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ABSTRACT: In pancreatic tumors, white adipose tissue and metabolic disorders related to adipocytes, are 
recently reviewed as important co-factors in pancreas pathology. Cell differentiation in pancreatic cancer might 
involve therefore adipose tissue and factors released by adipocytes should play a fundamental role both in cancer 
onset and in its progression. Among these molecules, a great interest has been devoted quite recently to the 
hormonal role exerted by vitamin D3 in pancreatic cancer, particularly its active 1,25 dihydroxylated form. Despite the 
wide bulk of evidence reporting the chemopreventive role of vitamin D, the mechanism by which active vitamin D3 is 
able to counteract cancer progression and malignancy is yet far to be elucidated. 
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Introduction 
Cancer is a very complex pathology where 

epithelial/mesenchymal transition (EMT) should 
play a major role [1]. In pancreatic tumors, 
white adipose tissue and metabolic disorders 
related to adipocytes, are recently reviewed as 
important co-factors in pancreas pathology [2]. 
Adipose tissue may exert a critical activity on 
cancerogenesis and, interestingly, even adipose 
tissue derived stem cells (ADSCs) may promote 
pancreatic cancer [3]. Cell differentiation in 
pancreatic cancer might involve therefore 
adipose tissue and factors released by adipocytes 
should play a fundamental role both in cancer 
onset and in its progression. Among these 
molecules, a great interest has been devoted 
quite recently to the hormonal role exerted by 
vitamin D3 in pancreatic cancer, particularly its 
active 1,25 dihydroxylated form. The  vitamin 
D3 signaling, through its nuclear receptor, is de-
regulated in pancreas cancer [4], an evidence 
that should mean that the role of vitamin D in 
cancer is essentially chemopreventive. The anti-
inflammatory property of vitamin D has been 
shown also for tumors, where vitamin D 
decìficiency has been associated with cancer 
frequency and malignancy, although vitamin D 
dietary supplementation did not ameliorate the 
picture [5], while the expression of vitamin D 
receptor (VDR) in cancer cells has a prognostic 
positive meaning for pancreas adenocarcinoma 
[6]. Despite the wide bulk of evidence reporting 
the chemopreventive role of vitamin D, the 
mechanism by which active vitamin D3 is able 
to counteract cancer progression and malignancy 
is yet far to be elucidated. The immune model, 

by which the active form of vitamin D3, i.e. 
calcitriol, acts against cancer, includes the 
promotion of natural killer (NK) cells through 
the downregulation of the microRNAs miR-302c 
and miR-520c and subsequent up-regulation of 
the NKG2D ligands MICA/B and ULBP2 [7], 
activation of mast cells [8], induction of pro-
inflammatry M1 macrophages [9]. Furthermore, 
vitamin D regulates a wide panoply of genes 
involved in cancer onset and progression. In 
breast cancer, for example, genes targeted by 
vitamin D are involved in innate immunity 
(CD14), cell and tissue differentiation (BMP6), 
extracellular matrix remodeling (Plau) and cell 
survival (Birc3) [10]. In this perspective, 
calcitriol may act directly by modulating the 
epithelial/mesenchymal transition (EMT) 
mechanism characterizing many forms of tumor, 
particularly pancreatic cancer. 

1α,25(OH)2vit D3 in cancer 
progression and metastasis 

Vitamin D has been recently associated to 
transition mechanism from muscle to adipose 
tissue. Treatment of myoblasts with oleic acid 
and thiazolidindiones causes conversion to 
adipocytes, according to a mechanism involving 
peroxisome proliferator-activated receptor-
gamma (PPARγ) and CCAAT-enhancer-binding 
protein-alpha (C/EBP-α) and in this mechanism 
1α,25(OH)2vit D3 or calcitriol should play a 
major role by modulating C/EBP-α and PPAR-γ 
expression through the vitamin D receptor 
(VDR)-dependent activity [11]. Experiments 
with C2C12 muscle cell line showed that 
calcitriol exerted a dose-dependent effect on the 
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transdifferentiation of muscle cells into 
adipocytes [12]. This evidence would suggest 
for a role of calcitriol also in epithelia-
mesenchymal transition (EMT). EMT should 
play a major role in pancreas tumors, 
particularly in pancreatic ductal adenocarcinoma 
(PDAC), where the VDR-mediated signaling 
pathway may be involved in EMT regulation 
[13]. Models to speculate some activity ruled by 
vitamin D and VDR in tunor progression, 
fibrosis and EMT, sprout from evidence 
published elsewhere in the litarature.  

Vitamin D appears to be a negative regulator 
of EMT and tissue remodelling. Particularly, in 
human bronchial epithelial cells (BEAS-2B), 
calcitriol inhibited both migration and invasion 
induced by TGF-ß1 and TGF-ß2 and the 
regulatory action of calcitriol appeared more 
effective to TGF-ß1-induced changes [14]. 
White adipose tissue (WAT) may trans-
differentiate into fibroblast-like cells, 
particularly in some tumors such as breast 
cancer. Usually in many carcinomas such as 
breast, stomach, colon and pancreas cancers, 
tumoral cells support the expansion of molecular 
and cellular stroma in a mechanism known as 
“desmoplasia”, which has been reported as a 
strong fibrotic response. Particularly for breast 
cancer, where stroma is mainly composed by 
adipose tissue, the mechanism presumably 
occurs at the expense of adipocytes, generating a 
tumoral fibrous structure rich in fibroblast-like 
cells [15]. In this mechanism, a fundamental role 
may be exerted by the wingless and integrated-1 
(Wnt)/β-catenin signalling pathway [16-19]. 
Wnt5a, a member of the Wnt-Frizzled pathway, 
is principally involved in the activation of the so 
called non canonical Wnt signaling, where Ror2, 
a member of the Ror-family receptor tyrosine 
kinases, should act as a receptor or coreceptor 
for Wnt5a. The Wnt5a-Ror2 axis is 
constitutively activated in cancer cells, to which 
it confers highly motile and invasive properties, 
mainly through the expression of matrix 
metalloproteinase genes, such as 
metalloproteinase 11 but also exhibiting a tumor 
suppressive action, particularly in breast and 
colorectal carcinomas [20]. The VDR-mediated 
inhibitory activity of EMT, exerted by calcitriol, 
may involve also Wnt signaling in tissue 
remodelling, tumor progression and 
organogenesis. A relationship between Wnt5a 
and vitamin D has been reported for 
endochondral ossification, where Wnt5a 
modulated a calcium-dependent mechanism via 
intracellular calcium release and activated PKC 

and CaMKII, while silencing VDR-signalling 
resulted in the Wnt5a-mediated PKC activity 
[21]. Interestingly, Wnt5a showed a bimodal 
(biphasicc) effect on the calcitriol-induced PKC 
effect, as low doses of Wnt5a caused a marked 
effect while higher doses (> 50 ng/ml) 
dampened PKC activation by calcitriol and this 
mechanism should involve also Ror-mediated 
signaling [21]. This model strongly suggests that 
calcitriol and Wnt5a should finely mediate their 
actions through similar receptor components and 
inter-relating pathways. Therefore, question 
raised if possible shared mechanisms may 
interplay the role of vitamin D in Wnt-mediated 
trans-differentiation in carcinomas.  

Current evidence should support the idea that 
vitamin D plays a major role in cancer immunity 
and biology. Recent investigation suggests that 
vitamin D deficiency is associated with 
increased tumorigenesis, particularly in gastro-
intestinal cancers [22]. In this context, the role 
of VDR-mediated signaling appeared as a 
fundamental hallmark in cancer onset and 
progression. Sherman.et al., showed that that 
VDR activation may reprogram reactive stroma 
in a tumor immune micro-environment to a less 
inflammatory, quiescent state, where the activity 
is associated with increased drug retention, 
cancer-immune response and even survival in 
pancreatic cancer [23,24]. The apparent chemo-
preventive activity of vitamin D on pancreas 
cancer yet needs further elucidation. Pancreatic 
ductal adenocarcinoma (PDA) has a poor 
clinical outcome and activated pancreatic stellate 
cells (PSCs) should drive the severe stromal 
reactions leading to PDA [25-28]. Recent 
findings assessed the role of nutritional vitamin 
D, as its deficiency is associated to an advanced 
stage of pancreatic cancer [29]. Therefore, 
vitamin D3 in cancer staging and progression, 
should play a major role, although much of the 
underlying mechanism yet remain obscure. 
Usually, these pancreatic diseases de-regulate 
vitamin D signaling, by increasing the 
expression of VDR and 24-hydroxylases (such 
as CYP24A1) and inhibiting the calcium sensing 
receptor (CaSR) involved in calcitriol activity 
[4]. Despite this report, there is no evidence 
about the benefit of vitamin D supplementation 
in pancreatic cancer [30]. Vitamin D should 
exert an anti-neoplastic role in several 
investigated carcinomas, but its mechanism of 
action still needs to be elucidated. The 
chemopreventive potential of vitamin D3 might 
be related to a wide panoply of effects mediated 
by calcitriol, e.g. its action of cell trans-
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differentiation or the controversial role in 
immune tolerance. The analog of vitamin D, 
MART-10 (19-nor-2α-(3-hydroxypropyl)-
1α,25(OH)2D3) exerts a potent anti-proliferative 
effect on PDA and both 1α,25(OH)2vitD3 and 
MART-10 decreased MMP-2 and MMP-9 
secretion in BxPC-3 cancer cells, suggesting a 
role as potential anti-metastatic molecules [31]. 
Moreover, at least in breast cancer, the 
expression of VDR negatively co-related with 
cancer metastasis and with the pro-metastatic 
effect of tumor associated macrophages (TAMs) 
and the overexpression of VDR inhibited the 
epithelial-mesencymal transition (EMT) by 
decreasing E-cadherin (CDH1) and increasing α-
smooth muscle protein (α-SMA) [32]. This 
evidence should enforce the role exerted by 
calcitriol as an anti-inflammatory molecule [33-
35] and that the pleiotropic action of calcitriol in 
cancer may involve further mechanisms beside 
EMT, cancer progression and immunity [36]. 
Pro-inflammatory activity in cancer milieu 
inhibits the calcitriol anti-inflammatory action 
[37]. Therefore, taken together, the whole bulk 
of this reported evidence clearly supports the 
role of calcitriol as a chemo-preventive molecule 
acting on several mechanisms controlling cancer 
immunity and progression. Further insights are 
needed to comprehend how calcitriol exerts this 
property in cancers. 

The trans-differentiation mechanism 
in cancer and vitamin D3 

The role of calcitriol in EMT and cancer has 
been recently addressed in a paper where 
colorectal cell lines DLD-1 and HCT116 treated 
with 1α,25(OH)2vitD3 were more sensitive to 
radiation than SW620 cell line with a high 
baseline mesenchymal feature; calcitriol exerted 
its best activity on tumor lines expressing high 
levels of E-cadherin and low levels of vimentin 
and EMT-related genes, such as Snail/Slug [38]. 
Actually, vitamin D should play a major role in 
cancer stem cells (CSC) [39]. From a molecular 
point of view, past reports have outlined the role 
of calcitriol in cell growth through a tumor 
growth factor beta (TGF-β) inhibition [40]. This 
activity may shed a light on the role attributed to 
calcitriol in modulating the adipocyte/fibroblast-
like trans-differentiation observed in some 
tumors and hence in pancreatic cancer. Factors 
released by pancreas cancer lines, such as 
MiaPaCa, might induce adipocytes to change to 
a fibroblast-like phenotype and in this 
mechanism calcitriol should exert an inhibitory 
activity. In this respect, calcitriol might play a 

role either in modulating adipocyte action on 
tumor or promoting tumor activity towards 
cancer-associated adipose tissue. In vitro studies 
showed that adipocyte-released leptin inhibited 
cell growth of pancreas cell lines PANC-1 and 
MiaPaCa [41]. At least in mouse adipose tissue, 
from which in vitro trans-differentiation 
adipocyte/fibroblast-like cell in co-cultured 3T3-
L1 and cancer cells systems was reported [42], 
calcitriol upregulates leptin from adipocyte [43]. 
Interestingly, leptin can induce metastasis, at 
least as reported in some tissue models of 
tumors, such as lung cancer. Adipose-tissue 
derived leptin promoted EMT transition and cell 
metastasis and induced TGF-β expression in 
A549 lung cancer cells [44]. In this perspective, 
suggestion arises if calcitriol inducing leptin 
may promote cancerogenesis, most probably 
vitamin D3 might promote EMT in carcinomas 
through a leptin-mediated route. This evidence 
may fundamentally hamper a full 
comprehension of the role of calcitriol in cancer 
prevention and therapy. A possible solution 
should be earned by considering the complex 
network of interactions led by calcitriol both as 
an immune mediator (cytokine-like molecule) 
and an hormone. Furthermore, adipocytes can 
produce and release both calcidiol 
(25(OH)vitD3) and calcitriol (1α,25(OH)2vitD3) 
[33] and hence the role of tumor-related adipose 
tissue through a calcitriol/VDR signaling should 
deserve particular attention. A focus onto the 
adipocyte/fibroblast-like transdifferentiation 
observed in cancer, particularly in carcinomas, 
may involve calcitriol, and more generally the 
biological homeostasis of vitamin D, in the 
complex mechanism leading to the peritumoral 
fibrosis response from white adipose tissue 
(WAT). The main pro-fibrotic and EMT-related 
factor, namely Wnt5a, is also an inflammation-
related molecule released by adipocytes during 
metabolic syndrome (insulin resistance, obesity, 
type 2 diabetes) [45]. In prostate cancer the 
overexpression of hypoxia-inducible factor-
1alpha (HIF-1α) induces EMT through the 
canonical Wnt/β-catetin pathway [46]. In colon 
carcinoma, HIFs play a complex role in the 
maintenance of tumor stemness and malignancy 
though an involvement of canonical Wnt 
signaling [47]. In addition, although the 
evidence was reported for osteoarthritis-derived 
osteoblasts, hypoxia via the HIF modulation 
triggered leptin production under vitamin D3 
stimulation while the Wnt/β-catenin 
agonist/antagonist dickkopf-related protein 2 
(DKK2) was principally regulated by calcitriol 
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only [48]. If this mechanism should be shown in 
cancer cells or in the WAT/cancer micro-
environment, the activity of calcitriol on EMT 
and cancer progression might be related to at 
least two different pathways, one of which 
including leptin. It has not yet been 
demonstrated, therefore, how calcitriol may 
exert its chemo-preventive action on epithelial 
tumors, even by inhibiting EMT transformation, 
malignancy and metastasis, if directly inibiting 
Wnt/β-catenin signaling or interacting with the 
HIF/leptin axis. In pancreatic cancer, both over-
expression of HIF-1α and hypoxic conditions, 
induced the expression of the leptin receptor 
[49].  HIF-1α regulates migration of pancreatic 
ductal adenocarcinoma (PDA) cells through the 
up-regulation of the chemokine receptor 
CX3CR1 [50], which, at least in CX3CR1pos 
monocytes, is positively induced by calcitriol 
[51]. Therefore, a possible hypothesis on the 
HIF-1α/CX3CR1 axis in pacreatic cancer, is that 
PDA cells express CX3CR1, usually up-
regulated by calcitriol induced macrophages, 
probably to escape to immune surveillance and 
response. Still, leptin is clearly involved in 
fibrosis, for example in cardiac muscle, kidney 
and liver [52-54]. In lung, leptin actively 
participates in the epithelial-mesenchymal cross 
talk, as the orexin, which is secreted by 
lipofibroblasts, binds to the its receptor on 
alveolar type 2 cells, and regulates the 
relationship between the parathyroid hormone-
related protein (PHRP) and its receptor, whose 
failure may lead to a transdifferentiation 
lipofibroblast-myofibroblast, causing lung 
fibrosis [55]. Leptin, which is a downstream 
target of PHRP receptor, may downregulate the 
latter [55]. Lung model of leptin biology in the 
lipofibroblast/myofibroblast transition, might 
shed a light on the possible role exerted by leptin 
or other adipocyte-derived hormones, such as 
vitamin D3, in WAT/cancer related fibrosis. 
Fibrotic shell may ensure cancer to better hold 
out against immune response and therapy.  

Calcitriol has been shown to inhibit 
subepithelial fibrosis [14] and in heart 
calcitriol reduced expression of profibrotic TGF-
β1 and the accumulation of collagens I and III 
[56]. This inhibitory activity by calcitriol 
towards fibrosis might lead to the conclusion 
that the vitamin should play a dramatic role in 
the epithelial/mesenchymal transition depending 
on VDR expression, which in turn depends on 
different cell types and different immune 
microenvironment (pro- or anti-
inflammatory/tolerant milieu).  

Conclusions 
The role of calcitriol in cancer progression 

and metastasis, as well as in EMT, is still far to 
be completely understood. According to the 
many results reported in literature, it might 
simply depend on the gain/loss of VDR 
expression and signaling in cancer cells. In 
addition, calcitriol upregulation of VDR in 
tolerant lymphocytes should avoid cancer to be 
faced by immune surveillance and succesfull 
response. In the absence, failure or 
downregulation of VDR, calcitriol might exert a 
potent induction of leptin, particularly from 
tumor surrounding/neighborough WAT, leading 
to adipocyte EMT and fibrosis, maybe through a 
Wnt5a-mediated mechanism. This might explain 
why vitamin D supplementation in cancer 
therapy has not reached any promising effect.  

The nutritional status of vitamin D, however, 
represents a big concern for cancer onset and 
development, particularly if associated with high 
metabolic risk factors, such as 
saturated/unsaturated lipid rich diets and critical 
lifestyles including smoking, lack in calorie 
restriction, scarce frequency in muscular 
exercise, genetic background for metabolic 
syndrome and so on. Many further insights are 
needed and the many workshops aiming at 
expanding the debate worldwide, may give a 
cleared elucidation of the role of calcitriol in 
panreatic cancer in the next future [57].  
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