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Abstract. When a square matrix A, is diagonalizable, (for example, when A
is Hermitian or has distinct eigenvalues), then A™ can be written as a sum of
the nth powers of its eigenvalues with matrix weights. However, if a 1 occurs
in its Jordan form, then the form is more complicated: A™ can be written as
a sum of polynomials of degree n in its eigenvalues with coefficients depending
on n. In this case to a first approximation for large n, A" is proportional
to n™~IA\" with a constant matrix multiplier, where \ is the eigenvalue of
maximum modulus and m is the maximum multiplicity of .

1. Introduction and Summary

Let A be an s X s complex matrix with eigenvalues A1, -+, As ordered so that

def def
1 E == ] >0 E Pl =2 A (1.1)

If all eigenvalues have the same modulus then (1.1) should be interpreted as

def
r € M| ==\

with N = s. If A is Hermitian, or more generally if it has diagonal Jordan form,
then for n > 1, A" =377, A7 Wj, for certain matrices {W;}. Let us write r; and
0; for the amplitude and phase of A;, that is,

/\j =Ty eig-j (1.2)
for 1 < j <s. Then this implies the approximations
A" =r7Ch +riE,, A" =W +1r0F, (1.3)

(with the latter holding if N = 1), where
N .
Cn=) emiW;
j=1

with ||E,]|, ||Fn|| and ||Cy|| bounded as n increases. These cases are covered in
Sections 2 and 3. Otherwise, A™ can be written as a sum of polynomials in each
eigenvalue:

A= ),
j=1
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where

=3 (1) e

k=0

for n > 1 and certain matrices {W,}. Here m; is the dimension of the jth Jordan
block of A and r is the number of blocks. So, A; has multiplicity at least m;.
Suppose the blocks for A\; are ordered so that

m=my=---=my >mj, M<j<N (1.4)
with (1.4) interpreted as

m=mj;=---=my
when all Jordan blocks have dimension m. Then for n > 1,
n n n — *
A" = (m—l) i [Cn +n" ET],

where
M
Cn — § ez(n—m+l)0j Wj,mfl
j=1

with ||E|| and ||Cy|| bounded as n increases. For example, if there is only one
Jordan block with eigenvalue A\; then

n
where ||F;|| is bounded as n increases. Details are given in Section 4. Section
5 gives results similar to (1.3) for (AAT)" and related forms for large n based
on the singular-value decomposition (SVD). In this section A need not be square.

Throughout this note, a, = O(b,,) means that an integer m and a positive constant
K exist such that for all n > m, |a,| < K|b,|.

2. A" for A Hermitian

Consider the case where A is Hermitian, that is AT = A, where AT is the
transpose of the complex conjugate of A. Then the eigenvalues are real,

S
A=HAH" = " X\pjp] (2.1)
j=1

where A = [Aq, -, A\s|, H = (p1,---,ps), and p; is the eigenvector of A;, that is,
a solution of Ap; = A;p;. The eigenvectors can be taken as orthogonal and scaled
to have unit norm, so that p]Tpk = §;; and 23:1 pjpjT = I, where §;; = 1 and
0jr = 0 for j # k. If A is real symmetric then H can be taken as real. So, by (1.1)
we have the well known expression

A" =HA"H" => "X} p;p]. (2.2)
j=1

It follows that A™ = r7Cy, + 1§ En, n = 0,1,---, where C,, = Z;vzl s?pjp;*-r, 55 =

sign(A;) and ||E,|| is bounded as n increases. So, for n > 1, if N = 1 then
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A" = \'D + rlF,,, where D = pip! and ||F,|| is bounded as n increases. On the
other hand, if N > 2 then the multiplier C), alternates between C., its form for
n even, and C_, its form for n odd, where C = ijl pjpf, Cc_= Zsj:l pijT —
Zsj:_l pjp;p. Also if det(A) # 0 then (2.2) extends ton = —1,—2,---, and in fact
to complex n. For example, A= = HA7'HT = > )\j_lpijT. Section 5 gives
results similar to those of Section 3 but for (AAT)", (AAT)"A. These are based
on the SVD of A which need not be square.

3. Diagonal Jordan Form

Now suppose that A has diagonal Jordan form, that is A = PAP~! for some
matrix P and A of (2.1). Such a matrix is said to be diagonalizable. If A and
its eigenvalues are real, then P can be taken as real. Writing P = (p1, - ,Ds),
Q" = P7' = (q1,--- ,q5)", we have ¢ px = &, >, pjq; = Is. By (1.1) and
(1.2), forn > 1,

A" =PA"PTN = N piaf =11 Cot i En, (3.1)

j=1

where C,, = Zjvzl enfi qujT and ||Ey|| is bounded as n increases. For example,
if N =1 then A" = A\'D + r}F,, where D = piq{ and ||F,|| is bounded as
n increases. On the other hand, if N = 2 then A™ = A\}'D,, 4+ rj F},, where D,, =
prgl +e™2=0)p, o and || F,|| is bounded as n increases. In particular if 6, —60; =
2r/K for some K = 1,2,---, then D,, takes K distinct forms: D,, = D,, when
n modulo(K) =m, m =0,1,--- , K — 1. If det(A) # 0 then (3.1) extends to n =
—1,-2,---, and to complex n. For example, A~! = PA"1P~! = Zj‘:1 A;lquf.

4. General Jordan Form

Now suppose that A has non-diagonal Jordan form, that is, it has one or more
multiple eigenvalues, and A= PJP~, J=[Jy, -, J.|, J; = Jm; (Aj), where

A1 0 -+ 0
InN) = A+ U= | O 00
0 0 0 --- A

for some matrix P, and U, is the m X m matrix with 1s on the superdiagonal and
Os elsewhere: (Uy,);rx = d;k—1. Again if A and its eigenvalues are real, then P can
be taken as real.

Methods for obtaining P are known, see, for example, Dunford and Schwartz
(1958), Finkbeiner II (1978), Horn and Johnson (1985) and Golub and van Loan
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(1996). The m x m matrix U" is defined as J,,,(0)", so that U2, = I,

0 1
0 1
U1: .t
" 0 1
0 1
0
00 1
00 1
U2:
" 0 0 1
0 0
0
000 1
00 0 1
U3:
" o o0 o |
0 0
0
00 0 0 1
0 0 0 0
Umflz
0 0 0
0 0
0

with U¥ = 0 for k > m. Also by the binomial expansion, for A # 0 and n > 1,

min(n,m—1)
Jn(N)" = > (?)A"JUZ” (4.1)
j=0

Nenm-1(A) [UP~ 4+ n71Q,]
= dym-1(A) + 0" ENQ
— nmilAnQ;*,
where e,1(A) = (1)A™F, duk(N) = Nenp(N)UZ~ and U1 is the m x m matrix

of Os except for a 1 in the upper right corner. Further, ||€2,]], [|€2}]] and ||2:*|| are
bounded as n increases. Another way to write (4.1) is

1 €nl €En2 €n,m—1

Jm()\)n —\" 0 1 €nl €n,m—2

0 0 0 e 1
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at enr = enk(N). So, we obtain the exact formula
A" = PJ"P~t = P[Jp}, - I P

where J7' is given by (4.1). Suppose now that N of the Jordan blocks {.J;} have
eigenvalues with the maximum amplitude r1, and that these are ordered so that

r=fhf == An] >0 = max [

Because of multiplicities, this N is not same as N of (1.1). Suppose also that the
first M < N blocks have the maximum multiplicity m, that is, (1.4) holds, and that
my is the maximum multiplicity of eigenvalues of amplitude ry. Then for n > 1,
A" = P[J},- R0, 0[P 4 0™ gy,
- r?en,mfl(rl)P [dn,mfl(eiel)a T 7dn,m71(6i0M), e aov e aOJ P71 + nm727ﬂ?\1’:,
for {6,} of (1.2), where ||¥,|| and ||¥}|| are bounded as n increases. Now partition

P and its inverse into 7 x r blocks to match J, say P = (Pj;), P~ = (P’*). So,
A™ is the r x r block matrix with (4, k) element

(A" = > P Jr P* (4.2)

c=1

N
= Y P JI P+ 0m™ )

c=1
M
= enmo1(r1) D Pie dumoa(€) PF 4+ O™ 1),
c=1
giving
= (), e =
where
M
(Cn)]k _ Zez(n—m-l-l)GC ch U:TVLL—I Pck _ O(l)
c=1

and ||¥*|| and ||W}**|| are bounded as n increases. The last multiplier P;. Ut Pk
is an m x m matrix with (p, q) element (Pj¢)p1 (P*)pmq. For example, if [A| > |A;]
for j > 1, then M =1 and

n n n—m — >k ok %k
A (m_l)A1 D + n~ 1w,

where [Djklpy = (Pj1)p1 (PY*)1mg and [|¥7***|| is bounded as n increases. If
det(A) # 0 then (4.2) and (4.1) extend to n = —1,—2,---, and to complex n.
For example,

(A =D Pje I+ P,

c=1
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where
m—1
-1 —1—jr7j
Im(=N) " =— E DN VA
=0

Example 4.1. Take

-1 1 1 1
1 —-1.0 0
Pr="1o0 o -10]
0 1 1 0
01 1 1
1 00 1 1
Pm=10o0 10|
111 0
10 0 0
_— 02 0 0
"= oo 4 gt |
00 0 4°
A" = 4"(Bn/A+C)+2"D+E =n4" [B/4+n"'®,],
where
1 1 11
0 0 00
B = -1 -1 1 0 |’
1 10
111 -1
000 0
¢ = 00 -1 0 |’
00 -1 0
00 1 1
00 -1 —1
b= 000 0 |
001 1
0 -1 -1 -1
01 1 1
E = 00 0 0
00 0 0

and ||®,]|| is bounded as n increases.
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Example 4.2. Take

1 14 -1 2
A=—-| -3 6 6
9

=
|

w

<)

Thenr =2, J; = J3(2), Jo = J1(1) =1,

1 2 3
P = |312],
2 31
1 -5 1 7
Pt = T 7 =5 1 ,
1 7 )
2n 27t 0
Jr = 0o 27 0
0 O 1
So, 18A™ = (Bn/2 + C)2" + D = n2" [B/2 + n~1®}], where
7T =5 1
B = |21 -15 3],
14 —-10 2
9 -9 7
c = | -8 -2 22|,
1 —-13 17
3 21 —-15
D = 2 14 -10
1 14 -5

and ||®}]| is bounded as n increases.

5. Behaviour of (AAT)" and Related Forms for Large n

This section gives results similar to those of Section 3 but for (AAT)" and
(AAT)"A. These are based on the SVD of A. The SVD of an m x n matrix
A can be written

A= Z Gjljr]T,
j=1

where r = min(m, n), l?lk = r?rk =05 and 0 < by <--- <0, So,for1 <j<r,
A?“j = Hjlj and Ale = Gjrj. SO7

J%3 0

T 27 4T
AAT = N 03]
j=1

T
Ty _ 2. T
ATA = g Oirirs,
=1

T _ 37 .,.T
AATA = > 0]
j=1
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That is, {9?} are the non-zero eigenvalues of AA” and AT A, and the corresponding
eigenvectors are {/;} and {r;}. Similarly, we have for n > 1,
(AAT = Yol

j=1

(ATA)” = Z HJz-”Tjrj-T,

(AAT"A = N o T,
j=1

(ATAAT = > e thel

j=1
So, if maxi<j<s0; <0541 =+ =0, then as n — oo,
(AATY" = 62"L,, +62"A, = 62",
(ATA)™ = 0*"R,, +60°"AF = 0*"=F,
(AAT)nA _ 927L+1BST + 927LA** _ 92nr:**
T s n r —n>
(ATA)nAT _ 02n+1C + 927LA*** _ 92n:***
- T sT s n - Yr “n >
where Ly, = Z§:S+1ljlf7 R, = Z;:S+1 rjr;fr, B, = Z;:S“l]—r;‘r and Cy, =
i ity with [[AqlL AL AL AR =l IR HEL 1ER,

| Lsr|l, [|Rsr||, || Bsr|| and ||Cs,|| bounded as n increases.
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