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Abstract. We consider a special order-like relation on the subsets of a given

space X, which is generated by a continuous selection f for at most 2-point
subsets of X. The relation allows to define a “minimal” set of any non-empty

compact subset of X, which is then used to construct continuous extensions of

f over families of non-empty finite subsets of X. For instance, we show that
f can be extended to a continuous selection for at most 3-point subsets if and

only if the hyperspace of at most 3-point subsets has a continuous selection.
Other possible applications are demonstrated as well.

Dedicated to Professor Takao Hoshina on the occasion of his 60 th birthday

1. Introduction

Let X be a topological space, and let F(X) be the set of all non-empty closed
subsets of X. Also, let D ⊂ F(X). A map f : D → X is a selection for D if
f(S) ∈ S for every S ∈ D. A selection f : D→ X is continuous if it is continuous
with respect to the relative Vietoris topology τV on D. Let us recall that τV is
generated by all collections of the form

〈V〉 =
{
S ∈ F(X) : S ⊂

⋃
V and S ∩ V 6= ∅, whenever V ∈ V

}
,

where V runs over the finite families of open subsets of X. Sometimes, for reasons
of convenience, we will also say that f is Vietoris continuous to stress the attention
that f is continuous with respect to the topology τV .

In the sequel, all spaces are assumed to be at least Hausdorff. In this note, we
are interested of continuous selections for D, where D is a family of finite subsets
of X. To this end, let

Fn(X) = {S ∈ F(X) : |S| ≤ n}, n ≥ 1.

Note that we may identify X with the set F1(X), and, in fact, X is homeomorphic
to the space (F1(X), τV ). The latter means that the Vietoris topology is admissible,
see [4].

It should be mentioned that there are spaces X (for instance, one can take X to
be the real line R), which have a continuous selection for Fn(X) for every n ≥ 2,
but they have no continuous selection for F(X), see [1]. On the other hand, we
don’t know if there exists a space X which has a continuous selection for Fn(X)
for some n ≥ 2, but it has no continuous selection for Fn+1(X), see [3].
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In the present paper we are mainly interested in the above problem when n =
2. Briefly, we show that a continuous selection f for F2(X) can be continuously
extended to a selection for F3(X) if and only if F3(X) has a continuous selection, see
Corollary 4.2. We also demonstrate that, for a space X with only one non-isolated
point, the hyperspace F2(X) has a continuous selection if and only if F3(X) has a
continuous selection, see Corollary 5.4. The technique developed to achieve these
results is based on an order-like relation on the subsets of a given space X that is
generated by a continuous selection for F2(X), see the next section. In particular,
it culminates in an extension result (Theorem 3.2) that may have an independent
interest. Finally, we also consider a local version of this selection-extension problem
for hyperspaces, see Section 5.

2. An Order-like Relation on Subsets

Suppose that f : F2(X) → X is a selection. Then, it defines a natural order-
like relation � on X by letting x � y if and only if f({x, y}) = x, see [4]. For
convenience, we will write that x ≺ y if x � y and x 6= y.

The relation is very similar to a linear order on X in that it is both reflexive
and antisymmetric, but, unfortunately, it may fail to be transitive. In the present
paper, we extend this relation to all subsets of X. Namely, if B and C are subsets
of X (not necessarily non-empty), then we shall write that B � C if y � z for every
y ∈ B and z ∈ C. As before, we will write that B ≺ C if y ≺ z for every y ∈ B
and z ∈ C, equivalently, if B � C and B ∩ C = ∅.

Here are some basic properties of this relation.

Proposition 2.1. Let X be a space, f : F2(X)→ X be a selection, and let “�” be
the order-like relation generated by f . Also, let B,C ∈ F(X) be such that B � C
and C � B. Then, both B and C are singletons, and B = C.

Proof. The observation is almost obvious. Namely, take points y ∈ B and z ∈ C.
Then, by definition, y � z and z � y, so y = z. That is, C = {y} = {z} = B. �

Proposition 2.2. Let X be a space, f : F2(X)→ X be a selection, and let “�” be
the order-like relation generated by f . Also, let B,C ∈ F(X) be such that B � C
and B ∩ C 6= ∅. Then, B ∩ C is a singleton.

Proof. Suppose that y, z ∈ B ∩ C. Then, by definition, y � z and z � y, so
y = z. �

Proposition 2.3. Let X be a space, f : F2(X) → X be a selection, and let “�”
be the order-like relation generated by f . Also, let S ∈ F(X), and let B,C ⊂ S be
such that B � S \B and C � S \ C. Then, either B ⊂ C or C ⊂ B.

Proof. Suppose, if possible, that this fails. Then, B \ C 6= ∅ and C \ B 6= ∅, so
there is a point y ∈ B \C and a point z ∈ C \B. However, this implies that z � y
because y ∈ S \ C, and y � z because z ∈ S \B. Hence, y = z, but y 6= z. This is
a contradiction, which completes the proof. �

We are now ready for our main result concerning this relation. Towards this end,
we introduce the following concept. Let f : F2(X)→ X be a selection, “�” be the
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corresponding order-like relation generated by f , and let S ∈ F(X). We shall say
that a subset B ⊂ S, B ∈ F(X), is an f -minimum of S if
(1) B � S \B,
(2) If C ⊂ S, C ∈ F(X), and C � S \ C, then B ⊂ C.

In this case we will write that B = minf S.

Lemma 2.4. Let X be a space, f : F2(X)→ X be a selection, and let “�” be the
order-like relation generated by f . Then, every non-empty compact subset S ⊂ X
has a unique f -minimum.

Proof. Let S ∈ F(X) be compact, and let B = minf S and C = minf S. Then,
by definition, B � S \B and C � S \ C. Hence, by Proposition 2.3, either B ⊂ C
or C ⊂ B. According once again to the definition of an f -minimal set, we get that
B = C.

Turning to the existence of f -minimal sets, consider the family

D = {B ∈ F(S) : B � S \B}.
Note that S ∈ D because S � S \ S = ∅, so D 6= ∅. On the other hand, D consists
of compact sets, and, by Proposition 2.3, it has the finite intersection property.
Hence, D =

⋂
D ∈ F(X). In fact, D ∈ D. Indeed, if D = S, this was mentioned

before. If D 6= S, take points y ∈ D and z ∈ S \ D. Then, there exists B ∈ D,
with z /∈ B. However, y ∈ D ⊂ B, and therefore y � z. That is, D � S \D, which
completes the proof. �

3. Selection-regular Selections

Let X be a space, and let K(X) = {S ∈ F(X) : |S| < ω}. Also, let f : F2(X)→
X be a continuous selection, and let D ⊂ K(X) be such that minf S ∈ D for every
S ∈ D. We shall say that a selection h : D → X is f -regular if h(S) = h(minf S)
for every S ∈ D.

Let us observe that if D = F2(X), then h is f -regular if and only if h = f . That
is, any f -regular selection h provides an extension of f to the elements of D in sense
that h(S) = f(S) for every S ∈ D∩F2(X). In particular, this also implies that there
are continuous selections for F2(X) which are not f -regular. On the other hand, we
have the following general example of continuous selections g : F3(X) → X which
are not g � F2(X)-regular.

Example 3.1. Let X be a space, C be a disjoint cover of X consisting of non-
empty clopen subsets of X, with |C| ≥ 3, and let h : F3(X) → X be a continuous
selection such that |minf S| = 1 for every S ∈ F3(X), where f = h � F2(X). Then,
there exists a continuous selection g : F3(X) → X which is not f -regular, but
f = g � F2(X).

Proof. By hypothesis, X has a cover of pairwise disjoint non-empty clopen sets
C1, C2, C3 ⊂ X and points xi ∈ Ci, 1 ≤ i ≤ 3, such that minf{x1, x2, x3} =
x1. Let U = 〈{C1, C2, C3}〉 ∩ F3(X), which is a τV -clopen subset of F3(X), with
U ∩ F2(X) = ∅. Next, define a continuous selection g : F3(X)→ X by letting that
g(S) ∈ S ∩ C3 if S ∈ U, and g(S) = h(S) otherwise. Then, g � F2(X) = f because
U ∩ F2(X) = ∅. However, g is not f -regular because g({x1, x2, x3}) = x3, while
g (minf{x1, x2, x3}) = g(x1) = x1. �
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In our next considerations, to any family D ⊂ K(X) we associate the family

minf (D) = {minfS : S ∈ D}.

Note that |minf S| = 1 or |minf S| ≥ 3, but |minf S| = 2 is impossible. On the
other hand, with respect to selections, it suffices to consider at least 2-point sets.
Namely, any selection is continuous on the singletons of X. Thus, the substantial
part of minf (D) are the non-singletons, i.e. the following family

min∗f (D) = {B ∈ minf (D) : |B| > 1}.

Theorem 3.2. Let X be a space, f : F2(X) → X be a continuous selection, and
let D ⊂ K(X) be such that minf (D) ⊂ D. Then, the following are equivalent.
(a) D has a continuous f -regular selection,
(b) D has a continuous selection,
(c) min∗f (D) has a continuous selection.

To prepare for the proof of Theorem 3.2, we need the following simple criterion
for continuity in F2(X), see [2, Theorem 3.1].

Proposition 3.3. Let X be a space, f : F2(X)→ X be a selection, and let “�” be
the order-like relation generated by f . Also, and let x, y ∈ X be such that x ≺ y.
Then, f is continuous at {x, y} if and only if there are open sets U and V such
that x ∈ U , y ∈ V , and U ≺ V .

In fact, relying on this criterion, we have the following crucial result concerning
the proof of Theorem 3.2.

Lemma 3.4. Let X be a space, f : F2(X)→ X be a continuous selection, and let
“�” be the order-like relation generated by f . Then, whenever S ∈ K(X), there is
a disjoint family {Vx : x ∈ S} of open subsets of X such that
(a) x ∈ Vx, for every x ∈ S,
(b) if T ∈ 〈{Vx : x ∈ S}〉, then minf T ∈ 〈{Vx : x ∈ minf S}〉.

Proof. By Proposition 3.3, there exists a disjoint family {Vx : x ∈ S} of open
subsets of X such that x ∈ Vx, x ∈ S, and if x, y ∈ S and x ≺ y, then Vx ≺ Vy.
This family is as required. Indeed, take a T ∈ 〈{Vx : x ∈ S}〉, and let B =⋃
{Vx ∩ T : x ∈ minf S}. Then,

T \B =
⋃
{T ∩ Vy : y ∈ S \minfS} ,

and therefore B � T \B because Vx ≺ Vy, for every x ∈ minf S and y ∈ S \minf S.
Hence, by definition,

minfT ⊂ B ⊂
⋃
{Vx : x ∈ minfS}. (1)

Take now points x, y ∈ S, with minf T ∩ Vx 6= ∅ = minf T ∩ Vy. Then, z ≺ t for
every z ∈ minf T ∩Vx and t ∈ Vy ∩T . So, according to the properties of the family
{Vx : x ∈ S}, we have that Vx ≺ Vy, i.e. that x ≺ y. In particular, this implies that

minfS ⊂ {x ∈ S : Vx ∩minfT 6= ∅}. (2)

Thus, according to (1) and (2), we finally get that x ∈ minf S if and only if
minf T ∩ Vx 6= ∅, i.e. that minf T ∈ 〈{Vx : x ∈ minf S}〉. �
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Proof of Theorem 3.2. Since min∗f (D) ⊂ minf (D) ⊂ D, the implications (a) ⇒
(b) ⇒ (c) are obvious. So, we are going to prove only that (c) ⇒ (a). Suppose
that g∗ : min∗f (D) → X is a continuous selection. Then, g∗ defines a continuous
selection g : minf (D)→ X by letting g(B) = g∗(B) if B ∈ min∗f (D), and g(B) ∈ B
otherwise. Next, we define an f -regular selection h for D by h(S) = g(minf S) for
every S ∈ D. It remains to show that h is continuous. To this end, take an S ∈ D,
and a neighbourhood U of h(S). Since g(minf S) ∈ U and g is continuous, there
exists a finite family {Wx : x ∈ minf S} of disjoint open subset of X such that
x ∈ Wx, x ∈ minf S, and g (〈{Wx : x ∈ minf S}〉) ⊂ U . On the other hand, by
Lemma 3.4, there exists a disjoint family {Vx : x ∈ S} of open subset of X such
that x ∈ Vx, x ∈ S, and minf T ∈ 〈{Vx : x ∈ minf S}〉 for every T ∈ 〈{Vx : x ∈ S}〉.
Take Ux = Wx ∩ Vx if x ∈ minf S, and Ux = Vx otherwise. Then, minf T ∈ 〈{Ux :
x ∈ minf S}〉 provided T ∈ 〈{Ux : x ∈ S}〉 ∩D, so h(T ) = g(minf T ) ∈ U . �

4. Extensions of 2-point Selections

In this section we provide some possible applications of the extension theorem
in the previous section. To this end, let us recall that

Fn(X) = {S ∈ F(X) : |S| ≤ n}.
Also, for 1 ≤ m ≤ n, we let F(m,n)(X) = {S ∈ F(X) : m ≤ |S| ≤ n}.

Corollary 4.1. Let X be a space, and let f : F2(X)→ X and g : F(3,3)(X)→ X be
continuous selections. Then, there exists a continuous selection h for F3(X) such
that h � F2(X) = f , i.e. f can be extended to a continuous selection for F3(X).

Proof. Let D = F3(X). As it was mentioned before, minf S /∈ F(2,2)(X) for every
S ∈ D. So, in this case, we have that B ∈ F(3,3)(X) for every B ∈ min∗f (D),
i.e. that min∗f (D) ⊂ F(3,3)(X). Hence, by hypothesis, min∗f (D) has a continuous
selection, take, for instance, g � min∗f (D). Therefore, by Theorem 3.2, D = F3(X)
has a continuous f -regular selection h. In particular, h is an extension of f , which
completes the proof. �

Related to this consequence, we have the following natural question.

Question 1. Let X be a space such that, for some n ≥ 2, both families Fn(X)
and F(n+1,n+1)(X) have continuous selections. Is it true that Fn+1(X) has also a
continuous selection?

Corollary 4.1 is interesting also from another point of view. Namely, for a space
X and a continuous selection f : F2(X)→ X, we may ask if f can be extended to
a continuous selection for F3(X). On the other hand, we may only be interested if
there exists a continuous selection for F3(X). It turns out that these two properties
are equivalent.

Corollary 4.2. Let X be a space, and let f : F2(X)→ X be a continuous selection.
Then, f can be extended to a continuous selection for F3(X) if and only if F3(X)
has a continuous selection.

Proof. Note that, by Corollary 4.1, f can be extended to a continuous selection
for F3(X) if and only if F(3,3)(X) has a continuous selection. So, it is an immediate
consequence of Corollary 4.1. �
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5. One-point Extensions

In this section we consider a local version of the previous extension problem.
Namely, let f : F2(X) → X be a continuous selection, and let p ∈ X be a fixed
point. Now, we become interested if f can be extended to a continuous selection
for F3(X) provided F3(X \ {p}) has a continuous selection.

Turning to this problem, we consider the order-like relation “�” generated by f ,
and we let

Lp = {x ∈ X : x ≺ p} and Rp = {y ∈ X : p ≺ y}.
Also, we consider the families

P = {S ∈ F(3,3)(X) : S ∩ Lp 6= ∅ 6= Rp ∩ S},

and
Q = {S ∈ F(3,3)(X) : S ∩ Lp = ∅ or S ∩Rp = ∅}.

Proposition 5.1. Let X be a space, p ∈ X, and let f : F2(X)→ X be a continuous
selection. Then, minf S is a singleton for every S ∈ Q, with p ∈ S.

Proof. Suppose that S ∈ Q, and let S = {x, y, p} for some points x, y ∈ X \ {p},
with x ≺ y. If {x, y} ⊂ Lp, then x ≺ p and y ≺ p, so minf{x, y, p} = {x}. In
the same way, if {x, y} ⊂ Rp, then p ≺ x and p ≺ y, so minf{x, y, p} = {p}. This
complete the proof. �

Proposition 5.2. Let X be a space, p ∈ X, and let f : F2(X)→ X be a continuous
selection. Then, there exists a continuous selection g : P→ X.

Proof. Whenever S ∈ P, let us observe that 1 ≤ |S∩Lp| ≤ 2 and 1 ≤ |S∩Rp| ≤ 2.
Then, for every S ∈ P, let `S be the minimal element of S ∩Lp with respect to the
order-like relation “�” generated by f , and let rS be the corresponding maximal
element of S∩Rp. Now, define a selection g : P→ X by g(S) = f({`S , rS}), S ∈ P.
To check the continuity of g, take an S ∈ P, and a neighbourhood U of g(S).
Since f is continuous, there are open subsets V,W ⊂ X such that `S ∈ V ⊂ Lp,
rS ∈ W ⊂ Rp, and f(〈{V,W}〉) ⊂ U . We distinguish the following cases for
x ∈ S \ {`S , rS}. If p 6= x, then either x ∈ Lp or x ∈ Rp, say x ∈ Lp. In this
case, `S ≺ x and, by Proposition 3.3, there are open subsets V1, V2 ⊂ Lp such that
`S ∈ V1 ⊂ V , x ∈ V2, and V1 ≺ V2. Thus, we get a τV -neighbourhood 〈{V1, V2,W}〉
of S such that T ∈ 〈{V1, V2,W}〉 implies `T ∈ V1 ⊂ V and rT ∈ W . Hence,
{`T , rT } ∈ 〈{V,W}〉, and therefore g(T ) = f({`T , rT }) ∈ U . The case x ∈ Rp is
symmetric. Suppose finally that x = p. Then S = {`S , p, rS} and `S ≺ p ≺ rS .
Hence, there are open sets V0, O,W0 such that `S ∈ V0 ⊂ V , p ∈ O, rS ∈W0 ⊂W ,
and V0 ≺ O ≺W0. Thus, just like before, we get a τV -neighbourhood 〈{V0, O,W0}〉
of S such that T ∈ 〈{V0, O,W0}〉 implies `T ∈ V0 ⊂ V and rT ∈ W0 ⊂ W . Hence,
g(T ) = f({`T , rT }) ∈ U which completes the proof. �

We are now ready for our main result in this section.

Theorem 5.3. Let X be a space, p ∈ X, and let f : F2(X) → X and g : F3(X \
{p}) → X be continuous selections. Then, f can be extended to a continuous
selection for F3(X).
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Proof. Let D = F3(X), and let Lp, Rp ⊂ X and P,Q ⊂ F(3,3)(X) be defined as
at the beginning of this section. By Theorem 3.2, it suffices to show that min∗f (D)
has a continuous selection. To this end, note that S ∈ min∗f (D) if and only if S has
no minimal element. In particular, if S ∈ min∗f (D), then |S| = 3.

Now, from one hand, we have that P ∩ Q = ∅ and P ∪ Q = F(3,3)(X), hence
min∗f (D) ⊂ P ∪ Q. From another hand, by Proposition 5.1, S /∈ min∗f (D) provided
p ∈ S ∈ Q. Hence, Q ∩min∗f (D) ⊂ H, where

H = {S ∈ F(3,3)(X) : S ⊂ Lp or S ⊂ Rp}.
Finally, let us observe that both P and H are τV -open, and clearly P ∩ H = ∅.
Therefore, P∩min∗f (D) and Q∩min∗f (D) = H∩min∗f (D) define a τV -clopen partition
for min∗f (D). Thus, we can define a continuous selection for min∗f (D) by pointing
out how to define continuous selections for P and H. To this end, let us observe
that H ⊂ F3(X \ {p}), hence g � H is a continuous selection for H. On the other
hand, by Proposition 5.2, P has also a continuous selection. This, in fact, completes
the proof. �

Corollary 5.4. Let X be a space with only one non-isolated point p ∈ X, and let
f : F2(X)→ X be a continuous selection. Then, f can be extended to a continuous
selection for F3(X).

Proof. By Theorem 5.3, it suffices to show that F3(X \ {p}) has a continuous
selection. However, X \ {p} is a discrete space, and any selection for F3(X \ {p})
will be continuous. �

Note that, in Corollary 5.4, the space X has a dense set of isolated points. Re-
lated to this, we were recently informed by M. Hrusak that he and J. Steprans
proved that if a space X has a countable dense set of isolated points and a contin-
uous selection for F2(X), then it has a continuous selection for F3(X) as well; their
paper is in process.

Corollary 5.5. Let X be a collectionwise normal zero-dimensional space which has
a continuous selection f : F2(X) → X, P ⊂ X be a closed discrete set, and let g
be a continuous selection for F3(X \ P ). Then, f can be extended to a continuous
selection for F3(X).

Proof. By Corollary 4.2, it suffices to show that F3(X) has a continuous selection.
Since X is collectionwise normal and zero-dimensional, there exists a clopen discrete
cover {Xp : p ∈ P} of X such that p ∈ Xp, p ∈ P . Then, by hypothesis, each
F3(Xp\{p}), p ∈ P , has a continuous selection. Hence, by Theorem 5.3, f � F2(Xp)
can be extended to a continuous selection fp : F3(Xp) → Xp for every p ∈ P .
Now, we consider a well-ordering � on P , and then, for every S ∈ F3(X), we let
p(S) = min{p ∈ P : S ∩ Xp 6= ∅}. Finally, we define a continuous selection h for
F3(X) by letting h(S) = fp(S)

(
S ∩Xp(S)

)
for every S ∈ F3(X). �
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