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EXTENSIONS OF 2-POINT SELECTIONS
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Abstract. We consider a special order-like relation on the subsets of a given
space X, which is generated by a continuous selection f for at most 2-point
subsets of X. The relation allows to define a “minimal” set of any non-empty
compact subset of X, which is then used to construct continuous extensions of
f over families of non-empty finite subsets of X. For instance, we show that
f can be extended to a continuous selection for at most 3-point subsets if and
only if the hyperspace of at most 3-point subsets has a continuous selection.
Other possible applications are demonstrated as well.

Dedicated to Professor Takao Hoshina on the occasion of his 60 *" birthday

1. Introduction

Let X be a topological space, and let F(X) be the set of all non-empty closed
subsets of X. Also, let D C F(X). A map f: D — X is a selection for D if
f(S) € S for every S € D. A selection f: D — X is continuous if it is continuous
with respect to the relative Vietoris topology 7, on D. Let us recall that 7y is
generated by all collections of the form

) ={se5(X): S|V and SNV #0, whenever V €V},

where V runs over the finite families of open subsets of X. Sometimes, for reasons
of convenience, we will also say that f is Vietoris continuous to stress the attention
that f is continuous with respect to the topology 7y .

In the sequel, all spaces are assumed to be at least Hausdorff. In this note, we
are interested of continuous selections for D, where D is a family of finite subsets
of X. To this end, let

Fo(X)={S € F(X):|S| <n}, n>L1.

Note that we may identify X with the set F1(X), and, in fact, X is homeomorphic
to the space (F1(X), 7). The latter means that the Vietoris topology is admissible,
see [4].

It should be mentioned that there are spaces X (for instance, one can take X to
be the real line R), which have a continuous selection for F,(X) for every n > 2,
but they have no continuous selection for F(X), see [1]. On the other hand, we
don’t know if there exists a space X which has a continuous selection for F, (X)
for some n > 2, but it has no continuous selection for F,1(X), see [3].
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In the present paper we are mainly interested in the above problem when n =
2. Briefly, we show that a continuous selection f for Fo(X) can be continuously
extended to a selection for F3(X) if and only if F3(X) has a continuous selection, see
Corollary 4.2. We also demonstrate that, for a space X with only one non-isolated
point, the hyperspace F5(X) has a continuous selection if and only if F5(X) has a
continuous selection, see Corollary 5.4. The technique developed to achieve these
results is based on an order-like relation on the subsets of a given space X that is
generated by a continuous selection for Fo(X), see the next section. In particular,
it culminates in an extension result (Theorem 3.2) that may have an independent
interest. Finally, we also consider a local version of this selection-extension problem
for hyperspaces, see Section 5.

2. An Order-like Relation on Subsets

Suppose that f : Fo(X) — X is a selection. Then, it defines a natural order-
like relation < on X by letting z < y if and only if f({z,y}) = x, see [4]. For
convenience, we will write that z < y if x <y and z # y.

The relation is very similar to a linear order on X in that it is both reflexive
and antisymmetric, but, unfortunately, it may fail to be transitive. In the present
paper, we extend this relation to all subsets of X. Namely, if B and C' are subsets
of X (not necessarily non-empty), then we shall write that B < C'if y < z for every
y € Band z € C. As before, we will write that B < C if y < z for every y € B
and z € C, equivalently, if B < C and BN C = 0.

Here are some basic properties of this relation.

Proposition 2.1. Let X be a space, f: Fo(X) — X be a selection, and let “<X” be
the order-like relation generated by f. Also, let B,C € F(X) be such that B < C
and C' =2 B. Then, both B and C are singletons, and B = C.

Proof. The observation is almost obvious. Namely, take points y € B and z € C.
Then, by definition, y < z and z <y, soy = 2. That is, C ={y} ={z} =B. O

Proposition 2.2. Let X be a space, f: Fo(X) — X be a selection, and let “X” be
the order-like relation generated by f. Also, let B,C € F(X) be such that B < C
and BNC # 0. Then, BN C is a singleton.

Proof. Suppose that y,z € BN C. Then, by definition, ¥y < z and z =< ¥, so
Y=z (I

Proposition 2.3. Let X be a space, f : Fo(X) — X be a selection, and let “X”
be the order-like relation generated by f. Also, let S € F(X), and let B,C C S be
such that B = S\ B and C < S\ C. Then, either BC C or C C B.

Proof. Suppose, if possible, that this fails. Then, B\ C # 0 and C'\ B # ), so
there is a point y € B\ C and a point z € C'\ B. However, this implies that z <y
because y € S\ C, and y < z because z € S\ B. Hence, y = z, but y # z. This is
a contradiction, which completes the proof. ([

We are now ready for our main result concerning this relation. Towards this end,
we introduce the following concept. Let f : F5(X) — X be a selection, “<” be the
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corresponding order-like relation generated by f, and let S € F(X). We shall say
that a subset B C S, B € F(X), is an f-minimum of S if

(1) B=S\B,

2 fCcsS, CeFX),and C =S\ C, then BCC.

In this case we will write that B = miny S.

Lemma 2.4. Let X be a space, f: Fo(X) — X be a selection, and let “X” be the
order-like relation generated by f. Then, every non-empty compact subset S C X
has a unique f-minimum.

Proof. Let S € F(X) be compact, and let B = miny S and C' = miny S. Then,
by definition, B < S\ B and C' < S\ C. Hence, by Proposition 2.3, either B C C
or C C B. According once again to the definition of an f-minimal set, we get that
B=C.
Turning to the existence of f-minimal sets, consider the family
D={BeJF(S): B<S\B}

Note that S € D because S < S\ S =10, so D # (. On the other hand, D consists
of compact sets, and, by Proposition 2.3, it has the finite intersection property.
Hence, D = (D € F(X). In fact, D € D. Indeed, if D = S, this was mentioned
before. If D # S, take points y € D and z € S\ D. Then, there exists B € D,
with z ¢ B. However, y € D C B, and therefore y < z. That is, D < S\ D, which
completes the proof. O

3. Selection-regular Selections

Let X be a space, and let K(X) ={S € F(X) : |S] < w}. Also, let f: Fo(X) —
X be a continuous selection, and let D C K(X) be such that miny .S € D for every
S € D. We shall say that a selection h : D — X is f-regular if h(S) = h(minys S)
for every S € D.

Let us observe that if D = F5(X), then h is f-regular if and only if h = f. That
is, any f-regular selection h provides an extension of f to the elements of D in sense
that h(S) = f(S) for every S € DNF2(X). In particular, this also implies that there
are continuous selections for F5(X) which are not f-regular. On the other hand, we
have the following general example of continuous selections g : F5(X) — X which
are not g [ Fo(X)-regular.

Example 3.1. Let X be a space, C be a disjoint cover of X consisting of non-
empty clopen subsets of X, with €| > 3, and let h : F3(X) — X be a continuous
selection such that |miny S| = 1 for every S € F3(X), where f = h | F2(X). Then,
there exists a continuous selection g : F3(X) — X which is not f-regular, but

[=g1F(X).

Proof. By hypothesis, X has a cover of pairwise disjoint non-empty clopen sets
C1,C3,C3 C X and points z; € C;, 1 < ¢ < 3, such that ming{zi,zs, 23} =
x1. Let W = ({C1, Cq, C5}) N F3(X), which is a 7y -clopen subset of F5(X), with
UNFo(X) = 0. Next, define a continuous selection g : F3(X) — X by letting that
g(S) e SNC5if S €U, and g(S) = h(S) otherwise. Then, g | F2(X) = f because
UNFy(X) = 0. However, g is not f-regular because g({z1,x2,23}) = w3, while
g (ming{z1, 29, x3}) = g(x1) = 1. O
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In our next considerations, to any family D C K(X) we associate the family
ming (D) = {minyS : S € D}.

Note that |miny S| = 1 or |mins S| > 3, but |miny S| = 2 is impossible. On the
other hand, with respect to selections, it suffices to consider at least 2-point sets.
Namely, any selection is continuous on the singletons of X. Thus, the substantial
part of ming(D) are the non-singletons, i.e. the following family

min} (D) = {B € miny(D) : |B| > 1}.

Theorem 3.2. Let X be a space, f: F2(X) — X be a continuous selection, and
let D C K(X) be such that ming (D) C D. Then, the following are equivalent.

(a) D has a continuous f-reqular selection,

(b) D has a continuous selection,

(c) min%(D) has a continuous selection.

To prepare for the proof of Theorem 3.2, we need the following simple criterion
for continuity in F2(X), see [2, Theorem 3.1].

Proposition 3.3. Let X be a space, f: Fo(X) — X be a selection, and let “<X” be
the order-like relation generated by f. Also, and let x,y € X be such that x < y.
Then, f is continuous at {x,y} if and only if there are open sets U and V such
thatx e U, yeV,and U < V.

In fact, relying on this criterion, we have the following crucial result concerning
the proof of Theorem 3.2.

Lemma 3.4. Let X be a space, f: Fo(X) — X be a continuous selection, and let
“X7” be the order-like relation generated by f. Then, whenever S € X(X), there is
a disjoint family {V,, : x € S} of open subsets of X such that

(a) = €V, for everyxz € S,

(b) f T € {Vy:2€S}), thenming T € ({V, : © € ming S}).

Proof. By Proposition 3.3, there exists a disjoint family {V, : # € S} of open
subsets of X such that z € V,;, x € §, and if x,y € S and x < y, then V, < V.
This family is as required. Indeed, take a T' € ({V, : x € S}), and let B =
U{VaNT :2 €miny S}. Then,

T\B=|J{TNV,:yeS\minsS},

and therefore B < T'\ B because V, < V,, for every € miny S and y € S\ miny S.
Hence, by definition,

mingT C B C U{Vw :x € mingS}. (1)

Take now points z,y € S, with ming TNV, # 0 = miny T’ N'V,. Then, z < ¢ for
every z € miny TNV, and t € V,NT. So, according to the properties of the family
{Vz : z € S}, we have that V, <V, i.e. that < y. In particular, this implies that

mingS C {z € S:V, Nmin,T # (0}. (2)

Thus, according to (1) and (2), we finally get that € miny S if and only if
ming TNV, # 0, i.e. that miny T € ({V, : « € miny S}). a
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Proof of Theorem 3.2. Since min}(D) C miny(D) C D, the implications (a) =
(b) = (c) are obvious. So, we are going to prove only that (¢) = (a). Suppose
that ¢* : min}(D) — X is a continuous selection. Then, g* defines a continuous
selection g : miny (D) — X by letting g(B) = ¢*(B) if B € min}(D), and g(B) € B
otherwise. Next, we define an f-regular selection h for D by h(S) = g(miny S) for
every S € D. It remains to show that h is continuous. To this end, take an S € D,
and a neighbourhood U of h(S). Since g(min; S) € U and g is continuous, there
exists a finite family {W, : = € min; S} of disjoint open subset of X such that
x € Wy, x € miny S, and g (({W, : © € miny S})) C U. On the other hand, by
Lemma 3.4, there exists a disjoint family {V, : € S} of open subset of X such
that € V,, 2 € S, and miny T' € ({V, : © € miny S}) for every T € ({V, : € S}).
Take U, = W, NV, if x € ming S, and U, = V,, otherwise. Then, miny T € ({U, :
x € miny S}) provided T' € ({U, : z € S}) ND, so h(T) = g(min; T) € U. O

4. Extensions of 2-point Selections

In this section we provide some possible applications of the extension theorem
in the previous section. To this end, let us recall that

F.(X)={S e F(X):|S| <n}.
Also, for 1 <m < n, we let F(,,, ,)(X) = {S € F(X) : m < [S] < n}.

Corollary 4.1. Let X be a space, and let f : Fo(X) — X and g : F(33)(X) — X be
continuous selections. Then, there exists a continuous selection h for F3(X) such
that h | Fo(X) = f, i.e. [ can be extended to a continuous selection for Fs(X).

Proof. Let D = F3(X). As it was mentioned before, miny S ¢ F (5 2)(X) for every
S € D. So, in this case, we have that B € F(33)(X) for every B € min}(D),
i.e. that min}(D) C F(33)(X). Hence, by hypothesis, min}(D) has a continuous
selection, take, for instance, g [ min}(D). Therefore, by Theorem 3.2, D = F3(X)
has a continuous f-regular selection h. In particular, h is an extension of f, which
completes the proof. O

Related to this consequence, we have the following natural question.

Question 1. Let X be a space such that, for some n > 2, both families F,,(X)
and F(,41,541)(X) have continuous selections. Is it true that F,;1(X) has also a
continuous selection?

Corollary 4.1 is interesting also from another point of view. Namely, for a space
X and a continuous selection f : Fo(X) — X, we may ask if f can be extended to
a continuous selection for F3(X). On the other hand, we may only be interested if
there exists a continuous selection for F3(X). It turns out that these two properties
are equivalent.

Corollary 4.2. Let X be a space, and let f : Fo(X) — X be a continuous selection.
Then, f can be extended to a continuous selection for F3(X) if and only if F3(X)
has a continuous selection.

Proof. Note that, by Corollary 4.1, f can be extended to a continuous selection
for F3(X) if and only if F(3 3)(X) has a continuous selection. So, it is an immediate
consequence of Corollary 4.1. O
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5. One-point Extensions

In this section we consider a local version of the previous extension problem.
Namely, let f : F2(X) — X be a continuous selection, and let p € X be a fixed
point. Now, we become interested if f can be extended to a continuous selection
for F3(X) provided F3(X \ {p}) has a continuous selection.

Turning to this problem, we consider the order-like relation “<” generated by f,
and we let

Ly={zeX:z<p} and R,={yeX:p=<y}

Also, we consider the families
P= {SE?(&:;)(X) : SﬂLp #@#RPOS}7

and
Q={SeFss(X):SNL,=0or SNR, =0}.

Proposition 5.1. Let X be a space, p € X, and let f : Fo(X) — X be a continuous
selection. Then, miny S is a singleton for every S € Q, withp € S.

Proof. Suppose that S € Q, and let S = {z,y,p} for some points x,y € X \ {p},
with * < y. If {z,y} C L,, then x < p and y < p, so min;{x,y,p} = {z}. In
the same way, if {z,y} C R,, then p < = and p < y, so ming{z,y,p} = {p}. This
complete the proof. O

Proposition 5.2. Let X be a space, p € X, and let f : Fo(X) — X be a continuous
selection. Then, there exists a continuous selection g : P — X.

Proof. Whenever S € P, let us observe that 1 < |[SNL,| <2and 1 < |[SNR,| <2.
Then, for every S € P, let {5 be the minimal element of SN L,, with respect to the
order-like relation “=<” generated by f, and let rg be the corresponding maximal
element of SNR,. Now, define a selection g : P — X by ¢(S) = f({ls,rs}), S € P.
To check the continuity of g, take an S € P, and a neighbourhood U of ¢(S).
Since f is continuous, there are open subsets V,W C X such that fg € V C L,
rs € W C Ry, and f(({V,W})) C U. We distinguish the following cases for
x € S\ {ls,rs}. If p# x, then either x € L, or x € R, say € L,. In this
case, {g < x and, by Proposition 3.3, there are open subsets V1, V> C L), such that
bs € Vi CV,x eV, and Vi < V. Thus, we get a Ty-neighbourhood ({Vy, Vo, W})
of S such that T € ({V4,Vo,W}) implies £7 € V4 C V and rr € W. Hence,
{lr,rr} € ({V,W}), and therefore ¢(T) = f({lr,rr}) € U. The case x € R, is
symmetric. Suppose finally that © = p. Then S = {{g,p,rs} and ls < p < rs.
Hence, there are open sets Vy, O, Wy such that bg e Vo CV,pe O, rg e Wog C W,
and Vy < O < Wy. Thus, just like before, we get a 7y-neighbourhood ({Vy, O, Wy})
of S such that T € ({Vo, 0, Wp}) implies p € Vo C V and rp € Wy C W. Hence,
9(T) = f({lr,rr}) € U which completes the proof. O

We are now ready for our main result in this section.

Theorem 5.3. Let X be a space, p € X, and let f: Fo(X) — X and g : F3(X \
{p}) — X be continuous selections. Then, f can be extended to a continuous
selection for F3(X).
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Proof. Let D = F3(X), and let L,, R, C X and P,Q C F33)(X) be defined as
at the beginning of this section. By Theorem 3.2, it suffices to show that min} (D)
has a continuous selection. To this end, note that S € min}(D) if and only if S has
no minimal element. In particular, if S € min}(D), then |S| = 3.

Now, from one hand, we have that PNQ = () and P U Q = F(33)(X), hence
min} (D) C PUQ. From another hand, by Proposition 5.1, S ¢ min}(D) provided
p € S € Q. Hence, QN min}(D) C I, where

H= {S c 3:'(313)(X) : S C Lp or S C Rp}

Finally, let us observe that both P and H are Ty -open, and clearly P N H = (.
Therefore, PNmin} (D) and QNmin} (D) = HNmin} (D) define a 7y -clopen partition
for min% (D). Thus, we can define a continuous selection for min% (D) by pointing
out how to define continuous selections for P and H. To this end, let us observe
that H C F3(X \ {p}), hence ¢g [ H is a continuous selection for H. On the other
hand, by Proposition 5.2, P has also a continuous selection. This, in fact, completes
the proof. |

Corollary 5.4. Let X be a space with only one non-isolated point p € X, and let
f:F2(X) — X be a continuous selection. Then, f can be extended to a continuous
selection for F3(X).

Proof. By Theorem 5.3, it suffices to show that F3(X \ {p}) has a continuous
selection. However, X \ {p} is a discrete space, and any selection for F5(X \ {p})
will be continuous. ]

Note that, in Corollary 5.4, the space X has a dense set of isolated points. Re-
lated to this, we were recently informed by M. Hrusak that he and J. Steprans
proved that if a space X has a countable dense set of isolated points and a contin-
uous selection for F5(X), then it has a continuous selection for F5(X) as well; their
paper is in process.

Corollary 5.5. Let X be a collectionwise normal zero-dimensional space which has
a continuous selection f : Fo(X) — X, P C X be a closed discrete set, and let g
be a continuous selection for F3(X \ P). Then, f can be extended to a continuous
selection for F5(X).

Proof. By Corollary 4.2, it suffices to show that F3(X) has a continuous selection.
Since X is collectionwise normal and zero-dimensional, there exists a clopen discrete
cover {X, : p € P} of X such that p € X,,, p € P. Then, by hypothesis, each
F3(X,\{p}), p € P, has a continuous selection. Hence, by Theorem 5.3, f [ F2(X})
can be extended to a continuous selection f, : F3(X,) — X, for every p € P.
Now, we consider a well-ordering < on P, and then, for every S € F3(X), we let
p(S) = min{p € P : SN X, # 0}. Finally, we define a continuous selection h for
F3(X) by letting h(S) = fos) (SN Xp(s)) for every S € F3(X). O
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