues, and A = PJP−1, J = dJ1, · · · , Jrc, Jj = Jmj (λj), where

Jm(λ) = λIm + Um =


λ 1 0 · · · 0
0 λ 1 · · · 0

· · ·
0 0 0 · · · λ


for some matrix P , and Um is the m×m matrix with 1s on the superdiagonal and
0s elsewhere: (Um)jk = δj,k−1. Again if A and its eigenvalues are real, then P can
be taken as real.

Methods for obtaining P are known, see, for example, Dunford and Schwartz
(1958), Finkbeiner II (1978), Horn and Johnson (1985) and Golub and van Loan
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(1996). The m×m matrix Un
m is defined as Jm(0)n, so that U0

m = I,

U1
m =



0 1
0 1

. . . . . .
0 1

0 1
0


,

U2
m =



0 0 1
0 0 1

. . . . . . . . .
0 0 1

0 0
0


,

U3
m =



0 0 0 1
0 0 0 1

. . . . . . . . . . . .
0 0 0

0 0
0


,

Um−1
m =



0 0 0 · · · 0 1

0 0
. . . 0 0

. . . . . . . . . . . .
0 0 0

0 0
0


with Uk

m = 0 for k ≥ m. Also by the binomial expansion, for λ 6= 0 and n ≥ 1,

Jm(λ)n =
min(n,m−1)∑

j=0

(
n

j

)
λn−jU j

m (4.1)

= λnen,m−1(λ) [Um−1
m + n−1Ωn]

= dn,m−1(λ) + nm−2λnΩ∗n
= nm−1λnΩ∗∗n ,

where enk(λ) =
(
n
k

)
λ−k, dnk(λ) = λnenk(λ)Um−1

m and Um−1
m is the m ×m matrix

of 0s except for a 1 in the upper right corner. Further, ||Ωn||, ||Ω∗n|| and ||Ω∗∗n || are
bounded as n increases. Another way to write (4.1) is

Jm(λ)n = λn


1 en1 en2 · · · en,m−1

0 1 en1 · · · en,m−2

· · ·
0 0 0 · · · 1


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at enk = enk(λ). So, we obtain the exact formula

An = PJnP−1 = P dJn
1 , · · · , Jn

r cP−1,

where Jn
j is given by (4.1). Suppose now that N of the Jordan blocks {Jj} have

eigenvalues with the maximum amplitude r1, and that these are ordered so that

r1 = |λ1| = · · · = |λN | > r0 = max
N<j≤s

|λj |.

Because of multiplicities, this N is not same as N of (1.1). Suppose also that the
first M ≤ N blocks have the maximum multiplicity m, that is, (1.4) holds, and that
m0 is the maximum multiplicity of eigenvalues of amplitude r0. Then for n ≥ 1,

An = P dJn
1 , · · · , Jn

N , 0, · · · , 0cP−1 + nm0−1rn
0 Ψn

= rn
1 en,m−1(r1)P ddn,m−1(eiθ1), · · · , dn,m−1(eiθM ), · · · , 0, · · · , 0c P−1 + nm−2rn

1 Ψ∗
n

for {θj} of (1.2), where ||Ψn|| and ||Ψ∗
n|| are bounded as n increases. Now partition

P and its inverse into r × r blocks to match J , say P = (Pjk), P−1 = (P jk). So,
An is the r × r block matrix with (j, k) element

(An)jk =
r∑

c=1

Pjc Jn
c P ck (4.2)

=
N∑

c=1

Pjc Jn
c P ck + O(nm0−1rn

0 )

= rn
1 en,m−1(r1)

M∑
c=1

Pjc dn,m−1(eiθc) P ck + O(nm−1rn
1 ),

giving

An =
(

n

m− 1

)
rn−m+1
1 [Cn + n−1Ψ∗∗

n ] = nm−1rn
1 Ψ∗∗∗

n ,

where

(Cn)jk =
M∑

c=1

ei(n−m+1)θc Pjc Um−1
m P ck = O(1)

and ||Ψ∗∗
n || and ||Ψ∗∗∗

n || are bounded as n increases. The last multiplier Pjc Um−1
m P ck

is an m×m matrix with (p, q) element (Pjc)p1 (P ck)mq. For example, if |λ1| > |λj |
for j > 1, then M = 1 and

An =
(

n

m− 1

)
λn−m+1

1 [D + n−1Ψ∗∗∗∗
n ],

where [Djk]pq = (Pj1)p1 (P 1k)mq and ||Ψ∗∗∗∗
n || is bounded as n increases. If

det(A) 6= 0 then (4.2) and (4.1) extend to n = −1,−2, · · · , and to complex n.
For example,

(A−1)jk =
r∑

c=1

Pjc J−1
c P ck,
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where

Jm(−λ)−1 = −
m−1∑
j=0

λ−1−jU j
m.

Example 4.1. Take

A =


5 4 2 1
0 1 −1 −1
−1 −1 3 0
1 1 −1 2

 .

Then r = 3, J1 = 1, J2 = 2, J3 = J2(4),

P =


−1 1 1 1
1 −1 0 0
0 0 −1 0
0 1 1 0

 ,

P−1 =


0 1 1 1
0 0 1 1
0 0 −1 0
1 1 1 0

 ,

Jn =


1 0 0 0
0 2n 0 0
0 0 4n n4n−1

0 0 0 4n

 ,

An = 4n(Bn/4 + C) + 2nD + E = n4n [B/4 + n−1Φn],

where

B =


1 1 1 1
0 0 0 0
−1 −1 1 0
1 1 1 0

 ,

C =


1 1 1 −1
0 0 0 0
0 0 −1 0
0 0 −1 0

 ,

D =


0 0 1 1
0 0 −1 −1
0 0 0 0
0 0 1 1

 ,

E =


0 −1 −1 −1
0 1 1 1
0 0 0 0
0 0 0 0


and ||Φn|| is bounded as n increases.
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Example 4.2. Take

A =
1
9

 14 −1 2
−3 6 6
4 −3 6

 .

Then r = 2, J1 = J2(2), J2 = J1(1) = 1,

P =

 1 2 3
3 1 2
2 3 1

 ,

P−1 =
1
18

 −5 1 7
7 −5 1
1 7 −5

 ,

Jn =

 2n n2n−1 0
0 2n 0
0 0 1

 .

So, 18An = (Bn/2 + C)2n + D = n2n [B/2 + n−1Φ∗n], where

B =

 7 −5 1
21 −15 3
14 −10 2

 ,

C =

 9 −9 7
−8 −2 22
11 −13 17

 ,

D =

 3 21 −15
2 14 −10
1 14 −5


and ||Φ∗n|| is bounded as n increases.

5. Behaviour of (AAT )n and Related Forms for Large n

This section gives results similar to those of Section 3 but for (AAT )n and
(AAT )nA. These are based on the SVD of A. The SVD of an m × n matrix
A can be written

A =
r∑

j=1

θj ljr
T
j ,

where r = min(m,n), lTj lk = rT
j rk = δjk and 0 < θ1 ≤ · · · ≤ θr. So, for 1 ≤ j ≤ r,

Arj = θj lj and AT lj = θjrj . So,

AAT =
r∑

j=1

θ2
j lj l

T
j ,

AT A =
r∑

j=1

θ2
j rjr

T
j ,

AAT A =
r∑

j=1

θ3
j ljr

T
j .
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That is, {θ2
j} are the non-zero eigenvalues of AAT and AT A, and the corresponding

eigenvectors are {lj} and {rj}. Similarly, we have for n ≥ 1,

(AAT )n =
r∑

j=1

θ2n
j lj l

T
j ,

(AT A)n =
r∑

j=1

θ2n
j rjr

T
j ,

(AAT )nA =
r∑

j=1

θ2n+1
j ljr

T
j ,

(AT A)nAT =
r∑

j=1

θ2n+1
j rj l

T
j .

So, if max1≤j≤s θj < θs+1 = · · · = θr then as n →∞,

(AAT )n = θ2n
r Lsr + θ2n

s ∆n = θ2n
r Ξn,

(AT A)n = θ2n
r Rsr + θ2n

s ∆∗
n = θ2n

r Ξ∗n,

(AAT )nA = θ2n+1
r Bsr + θ2n

s ∆∗∗
n = θ2n

r Ξ∗∗n ,

(AT A)nAT = θ2n+1
r Csr + θ2n

s ∆∗∗∗
n = θ2n

r Ξ∗∗∗n ,

where Lsr =
∑r

j=s+1 lj l
T
j , Rsr =

∑r
j=s+1 rjr

T
j , Bsr =

∑r
j=s+1 ljr

T
j and Csr =∑r

j=s+1 rj l
T
j with ||∆n||, ||∆∗

n||, ||∆∗∗
n ||, ||∆∗∗∗

n ||, ||Ξn||, ||Ξ∗n||, ||Ξ∗∗n ||, ||Ξ∗∗∗n ||,
||Lsr||, ||Rsr||, ||Bsr|| and ||Csr|| bounded as n increases.
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