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Abstract. Let X ⊂ Pn be an integral non-degenerate m-dimensional variety
defined over an algebraically closed field K. Assume the existence of a non-

empty open subset U of Xreg such that TP X ∩X is an (m − 1)-dimensional
cone with vertex containing P . Here we prove that either X is a quadric hyper-

surface or char(K) = p > 0, n = m + 1, deg(X) = pe for some e ≥ 1 and there

is a codimension two linear subspace W ⊂ Pn such that W ⊂ TP X for every
P ∈ Xreg . We also give an “ explicit ” description (in terms of polynomial

equations) of all examples arising in the latter case; dim(Sing(X)) = m−1 for

every such X.

1. Varieties With Cones As Tangential Sections

Let X ⊂ Pn be an integral non-degenerate m-dimensional variety defined over
an algebraically closed field K. For any P ∈ Xreg let TP X ⊂ Pn denote the Zariski
tangent space of X at P . Here we prove the following result.

Theorem 1.1. Let X ⊂ Pn, n ≥ 3, be an integral non-degenerate m-dimensional
variety such that there is a non-empty open subset U of Xreg such that TP X ∩X is
an (m− 1)-dimensional cone with vertex containing P . Then either X is a quadric
hypersurface or char(K) = p > 0, n = m + 1 and there is an integer e ≥ 1 such
that deg(X) = pe. In the latter case all examples are described in Example 1.2
and any such example (except if p = 2, e = 1, i.e. in the hyperquadric case) has
(m− 1)-dimensional non-empty singular locus.

Example 1.2. Fix integers n ≥ 2, a prime integer p and an integer e ≥ 1. Set
q := pe. Assume char(K) = p > 0. Let W ⊂ Pn be a codimension two linear
subspace. Notice that all two such linear subspaces are projectively equivalent and
hence (up to a projective transformation) the family of examples we will give will not
depent from the choice of W . Here we describe all degree pe hypersurfaces Y ⊂ Pn

such that W ⊂ TP Y , (TP Y ∩Y )red = 〈W ∪{P}〉 for every P ∈ Yreg\W and pe is the
inseparable degree of the rational map on X induced by the linear projection from
W . This is the only case concerning Theorem 1.1; for a more general set-up in which
deg(Y ) = spe for some e ≥ 1, instead of deg(Y ) = pe, see [2], §4, for the case n = 2
or use the set-up of [1]. Let u : M → Pn be the blowing - up of W . The rational
map Pn\W → P1 induced by the linear projection from W induces a morphism
v : M → P1. Furthermore, v is a Pn−1-bundle and (with respect to the projection
v) we have M ∼= P(On−1

P1 ⊗ OP1(1)). Let E := u−1(W ) denote the exceptional
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divisor of u. Hence E ∼= P(OPn−2 ⊗ OPn−2(1)) and u|E is the projection of this
P1-bundle structure over W . We have Pic(M) ∼= Z⊕2 and we may take as a basis of
Pic(M) a fiber F of the ruling v and the exceptional divisor E. The normal bundle
of F in M is trivial and hence F 2 is the zero codimension two class in the Chow
ring of M . The line bundle OM (F |E) induces the degree one line bundle on every
fiber of v|E . We have u∗(OPn(1)) ∼= OM (E + F ). Hence OE(E + F ) ∼= u∗(OW (1))
is a spanned line bundle whose global sections contract the ruling of E and then
induce the identity map W → W . Hence h0(M,OM (xE + xF )) =

(
n+x

n

)
for all

integers x ≥ 0. Fix integers y ≥ x ≥ 0. Inspired from [2] and [1] we use the
following polynomial expression of the elements of H0(M,OM (xE + yF )). Fix
n + 1 variables w1, . . . , wn−1, x0, x1. We see w1, . . . , wn−1 as affine coordinates on
each fiber of the ruling u in which we take as hyperplane at infinity the intersection
of that fiber with E. We see x0, x1 as homogeneous coordinate on the base of the
ruling v. There is an isomorphism between H0(M,OM (xE + yF )) and the vector
space of all polynomials in the variable w1, . . . , wn−1, x0, x1 which are homogeneous
of degree y, which are homogeneous in the variables x0, x1 and with order at most
x in the variables w1, . . . , wn−1. Now we take x = q. Let A(q, y) be the subset of
H0(M,OM (xE + yF )) corresponding to the polynomials f(w1, . . . , wn−1, x0, x1) in
which each wi appears to the power q. Since q is a p-power, A(q, y) is a K-vector
space. Take f ∈ A(q, y)\{0} and P = (x̄0, x̄1) ∈ P1. Set FP := u−1(P ). Notice
that f(w1, . . . , wn−1, x̄0, x̄1) either vanishes identically on FP or it vanishes exactly
on an (n − 2)-dimensional linear space and with multiplicity q. The former case
cannot occur if {f = 0} is irreducible. If y = x ≥ 3, then we see that v maps the
divisor {f = 0} of M isomorphically onto a degree q hypersurface which, if integral,
satisfies all the assumptions of Theorem 1.1. The divisor {f = 0} is integral for a
general f by a dimension count; indeed, it is sufficient to show that for general f
the divisor {f = 0} has neither E nor any fiber of the ruling v as a component; for
the latter check use that the linear system |OM (xE + (x − 1)F )| has E as a base
component.

Remark 1.3. Notice that all examples Y given by Example 1.2 and with deg(Y ) ≥
3 are singular in codimension one. This is an easy generalition of Luiss’ theorem
stating that all strange curves are singular, except the plane conic in characteristic
two. The case used in Theorem 1.1 follows from Luiss’ theorem taking a general
codimension m− 1 linear section.

We stress that Theorem 1.1 is very easy (and certainly well-known) in charac-
teristic zero (see Remark 1.6).

Lemma 1.4. Let X ⊂ Pn, n ≥ 3, be an integral degree d ≥ 3 hypersurface such
that for a general P ∈ TP X the set (X ∩ TP X)red is an (n− 2)-dimensional linear
space, i.e. the scheme-theoretic intersection X ∩ TP X is a hyperplane of TP X
counted with multiplicity d. Then char(K) = p > 0, d = pe for some integer e ≥ 1
and there is a codimension two linear subspace W ⊂ Pn such that W ⊂ TQX for
every Q ∈ Xreg.

Proof. Let M ⊂ Pn be a general plane. By Bertini’s theorem ([3], parts 3) and
4) of Th. 6.3) C := M ∩ X is an integral curve. By assumption for a general
P ∈ Creg the tangent line TP C to C at P intersects C only at P and hence it has
contact order d with C at P . By [4], Th. 1, char(K) = p > 0, d = pe for some
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integer e ≥ 1 and there is PM ∈ M\C such that all the tangent lines to C at its
smooth points contain PM . Since a general hyperplane tangent to X is tangent
along an (n− 2)-dimensional subscheme, the dual variety X∗ ⊂ Pn∗ is a curve D.
The definition of the Gauss mapping for hypersurfaces implies that the codimension
two linear subspace W with the claimed properties exists if and only D is a line. To
check deg(D) = 1 it is sufficient to prove that D ∩Γ is a unique point for a general
hyperplane Γ of Pn∗, i.e. that for a general A ∈ Pn there is a unique hyperplane
H ⊂ Pn tangent to X and with A ∈ H.

Claim: Fix a general line R ⊂ Pn and set {P1, . . . , Pd} := X ∩ R. There is a
codimension two linear space W ⊂ Pn such that W ⊂ TPiX for all i.

Proof of the Claim: Set W := TP1X ∩ TP2X. By the generality of R the pair
(P1, P2) may be considered as a general element of X×X and hence TP1X 6= TP2X,
i.e. W has codimension two. We want to check W ⊂ TPi

X for every i ≥ 3. Fix
the index i such that 3 ≤ i ≤ d. It is sufficient to prove that for a general plane M
containing R the line TPi

(X ∩M) meets the line TP1(X ∩M) at the point W ∩M .
By the generality of R the plane M may be considered as a general plane of Pn

and hence the curve C := X ∩M is integral. We proved that C is strange and
hence TPi

C meets TP1C at the strange point of C, i.e. at the point TP1C ∩ TP2C,
proving the Claim.

Assume that for a general A ∈ Pn there are at least two hyperplanes passing
through A and tangent to X (say to P1 and P2 with P1 6= P2). Fixing P1 and
move A inside TP1X the point P2 describes an open subset of X. Hence we may
assume that the line R := 〈{P1, P2}〉 is a general secant line of X and hence R∩X
consists of d distinct smooth points P1, . . . , Pd of X. By a very trivial byproduct of
the Claim we have A /∈ R. and hence N := 〈{P1, P2, A}〉 is a plane. A priori N is
not general, but at least N * X and the degree d curve X ∩N contains d smooth
collinear points. Hence the effective divisor X ∩ N has no multiple component.
Even the reduced curve X ∩ N must be strange. Since A ∈ TP1X ∩ TP2X ∩ N ,
A is the strange point of X ∩ N . Hence infinitely many tangent tangent lines of
X ∩ N contain A. Hence infinitely many tangent hyperplanes of X contain A,
contradiction. �

We singled out the Claim in the proof of Lemma 1.4 because it would be nice to
have a classification of all hypersurfaces with that property.

Remark 1.5. Let {Dt}t∈T be a family of lines of Pa, a ≥ 3, parametrized by an
integral quasi-projective variety T . Assume Dt ∩Ds 6= ∅ for all t, s. Take t1, t2 ∈ T
such that Dt1 6= Dt2 . By assumption Dt1 ∩Dt2 is a point and hence 〈Dt1 ∪Dt2〉
is a plane. Since T is integral, it is easy to check that either Dt ⊂ 〈Dt1 ∪Dt2〉 for
every t ∈ T or (Dt1 ∩Dt2) ∈ Dt for every t ∈ T .

Proof of Theorem 1.1. The “ if ” part in the hyperquadric case is obvious,
while in case (ii) it is checked in Example 1.2. We divide the proof of the “ only if
” part into four parts.

(a) Let {Dt}t∈T be an algebraic family of lines of Pr, r ≥ 3, parametrized by
an integral quasi-projective variety. Assume Dt∩Ds 6= ∅ for a general (t, s) ∈ T×T .
By Remark 1.5 either there is P ∈ Pr such that P ∈ Dt for every t ∈ T or there is a
plane M ⊂ Pr such that Dt ⊂M for every t ∈ T . Let A ⊂ Pr, r ≥ 2, be an integral
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closed two-dimensional variety containing infinitely many lines. Let G(1, r) denote
the Grassmannian of all lines of Pr. Set L(A) := {D ∈ G(1, r) : D ⊂ A}. Since
G(1, r) is complete, L(A) is the disjoint union of finitely many integral projective
variety. By assumption at least one of these varieties has dimension at least one.
It is easy to check that A is a plane if and only if it contains a two-dimensional
family. A is a cone if and only if there is Q ∈ A such that infinitely many elements
of L(A) contain Q.

From now on in part (a) we assume that A is not a cone. The first part of
the proof implies the existence of a one-dimensional irreducible family {Dt}t∈T of
L(A) such that Dt ∩ Ds = ∅ for a general (t, s) ∈ T × T . Let f : B → A be
the normalization map. The total transform of the lines {Dt}t∈T gives a family
{Rt}t∈T of integral curves of B. Since Dt ∩Ds = ∅ for a general (t, s) ∈ T × T we
obtain Rt · Rt = 0 for any t (intersection product in the normal surface B). Since
A is not a cone and B has only finitely many singular points, we also get Dt ⊂
Breg for a general t ∈ T . Now assume the existence of another one-dimensional
irreducible family {Ls}s∈S of L(A) and call {Cs}s∈S the corresponding family of
total transforms in B. The rational number Rt · Cs does not depend from the
choice of the pair (t, s) ∈ T × S. Notice that if Rt · Cs > 0, then Da ∩ Lb 6= ∅ for
all (a, b) ∈ T × S. Now assume r = 3 and Rt · Cs > 0. Fix general Dt1 , Dt2 , Dt3 .
There is a unique quadric surface E containing the 3 disjoint lines Dt1 , Dt2 , Dt3 .
Since the family of lines {Ls}s∈S covers A and ](Ls ∩ (Dt1 ∪ Dt2 ∪ Dt3)) ≥ 3 for
all s, we obtain A = E. Now assume Rt · Cs = 0. For a general Q ∈ A there are
TQ ∈ T and sQ ∈ S such that Q ∈ DtQ

∩ LsQ
. Since DtQ

and LsQ
are irreducible,

we get DtQ
= LsQ

and hence the two families of lines are the same.
(b) Here we assume n = m+1 = 3. Hence for a general P ∈ X the plane curve

X ∩ TP X is a degree d := deg(X) plane curve which is a union of lines through P
(perhaps counted with certain multiplicities). Let x ≥ 1, be the “ general number of
these lines ”, i.e. the integer deg((X ∩TP X)reg) for a general P ∈ X. First assume
x ≥ 2 and that X is not a cone. By part (a) there is a unique one-dimensional
family {Dt}t∈T of lines contained in X. Call {Rt}t∈T the associated family of
curves in the normalization B of X. Since x ≥ 2 and P ∈ Xreg, we get Dt ·Dt > 0.
By Remark 1.5 we obtain that X is a cone. Now assume x ≥ 2 and that X is a
cone. Taking the tangential section at any smooth point of X we see that x = 1,
contradiction. Now assume x = 1. We are in the set-up of Lemma 1.4 for n = 3
and hence we are in case (ii) of Theorem 1.1.

(c) Here we assume n = m + 1 ≥ 4. By part (b) and induction on the integer
m we may assume that the result is true for the integers n′ = m′ + 1 = m. Let
H ⊂ Pn be a general hyperplane. By Bertini’s theorem ([3], parts 3) and 4) of Th.
6.3) the scheme X∩H is integral. Fix a general Q ∈ U ∩H. Hence Q ∈ (X∩H)reg.
Since TQX∩X is an (m−1)-dimensional cone with vertex containing Q and X∩H
is not a linear space, TQ(X∩H)∩(X∩H) = TQX∩X∩H is an (m−2)-dimensional
cone with vertex containg Q. By the inductive assumption X ∩H is either in case
(i) or in case (ii) of Theorem 1.1. If X ∩H is a quadric hypersurface of H, then X
is a quadric hypersurface. If X ∩H is in case (ii), then X is in case (ii) by Lemma
1.4.

(d) Here we assume n ≥ m + 2. Let X ′ ⊂ Pm+1 be a general projection of
X from a general (n − m − 2)-dimensional linear subspace of Pn. A sufficiently
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general linear projection of a cone is a cone. Hence we see that X ′ satisfies all the
assumptions of Theorem 1.1. By parts (b) and (c) we obtain that X ′ is either a
quadric hypersurface or belongs to case (ii). If X ′ is a quadric hypersurface, then
deg(X) = deg(X ′) = 2. Since X is non-degenerate, we obtain n = m + 1 in this
case, contradiction. Assume that X ′ is in case (ii). A general codimension (m− 1)
linear section, C ⊂ Pn−m+1, of X satisfies all the assumptions of [4], Th. 1. By
[4], Th. 1, we get n−m + 1 = 2, contradiction.

Remark 1.6. Assume char(K) = 0. Here we give one of the uncountably many rea-
sons which show that Theorem 1.1 is a very easy exercise in this case. If char(K) = 0
for a general P ∈ X and a general hyperplane M ⊂ Pn containing TP X the hy-
perplane M is tangent to X exactly along a linear subspace (perhaps reduced to
P ) and the scheme H ∩X has a quadratic singularity at P . As in Step (d) of the
proof of Theorem 1.1 we reduce to the case n = m + 1. In this case M = TP X.
Since a cone with vertex containing P has a quadratic singularity if and only if the
cone is a quadric hypersurface of its linear span, we get deg(X) = 2 and hence X
is a quadric hypersurface.
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