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Abstract. Let D denote the open unit disk {z ∈ C | |z| < 1}, and C+ denote
the closed right half-plane {s ∈ C | Re(s) ≥ 0}.

(1) Let W+(D) be the Wiener algebra of the disc, that is the set of all ab-

solutely convergent Taylor series in the open unit disk D, with pointwise
operations.

(2) Let W+(C+) be the set of all functions defined in the right half-plane

C+ that differ from the Laplace transform of a function fa ∈ L1(0,∞)
by a constant. Equipped with pointwise operations, W+(C+) forms a

ring.

We show that the rings W+(D) and W+(C+) are pre-Bézout rings.

1. Introduction

The aim of this paper is to show that the rings W+(D) and W+(C+) (defined
below) are pre-Bézout.

We first recall the notion of a pre-Bézout ring.

Definition 1.1. Let R be a commutative, unital ring.
(1) An element d ∈ R is called a greatest common divisor of a, b ∈ R if it is a

divisor of a and b and if k is another divisor, then k divides d.
(2) The ring R is said to be pre-Bézout if for every a, b ∈ R for which there exists

a greatest common divisor d, there exist x, y ∈ R such that d = xa+ yb.

Michael von Renteln [12, Theorem 2.4, p. 54] proved that the disc algebra A(D)
(the ring of continuous functions on the closed unit disc D, which are holomorphic
in the open unit disc D, with the usual pointwise operations) is pre-Bézout. The
first author of the present paper [8] showed the pre-Bézout property for the Sarason
algebra QA = (C(T) + C̃(T)) ∩H∞(D) of bounded holomorphic functions having
quasicontinuous boundary values. (Here C̃(T) denotes the set of harmonic conju-
gates of continuous functions on T.) Note that the algebra H∞(D) (of all bounded
and holomorphic functions in the open unit disc, with pointwise operations) is not
pre-Bézout [12, Remark, p. 54]. In this article, we will show that the rings W+(D)
and W+(C+) (defined below) are pre-Bézout.
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Throughout the article, we will use the following notation:

D := {z ∈ C | |z| < 1}
D := {z ∈ C | |z| ≤ 1}

C+ := {s ∈ C | Re(s) ≥ 0}.

Definition 1.2.
(1) The Wiener algebra of the disc, W+(D), is the set of all functions f : D → C

such that f is analytic in D and
∑∞
n=0 |an| < ∞ for f(z) =

∑∞
n=0 anz

n (z ∈
D). Equipped with pointwise operations and the norm ‖f‖W+ :=

∑∞
n=0 |an|,

W+(D) is a Banach algebra.
(2) Let W+(C+) denote the set of all functions F : C+ → C such that F (s) =

f̂a(s) + f0 (s ∈ C+), where fa ∈ L1(0,∞), f0 ∈ C, and f̂a denotes the Laplace
transform of fa given by

f̂a(s) =
∫ ∞

0

e−stfa(t)dt, s ∈ C+.

Equipped with pointwise operations and the norm

‖F‖W+ = ‖fa‖L1 + |f0|,

W+(C+) is a Banach algebra.

We note that W+(C+) is contained in the set of all holomorphic functions on
the (open) right half-plane that admit continuous extensions to the imaginary axis
and have a limit at infinity. We will call W+(C+) the Wiener-Laplace algebra.

Remark 1.3.
(1) From the application point of view, the above algebras also arise as natural

classes of transfer functions of stable distributed parameter systems in control
theory; see [11].

(2) We use the notation W+(C+) in order to highlight the similarity with W+(D).
Indeed, W+(D) is isomorphic to the algebra of summable sequences `1(N)
with convolution, pointwise addition, and the `1(N) norm. Now instead of this
“discrete” convolution algebra, we consider “distributed” summable functions
L1(0,∞), again with convolution, pointwise addition, and the L1(0,∞)-norm,
and attach the identity element δ (=Dirac distribution) to it, we obtain the
convolution algebra L1(0,∞)+Cδ. Then W+(C+) is isomorphic to the algebra
L1(0,∞) + Cδ via Laplace transformation.

Our main results are the following:

Theorem 1.4. The ring W+(D) is pre-Bézout.

Theorem 1.5. The ring W+(C+) is pre-Bézout.

Remark 1.6.
(1) The relevance of the pre-Bézout property in control theory is the following:

Suppose R is a pre-Bézout ring and we have a plant whose transfer function p
belongs to the field of fractions of R. Then p has a weakly coprime factorization
if and only if p has a coprime factorization; see [10, Proposition, p. 54].
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(2) We recall that a commutative ring R is called Bézout if every finitely generated
ideal in R is principal.
Neither of our algebras W+(D) nor W+(C+) are Bézout. That W+(D) is not
Bézout can be shown by considering the ideal (f, g), where

f = (1− z)3 and g = (1− z)3e−
1+z
1−z ;

see [9, Remark after Theorem 1, p. 224]. On the other hand the fact that
W+(C+) is not Bézout follows from a general result which says that if R is
any subring of the ring H∞ (of bounded analytic functions in the open right
half-plane Re(s)> 0, with pointwise addition and multiplication), such that
R contains the Laplace transforms of functions from L1(0,∞), then R has a
finitely generated ideal which is not principal; see [6, Theorem].

In Sections 3 and 4 we will give the proofs of Theorems 1.4 and 1.5, respectively,
but before doing that, in Section 2, we first give a few preliminaries.

2. Preliminaries

It is well known that the maximal ideals (or kernels of multiplicative linear
functionals) of W+(D) have the form

ma = {f ∈W+(D) | f(a) = 0}

for some a ∈ D. Similarly, the set of maximal ideals in W+(C+) coincides with the
set of ideals of the form Ms0 and M∞, where

Ms0 = {F ∈W+(C+) | F (s0) = 0}, s0 ∈ C+,

and M∞ is given by the kernel of the homomorphism ϕ : W+(C+)→ C defined by

F = f̂a + f0
ϕ7→ f0 (fa ∈ L1(0,∞), f0 ∈ C).

That is,

M∞ = {F ∈W+(C+) | ∃fa ∈ L1(0,∞) such that F = f̂a} = ̂L1(0,∞).

Since every maximal ideal is closed, all the sets mα, |α| = 1, are commutative
Banach subalgebras of W+(D). Similarly, Miβ , β ∈ R, and M∞ are commutative
Banach subalgebras of W+(C+). Obviously these algebras have no identity element.
But there is a substitute, namely the notion of the bounded approximate identity,
which will be useful in the sequel.

Definition 2.1. Let R be a commutative Banach algebra (without identity ele-
ment). We say that R has a bounded approximate identity if there exists a bounded
sequence (en)n of elements en in R such that for any f ∈ R,

lim
n
‖enf − f‖ = 0.

We will also need the following technical result:

Proposition 2.2 (Varopoulos, [16]). Let R be a Banach algebra with a bounded
left approximate identity. Then for every sequence (an)n≥1 in R converging to 0,
there exists a sequence (bn)n≥1 in R converging to 0, as well as an element c ∈ R
such that for all n ≥ 1, an = cbn.
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Lemma 2.3. Let R be a commutative integral domain with identity 1. If d ( 6= 0)
is a greatest common divisor of f1, . . . , fn, then 1 is a greatest common divisor of
f1
d , . . . ,

fn
d .

Proof. Clearly 1 divides f1
d , . . . ,

fn
d . If h is a divisor of f1

d , . . . ,
fn
d , then fk

d = hgk,
for some gk ∈ R, k = 1, . . . , n. So dh is common divisor of f1, . . . , fn, and as d is
the greatest common divisor of f1, . . . , fn, dh divides d, that is, dhk = d for some
k ∈ R. Since R is an integral domain and d 6= 0, we obtain hk = 1, that is, h
divides 1, proving the claim. �

3. W+(D) is pre-Bézout

Let z0 ∈ T := {z ∈ D | |z| = 1}. Consider the maximal ideal

mz0 := {f ∈W+(D) | f(z0) = 0}.
We will use the following result on the existence of a bounded approximate identity
for mz0 . Without loss of generality, we take z0 = 1.

Proposition 3.1 (Faivyševskij, [2]). Let (rn)n∈N be any sequence of positive num-
bers such that rn ↘ 1, and let

en(z) :=
z − 1
z − rn

.

Then (en)n∈N is a bounded approximate identity for m1.

A rather lengthy proof of the above result in the case when rn = 1 + 1
n can be

found in [5, Lemma 1]. For the reader’s convenience we present a short proof here.

Proof. A simple calculation gives that || z−1
z−1−ε ||W+ ≤ 2. Since the partial sums

Sn − Sn(1) for f approximate f ∈ m1, it suffices to consider q(z) = (z − 1)p(z),
where p ∈ C[z]. But∥∥∥∥ z − 1

z − 1− ε
q − q

∥∥∥∥
W+

=
∥∥∥∥ε q

z − 1− ε

∥∥∥∥
W+

= ε

∥∥∥∥ z − 1
z − 1− ε

p

∥∥∥∥
W+

≤ 2ε ||p||W+ .

�

We will also use the following fact proved on page 301 of the Proof of the Theorem
in [13].

Proposition 3.2 (M. von Renteln). Let f ∈ W+(D) and z0 ∈ D be such that
f(z0) = 0. Then f

z−z0 ∈W
+(D).

We will also need the corona theorem for W+(D); see for example [13, Theorem]:

Proposition 3.3. If f1, . . . , fn ∈W+(D) are such that

for all z ∈ D, |f1(z)|+ · · ·+ |fn(z)| > 0,

then there exist g1, . . . , gn ∈W+(D) such that

for all z ∈ D, g1(z)f1(z) + · · ·+ gn(z)fn(z) = 1.

Lemma 3.4. Suppose that f1, . . . , fn ∈W+(D) and d is a greatest common divisor
of f1, . . . , fn. If z0 ∈ D is a common zero of f1, . . . , fn, then d(z0) = 0 as well.



PRE-BÉZOUT RINGS OF ANALYTIC FUNCTIONS 49

Proof. If z0 ∈ D, then let m be the least integer among the multiplicities of z0

as a zero respectively of f1, . . . , fn. By Proposition 3.2, (z − z0)m is a divisor of
f1, . . . , fn. But since d is the greatest common divisor of f1, . . . , fn, it follows that
(z − z0)m divides d.

If on the other hand z0 ∈ T, then f1, . . . , fn ∈ mz0 , where

mz0 := {f ∈W+(D) | f(z0) = 0}.
By Proposition 3.1, mz0 has a bounded approximate identity. Applying Proposition
2.2, with (an)n≥1 := (f1, . . . , fn, 0, 0, 0, . . . ), we get the existence of an element
c ∈ mz0 , and g1, . . . , gn ∈ mz0 such that fk = cgk, k = 1, . . . , n. So we have
a common divisor c of f1, . . . , fn. Since c(z0) = 0, and d is a greatest common
divisor, we have that c divides d and hence d(z0) = 0, too. �

Proof of Theorem 1.4. Let f1, . . . , fn ∈ W+(D) have a greatest common divisor d
( 6= 0). By the algebraic result in Lemma 2.3, it follows that 1 is a greatest common
divisor of f1

d , . . . ,
fn
d . Lemma 3.4 gives∣∣∣∣f1

d

∣∣∣∣+ · · ·+
∣∣∣∣fnd

∣∣∣∣ > 0 in D.

By Proposition 3.3, it follows that there exist g1, . . . , gn ∈W+(D) such that

g1
f1

d
+ · · ·+ gn

fn
d

= 1,

and so g1f1 + · · ·+ gnfn = d, completing the proof of the theorem. �

4. W+(C+) is pre-Bézout

We will first prove that the maximal ideals Miβ , β ∈ R, and M∞ in W+(C+)
have a bounded approximate identity.

To this end, we need the following lemma. Let us point out that the proofs of
Lemma 4.1 and Theorem 4.2 follow closely those in [14] for the algebra

A =

{
f̂a(s) +

∞∑
k=0

ake
−stk

∣∣∣∣∣ fa ∈ L1(0,∞), (ak) ∈ `1, 0 = t0 < t1, t2, · · ·

}
,

Re(s) ≥ 0.

Lemma 4.1. Suppose F ∈M0. Then for each ε > 0, there exists P ∈M0 such that
P = p̂a+p0, where pa ∈ L1(0,∞) has compact support, p0 ∈ C, and ‖F−P‖W+ < ε.

Proof. Let ε > 0 be given. Let F = f̂a + f0, where fa ∈ L1(0,∞) and f0 ∈ C.
Choose a compactly supported pa ∈ L1(0,∞) such that

‖pa − fa‖L1 <
ε

2
.

Set

P := p̂a +
(
−
∫ ∞

0

pa(t)dt
)

︸ ︷︷ ︸
=:p0

.

Then P ∈W+(C+) and

P (0) = p̂a(0) + p0 =
∫ ∞

0

pa(t)dt−
∫ ∞

0

pa(t)dt = 0.
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So P ∈M0. We have∣∣∣∣f0 +
∫ ∞

0

pa(t)dt
∣∣∣∣ =

∣∣∣∣f0 +
∫ ∞

0

fa(t)dt+
∫ ∞

0

(
pa(t)− fa(t)

)
dt

∣∣∣∣
=

∣∣∣∣f0 + f̂a(0) +
∫ ∞

0

(
pa(t)− fa(t)

)
dt

∣∣∣∣
≤ |F (0)|+ ‖pa − fa‖L1 < 0 +

ε

2
=
ε

2
.

Thus

‖F − P‖W+ = ‖fa − pa‖L1 +
∣∣∣∣f0 +

∫ ∞
0

pa(t)dt
∣∣∣∣ < ε

2
+
ε

2
= ε.

This completes the proof. �

Theorem 4.2.
(a) Let M0 := {F ∈W+(C+) | F (0) = 0} and

En :=
s

s+ 1
n

, n ∈ N.

Then (En)n∈N is a bounded approximate identity for M0.
(b) Let M∞ = ̂L1(0,∞) and

Un = n̂1[0, 1n ], n ∈ N,

where 1[0, 1n ](t) is 1 if t ∈ [0, 1
n ], and 0 otherwise. Then (Un)n≥1 is a bounded

approximate identity for M∞.

Proof. (b) The existence of a bounded approximate identity for M∞ follows [1,
Theorem 6.5, p. 105]. The above example is easy to check.

(a) We note that

‖En‖W+ =
∥∥∥∥1 +

̂(
− 1
n
e−

t
n

)∥∥∥∥
W+

= |1|+
∥∥∥∥− 1

n
e−

t
n

∥∥∥∥
L1

= 1 + 1 = 2,

and so the sequence is bounded.
Given F ∈M0, and ε > 0 arbitrarily small, in view of Lemma 4.1, we can find a

P ∈M0 such that P = p̂a + p0, where pa ∈ L1(0,∞) has compact support, p0 ∈ C,
and ‖F − P‖W+ < ε. Then

‖EnF − F‖W+ ≤ ‖EnP − P‖W+ + ‖En‖W+‖F − P‖W+ + ‖F − P‖W+ .

So it is enough to prove that

lim
n→∞

‖EnP − P‖W+ = 0

for all P ∈M0 such that P = p̂a + p0, where pa ∈ L1(0,∞) has compact support,
and p0 ∈ C. We do this below.

We have

EnP − P =
s+ 1

n −
1
n

s+ 1
n

P − P = − 1
n

1
s+ 1

n

P = − 1
n

(
̂(e−t/n ∗ pa) + p0ê−t/n

)
.

Let c be given by

c(t) :=
∫ t

0

e−
t−τ
n pa(τ)dτ + p0e

− t
n .
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Then c ∈ L1(0,∞). Let T > 0 be such that supp(pa) ⊂ [0, T ]. We have

‖EnP − P‖W+ =
1
n
‖c‖L1 =

1
n

∫ ∞
0

|c(t)|dt =
1
n

∫ T

0

|c(t)|dt︸ ︷︷ ︸
(I)

+
1
n

∫ ∞
T

|c(t)|dt︸ ︷︷ ︸
(II)

.

We estimate (I) as follows:

(I) =
1
n

∫ T

0

|c(t)|dt =
1
n

∫ T

0

∣∣∣∣ ∫ t

0

e−
t−τ
n pa(τ)dτ + p0e

− t
n

∣∣∣∣dt
≤ 1

n

∫ T

0

[∫ t

0

e−
t−τ
n |pa(τ)|dτ + |p0|e−

t
n

]
dt

≤ 1
n

∫ T

0

[∫ t

0

1 · |pa(τ)|dτ + |p0| · 1
]
dt︸ ︷︷ ︸

(III)

.

Since the integral (III) does not depend on n, we obtain that

lim
n→∞

1
n

∫ T

0

|c(t)|dt = 0.

Furthermore,

(II) =
1
n

∫ ∞
T

|c(t)|dt =
1
n

∫ ∞
T

e−
t
n

∣∣∣∣ ∫ t

0

e
τ
n pa(τ)dτ + p0

∣∣∣∣dt
=

1
n

∫ ∞
T

e−
t
n

∣∣∣∣ ∫ ∞
0

e
τ
n pa(τ)dτ + p0

∣∣∣∣dt (since supp(pa) ⊂ [0, T ])

=
1
n

∫ ∞
T

e−
t
n

∣∣∣∣p̂a(− 1
n

)
+ p0

∣∣∣∣dt
Since pa has compact support in [0, T ], p̂a is an entire function by the Payley-Wiener
theorem; see for instance [15, Theorem 7.2.3, p. 122]. Consequently,

(II) =
1
n

∫ ∞
T

e−
t
n

∣∣∣∣p̂a(− 1
n

)
+ p0

∣∣∣∣dt
=

1
n

∫ ∞
T

e−
t
n dt ·

∣∣∣∣p̂a(− 1
n

)
+ p0

∣∣∣∣
= e−

T
n

∣∣∣∣p̂a(− 1
n

)
+ p0

∣∣∣∣ n→∞−→ 1 · |p̂a(0) + p0| = |P (0)| = 0.

This completes the proof of the case (a). �

Remark 4.3. The case of Miβ works in a similar manner.

Theorem 4.4. Let F ∈ W+(C+), and let s0 ∈ C be such that Re(s0) > 0 and
F (s0) = 0. Then F

s−s0 ∈W
+(C+).

Proof. Let F = f̂a + f0, where fa ∈ L1(0,∞) and f0 ∈ C. Since F (s0) = 0, we
have

F (s0) =
∫ ∞

0

e−s0τfa(τ)dτ + f0 = 0. (1)
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Let c be defined by

c(t) =

 f0e
s0t +

∫ t

0

es0(t−τ)fa(τ)dτ for t > 0,

0 for t < 0.
(2)

We have∫ ∞
0

|c(t)|dt =
∫ ∞

0

eRe(s0)t

∣∣∣∣f0 +
∫ t

0

e−s0τfa(τ)dτ
∣∣∣∣dt

=
∫ ∞

0

eRe(s0)t

∣∣∣∣− ∫ ∞
t

e−s0τfa(τ)dτ
∣∣∣∣dt (using (1))

≤
∫ ∞

0

eRe(s0)t

∫ ∞
t

e−Re(s0)τ |fa(τ)|dτdt

=
∫ ∞

0

∫ ∞
t

eRe(s0)te−Re(s0)τ |fa(τ)|dτdt

=
∫ ∞

0

∫ τ

0

eRe(s0)te−Re(s0)τ |fa(τ)|dtdτ

=
∫ ∞

0

e−Re(s0)τ |fa(τ)|
∫ τ

0

eRe(s0)tdtdτ

=
∫ ∞

0

e−Re(s0)τ |fa(τ)|e
Re(s0)τ − 1

Re(s0)
dτ

≤ 1
Re(s0)

∫ ∞
0

|fa(τ)|dτ <∞.

So c ∈ L1(0,∞).
Let β ∈ C be such that Re(β)>Re(s0). Then, by denoting functions of the form

x 7→ eαxg(x) by eαxg, we have from (2) that

e−βtc(t) =

 f0e
(s0−β)t +

([
e(s0−β)xu

]
∗
[
e−βxfa

])
(t) for t > 0

0 for t < 0
(3)

where u denotes the step function, given by u(t) = 1 for t > 0 and u(t) = 0
otherwise.

Recall the fact that if ga ∈ L1(0,∞), then for a complex number α such that
Re(α)> 0, (ê−αtga)(s) = ĝa(s+ α) (for s ∈ C+). Using this, we obtain(

ê−βtc
)
(s) = ĉ(s+ β) and

(
ê−βtfa

)
(s) = f̂a(s+ β) (s ∈ C+).

Since the Laplace transform of a convolution is the product of the Laplace trans-
forms (see for instance [4, Proposition 14.1]), we have

̂([
e(s0−β)xu

]
∗
[
e−βxfa

])
(s) =

1
s+ β − s0

· f̂a(s+ β) (s ∈ C+).

Using these facts, we see by taking Laplace transform on both sides of (3) that

ĉ(s+ β) =
f0

s+ β − s0
+

1
s+ β − s0

· f̂a(s+ β) =
F (s+ β)
s+ β − s0

(s ∈ C+).
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So for all s such that Re(s)>Re(s0), we have

ĉ(s) =
F (s)
s− s0

.

By the identity principle, the above holds in C+. So F
s−s0 = ĉ ∈W+(C+). �

In our proof of Theorem 1.5 we will need the known corona theorem for W+(C+)
below (see [7, Theorem 4.3.(a2)]), and we include its short proof here:

Proposition 4.5. If F1, . . . , Fn ∈W+(C+) are such that there exists a δ > 0 such
that

for all s ∈ C+, |F1(s)|+ · · ·+ |Fn(s)| > δ > 0, (4)

then there exist G1, . . . , Gn ∈W+(C+) such that

for all s ∈ C+, G1(s)F1(s) + · · ·+Gn(s)Fn(s) = 1. (5)

Proof. That (5) implies (4) is easy to see. The reverse implication follows from
the classical result (see [3, p.112]) that the maximal ideals of W+(C+) are given by
M∞ and Ms0 , where s0 ∈ C+. Indeed, suppose that F1, . . . , Fn ∈W+(C+) satisfy
(4), but that the ideal (F1, . . . , Fn) 6= (1). Then there exists a maximal ideal M
that contains (F1, . . . , Fn). We now consider the two possible cases:

(i) If M = Ms0 for some s0 ∈ C+, then (F1, . . . , Fn) ⊂Ms0 yields that F1(s0) =
· · · = Fn(s0) = 0, which contradicts (4).

(ii) Now suppose that M = Ms0 . Let Fk = f̂k,a + fk,0, where fk,a ∈ L1(0,∞) and
fk,0 ∈ C, k = 1, . . . , n. Since (F1, . . . , Fn) ⊂M∞, we have f1,0 = · · · = fn,0 =
0. Hence Fk = f̂k,a, k = 1, . . . , n. Passing to the limit s→∞ in (4), we obtain
the contradiction that 0 ≥ δ.

Consequently (F1, . . . , Fn) = (1), and so (5) holds for some G1, . . . , Gn ∈W+(C+).
�

Lemma 4.6. Suppose that F1, . . . , Fn ∈W+(C+) and that D is a greatest common
divisor of F1, . . . , Fn. If s0 ∈ C+ is a common zero of F1, . . . , Fn, then D(s0) = 0
as well.

Proof. If Re(s0) > 0, then let m be the least integer among the multiplicities of
s0 as a zero respectively of F1, . . . , Fn. By Theorem 4.4, (s − s0)m is a divisor of
F1, . . . , Fn. But since D is the greatest common divisor of F1, . . . , Fn, it follows
that (s− s0)m divides D.

If on the other hand Re(s0) = 0, then F1, . . . , Fn ∈Ms0 , where

Ms0 := {F ∈W+(C+) | F (s0) = 0}.

By Theorem 4.2, Ms0 has a bounded approximate identity. Applying Proposition
2.2, with (an)n≥1 := (F1, . . . , Fn, 0, 0, 0, . . . ), we get the existence of an element
C ∈Ms0 , and G1, . . . , Gn ∈Ms0 such that Fk = CGk, k = 1, . . . , n. So we have a
common divisor C of F1, . . . , Fn. Since D is a greatest common divisor, C divides
D and so D(s0) = 0, too. �

Lemma 4.7. Suppose that F1, . . . , Fn ∈M∞ and that D ∈ W+(C+) is a greatest
common divisor of F1, . . . , Fn. Then D ∈M∞ as well.
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Proof. Applying Theorem 4.2 and Proposition 2.2 to the sequence
(an) = (F1, F2, . . . , Fn, 0, 0, 0 . . . ) we get a common divisor C ∈ M∞ of the Fj ’s,
j = 1, . . . , n. Hence C divides D; that is D = QC for some Q ∈W+(C+). Therefore
D ∈M∞. �

Proof of Theorem 1.5. Let F1, . . . , Fn ∈ W+(C+) have a greatest common divisor
D. By the algebraic result in Lemma 2.3, it follows that 1 is a greatest common
divisor of F1

D , . . . ,
Fn
D .

Lemma 4.6 gives ∣∣∣∣F1

D

∣∣∣∣+ · · ·+
∣∣∣∣FnD

∣∣∣∣ > 0 in C+. (6)

Since Fk/D ∈ W+(C+) for each k, Fk/D = ĥk + αk, where hk ∈ L1(0,∞) and
αk ∈ C. Since hk ∈ L1(0,∞), we have

lim
s→∞
s∈C+

ĥk(s) = 0. (7)

We consider the two possible cases:
(i) All the αk’s are zero. Then by Lemma 4.7, it follows that 1 is the Laplace

transform of an element in L1(0,∞), which is a contradiction.
(ii) At least one of the αk’s is not zero. Then |α1|+ · · ·+ |αn| > 0. So for s ∈ C+

such that |s| > R with a large enough R, (7) gives the existence of a δ > 0
such that ∣∣∣∣F1

D

∣∣∣∣+ · · ·+
∣∣∣∣FnD

∣∣∣∣ > δ > 0,

while on the compact set K consisting of s ∈ C+ with |s| ≤ R, |F1
D |+ · · ·+ |

Fn
D |

is at least as large as its minimum value on K, which is positive by (6). So by
Proposition 4.5, it follows that there exist G1, . . . , Gn ∈W+(C+) such that

G1
F1

D
+ · · ·+Gn

Fn
D

= 1,

and so G1F1 + · · ·+GnFn = D.
This completes the proof of the theorem. �
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[2] V.M. Făıvyševskĭı, The structure of the ideals of certain algebras of analytic
functions, (Russian) Dokl. Akad. Nauk SSSR, 211:537-539, 1973. English trans-
lation in Soviet Math. Dokl., 14:1067-1070, 1973.

[3] I. Gelfand, D. Raikov, G. Shilov, Commutative Normed Rings, Chelsea Publ.
Comp. New York, 1964.

[4] P.B. Guest, Laplace Transforms and an Introduction to Distributions, Ellis
Norwood, 1991.
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