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This paper presents a spreadsheet model for the solution of inventory management problems that arise in
pharmacy chain stores. Though there have been abundant spreadsheet models for inventory management,

most of these models focus on the use of embedded functions to compute complicated formulas. The spreadsheet
model presented in this paper, however, incorporates a simulation of the ordering process and an iterative
procedure to search for near-optimal solutions, and is easy to understand by students and practitioners. The
methodology has been successfully implemented in a national chain of pharmacies; and the spreadsheet model
integrated into the curriculum of several engineering courses including inventory management, simulation,
and optimization and it has provided an interactive environment for students to experience real-life inventory
decision making. This paper is dedicated to the memory of Dr. Paul A. Jensen, whose widely adopted Excel
add-ins have inspired our education and research in spreadsheet models and provided the foundation for our
work with pharmacy inventory systems.
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1. Introduction
Spreadsheets play an important role for academia and
practitioners in operations research because they offer
an effective visual model development platform. As a
consequence, they have been widely used in various
areas such as demand forecasting, resource optimiza-
tion, simulation, and inventory management. In the
area of inventory management, spreadsheet models
have been abundant for many years, yet most of these
models focus on the use of embedded statistical func-
tions, such as NORMDIST and NORMSINV, to com-
pute complicated inventory formulas (Chopra and
Meindl 2012). In practice, these formulas can be so
complex and hard to understand that students and
inventory managers fail to accept them (Silver et al.
1998). The use of simulation for inventory analysis is
an important topic in the simulation literature. The
purpose of using simulation is to optimize system
parameters, such as reorder points and order-up-to
levels in an inventory system. Nevertheless, there
seems to be a myth that computational approaches

for inventory problems are prohibitively expensive
(Zheng and Federgruen 1991), therefore, simulation
models are seldom used in practice for managing
inventory.

A simulation-optimization methodology for inven-
tory management was recently developed and
successfully implemented at a national chain of phar-
macies. The system has reduced out-of-stock pre-
scriptions by 1.6 million per year, increased revenues
by $80 million per year, and reduced inventory
by $120 million for the pharmacy stores. The sys-
tem was selected as one of the six finalists for the
2013 Edelman Award for achievement in operations
research and management science (see Zhang et al.
2014).

The essence of the pharmacy inventory system
was captured in a spreadsheet simulation model. The
spreadsheet model translates a stochastic inventory
problem into a deterministic optimization problem
and serves as an excellent teaching tool in several
upper-level undergraduate and graduate engineering
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courses such as inventory management, simulation,
and optimization, and is the focus of this study. The
effective use of this tool has provided students a
deeper understanding of several topics that include
data visualization, probability and distribution fitting,
inventory models, simulation models, optimization
techniques, and the design of heuristics. The Edelman
competition and the spreadsheet model bring real-
world problems into the classroom, enhance students’
practical problem solving skills, and cultivate life-
time learning for both students and industry-based
practitioners.

The rest of this paper is organized as follows. Sec-
tion 2 reviews selected traditional inventory models
and the gap between education and practice. Section 3
presents examples of empirical and fitted demand
distributions. Section 4 focuses on the details of the
spreadsheet simulation model and Excel Solvers. Sec-
tion 5 explains a local search-based iterative algo-
rithm developed around the spreadsheet model for
the inventory simulation problem. Section 6 describes
how the techniques and accompanying materials have
been adapted for use in our inventory, simulation,
optimization and modern heuristics courses. Con-
cluding remarks are offered in §7.

2. Traditional Inventory Models
Inventory theory is one of the most thoroughly stud-
ied areas in operations research, as demonstrated in
the vast array of academic journal publications on
the topic. In practice, inventory management has been
recognized as one of the most important functions at
a company, primarily because it has such a strong
impact on its financial performance.

2.1. Traditional Analytical Spreadsheet Models
for Inventory Management

Inventory management courses usually start with
the economic order quantity (EOQ) model, followed
by inventory policies and safety stock for continu-
ous or periodic review systems. In the derivation of
inventory policies, approximations to demand, such
as normal and Poisson distributions are used to
obtain analytically tractable formulas. Spreadsheets
have long been used to visualize the results and to
facilitate the calculation of the formulas; for exam-
ple, see the textbooks such as Silver et al. (1998), and
Chopra and Meindl (2012).

Spreadsheets are also often used in practice to
guide the implementation of inventory management
procedures. In these applications, an ABC analysis is
typically carried out first to classify items and to set
service levels. This is then followed by the calcula-
tion of economic order quantities and base stock using
approximations of normal or Poisson distributions to
achieve the specified service levels. For examples of

such an approach, see Murphy and Yemen (1986),
Kleutghen and McGee (1985).

These models, however, may not always be appli-
cable in practical settings. It is not uncommon to see
the existence of various shapes of demand distribu-
tions that differ from standard distributions such as
the normal and Poisson, which are popular in text-
book inventory models. Though inventory analysis
based on other distributions, such as the lognormal
and gamma, is possible, the complexity in develop-
ing analytically appropriate inventory models and
sophisticated formulas is a daunting task. These tradi-
tional inventory models, however, often result in con-
fusion among students and on occasion considerable
resistance from practitioners. These drawbacks reflect
precisely the skepticism and reluctance of top man-
agement in pharmacy stores to go forward with such
inventory management systems.

2.2. Spreadsheet Simulation and
Optimization Model

Combining inventory simulation and optimization is
another approach to solving the inventory problem.
Of course, inventory simulation is an important topic
by itself as affirmed, for example, by Law and Kelton
(2000) and Jensen and Bard (2003). However, estimat-
ing optimal inventory policies, such as the reorder
point and order-up-to level quantities, is a challeng-
ing problem. Kleijnen and Wan (2007) presented the
optimization of an (s1 S5 system and compared the
optimality of the response surface technique, pertur-
bation analysis, and the popular OptQuest method
based on the Karush-Kuhn-Tucker conditions. Fu and
Healy (1997) presented several computational studies,
including gradient-based, retrospective, and hybrid
approaches to optimizing the simulation of (s1 S) sys-
tems. Zheng and Federgruen (1991) proposed sev-
eral bounds on the optimal solution of s and S, and
developed an iterative algorithm for the computation
of optimal (s1 S) values. Nevertheless, the myth per-
sists that sophisticated models are computationally
difficult.

2.3. Inventory Management Education
To aid students to comprehend abstract concepts
behind inventory theory, various hands-on class-
room exercises and interactive games have been
designed, for example, the Beer Game (Sterman
1989, Simchi-Levi et al. 2003), the Inventory Control
Exercise at Spiegel Grove (Drake and Mawhinney
2007), and an in-class competition of the multi-item
newsvendor problem (Robb et al. 2010).

These games and exercises have created opportu-
nities for students to experience life as supply chain
decision makers and effectively enhanced students’
learning experience (Drake and Mawhinney 2007).
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Nevertheless, it is our experience that a common
question raised by students is “how do we use these
models in practice with thousands if not millions of
items that could be of various cost structures and
from various distributions.” The use of real-life data
in rigorous yet visual inventory studies under vari-
ous demand distributions would greatly enhance stu-
dent’s confidence to carry out and promote inventory
management in practice.

The simulation-optimization methodology for
inventory management for the national pharmacy
chain has several characteristics that fulfill this need:
(a) it is based on the simulation of inventory systems;
the process of constructing the inventory model helps
students understand how inventory ordering policies
are implemented and the process can be visualized,
(b) it is versatile and is not limited to specific demand
distributions; it allows the use of empirical distribu-
tions while avoiding complicated formulas and the
resistance that accompanies them, and (c) it connects
the analytic models (if desired, analytic solutions can
serve as a seed to start the optimization process) and
offers an alternative approach to solving real-world
problems.

The material discussed in this paper has been
adopted in (a) inventory management—an upper-
level undergraduate and graduate engineering course
for demand distribution fitting, inventory simula-
tion and optimization, and visual tools for practical
inventory management; (b) simulation—an upper-
level undergraduate and graduate engineering course
for spreadsheet- based simulation optimization;
(c) deterministic optimization techniques—an upper-
level undergraduate and graduate engineering course
in which case studies for spreadsheet modeling with
the Excel Solver play a prominent role; (d) modern
heuristics—a graduate engineering course, in which
neighborhood search examples are drawn from the
pharmacy study; and (e) successful application of
operations research—a graduate level seminar course
based on industrial case studies. The material contains
more than one year of transaction history of 82 drugs,
provides a rich set of distributions, provides an inter-
active environment for students to experience real-life
inventory decision making, and was much appreci-
ated by the students.

In the following sections, we present the details of
the spreadsheet simulation model for the pharmacy
inventory problem. Despite the fact that this model is
developed for a specific pharmacy chain, many of its
elements can be applied to other inventory systems.

3. Demand Distributions in
Pharmacy Stores

The pharmacy chain that sponsored this research
operates more than 1,950 stores in the United States

with thousands of items (drugs) at each store. To start
any inventory project, for students, it is recommended
to investigate the demand pattern in the specific envi-
ronment. Such investigations are necessary for both
simulation and inventory management courses.

3.1. Multimodal Demand Distributions
for Customer Orders

Pharmacy demand exhibits several characteristics that
differentiate it from demand in other industries; for
example, multiple streams of demand of specific order
sizes create multiple peaks in the demand distribu-
tions. As a result, many of these distributions are
multimodal and do not fit the unimodal statistical dis-
tributions seen in traditional inventory models. For
example, Figure 1 illustrates historical demand (top
panel) and empirical and fitted lead time demand dis-
tributions (bottom panel) of such a drug.

In this simple example, the demand mainly falls
into a few discrete values—the basic dose for this
drug is one pill per day; thus, a 30-day supply is
30 pills, a 60-day supply is 60 pills, and a 90-day
supply is 90 pills. It is clear that the demand (top
panel) reflects the occurrence of multiple independent
streams of 30-day, 60-day, and 90-day demand from
customers, though an occurrence of a 90-unit demand
could be either one 90-day supply for one customer,
or some combination of 30-day and 60-day supplies,
or three independent 30-day supplies for three dif-
ferent customers. In a pharmacy, the demand for the
vast majority of the drugs is highly variable, inter-
mittent, and irregular; and if the 90-day demand and
30-day demand exceed the 60-day demand, as is the
case for this drug, two peaks in the demand distri-
bution result, as shown in the bottom portion of the
figure; thus, an accurate model requires a multimodal
distribution.

3.2. Demand Distribution for Drugs
at Pharmacy Stores

Though not all empirical demand distributions are
multimodal, it is our observation that much of the
lead-time demand cannot be modeled using stan-
dard theoretical distributions. For reference, Figure 2
shows several commonly seen demand distributions
observed in a typical store.

The lead-time demand, as suggested through good-
ness of fit test, can be approximated by several
shapes, such as normal, Poisson, or gamma, and the
distribution could be multimodal, and thus may not
fit neatly into the standard unimodal distributions
seen in traditional inventory models. Though in cer-
tain cases fitting an individual unimodal distribution
would be a viable approach (see Nenes et al. 2010
for examples) such an approach requires subjective
judgment to determine which theoretical distribution
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Figure 1 Historical Data Show Multiple Streams of Independent 30-, 60-, and 90-Day Demand, Shown in the Top Panel of the Figure
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Note. These multiple streams of demand imply multiple peaks in the underlying lead-time demand histogram, shown in the bottom panel of the figure,
suggesting that a unimodal distribution is not appropriate for modeling the lead-time demand distribution.

should be used, and the resulting bundle of mathe-
matical models is difficult for management to under-
stand. Under these circumstances, simulation-based
models, such as the one proposed in this study, pro-
vide a visual, intuitive, and powerful approach to
solving inventory problems.

4. The Spreadsheet Simulation
Model for Pharmacy Inventory
Management

In this section, we present our spreadsheet simula-
tion model developed to mimic the pharmacy inven-
tory ordering process, followed by optimization using

the Excel Solver to find “optimal” inventory policies.
This material is well suited for simulation, inventory
management, and optimization courses designed for
upper-level undergraduate or graduate engineering
students.

4.1. Inventory Management at Pharmacy Stores
Drug orders as well as nongrocery items are deliv-
ered to pharmacy stores by truck following weekly
schedules, e.g., Monday, Wednesday, and Friday. The
pharmacy stores use a periodic review (s1 S) system,
where s is the reorder point and S is the order-up-to
level; the lead time is the number of days between
deliveries.
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Figure 2 Pharmacy Drugs Shows Various Distributions and Could Be Multimodal
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(a) Normal-like distribution

(b) Multimodal normal-like distribution

(c) Gamma-like distribution
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Figure 2 Continued
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(d) Poisson-like distribution

(e) Multimodal Poisson distribution

At the beginning of each period, a pharmacist
checks the inventory position of the drugs. If it is
at or below s, the pharmacist will create an order to
raise the inventory level to S. If it is above s, on the
other hand, nothing will be done until at least the
next review period. An order is usually rounded up
to a multiple of a certain bottle size, such as 100 units
per bottle, and arrives right before the next delivery
period. Once an order is placed, an estimated cost
is incurred for the warehouse picking, transportation,
and store put-away activities.

When a prescription order (demand) arrives, it is
satisfied immediately if it can be satisfied by in-stock
inventory. If the demand exceeds the inventory, it is
assumed that the demand is unfulfilled and a short-
age cost is incurred per stock-out. The shortage cost
includes the profit loss of the prescription and an esti-
mated percentage loss of all future purchases from
the affected customer. The pharmacy chain is cautious

on its inventory investment and sets a high inventory
holding cost to drive down its inventory, eliminate
potential obsolescence, and release the capital that
would otherwise be tied up in inventory. As such, the
fundamental inventory simulation-optimization prob-
lem is to find the optimal inventory polices which, in
this study, are the values of s and S, so as to minimize
the total inventory holding, ordering, and stock-out
costs.

4.2. The Spreadsheet Simulation Model
The spreadsheet simulation model (supplemen-
tal file PharmacySimuOptConcise.xlsx; available as
supplemental material at http://dx.doi.org/10.1287/
ited.2013.0114) takes as inputs the historic demand
from a store (the “TransLog” worksheet), simulates
the ordering process of a particular drug for a given
(s1 S) policy, and outputs the performance of the
inventory system.
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Figure 3 Spreadsheet Model Shows the Performance of Various Inventory Policies and Its Optimization Through Excel Solve

Figure 3 illustrates the spreadsheet simulation
model, which consists of four sections: the inventory
policy or decision variable section, the process sim-
ulation section, the graphic section, and the results
section.

The decision variable section (D2:F5). Cell B2 rep-
resents the drug to be optimized by its national
drug code (drugID), cell B3 the number of prescrip-
tions of the drug, cell B5 the package size of each
order, cell D3 the value of the reorder point (s5, and
cell F3 the value of the order-up-to level (S5. Cells D3
and F3 are the decision variables, quantities for (s1 S),
respectively.

The process simulation section (A6:K32). Column A is
the query key used to aggregate the demand of pre-
scriptions for the drug on any particular day (listed
in column B). The aggregate demand is shown in col-
umn C. Column D represents the days of a week,
which is used to determine whether or not this is
a review period (shown in column E, where 1 rep-
resents a review period and 0 otherwise). In the
example, the review periods are Monday, Wednes-
day, and Friday. Column F represents the current
inventory on hand, and column G the inventory posi-
tions. Column H represents the decision to order
(coded as 1) or not. If the inventory position is less
than or equal to s and the day is a review period,
then an order, rounded to a multiple of the package
size, 10 as defined in cell B2, is issued to reach S.
This order quantity is shown in column I. The dates
and quantities of order arrivals, shown in column J,
are calculated based on the lead time of the drug.

Columns K and L keep the ending inventory and the
estimated number of out-of-stocks of the drug on each
day, respectively.

The graphic section (N7:R32). The drug’s average
inventory at the end of each day and its aggregate
demand every day are shown in this section. The plot
of the end of the day inventory gives a vivid picture
of the inventory policies defined by (s1 S). If s is set
too high, inventory levels will be above zero; if s is
set too low, stock-outs will occur.

The results section (J2:N3). The total number of
orders, the average inventory, and the total number
of out-of-stock prescriptions are calculated in cells J3,
K3, and L3, respectively. These measures are trans-
lated into an objective value shown in cell N3.

The spreadsheet model can be easily connected
to an enterprise information system to retrieve the
transactions for a store, which are stored in the
“TransLog” worksheet. By changing the national drug
code, (cell B2), the demand for that drug is automat-
ically retrieved from the datasheet through the con-
catenation of drug-year-month-day as the query key
to generate the fixed demand.

For a given drug to be optimized, by fixing this
demand, the spreadsheet simulation model mimics
the inventory process for the given (s1 S) policy, and
translates the policy’s performance into a single value
defined as the total ordering, holding, and stock-out
costs. As such, we have translated a stochastic inven-
tory problem into a deterministic optimization prob-
lem where various techniques can be used to find the
optimal solutions.
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4.3. Use of Standard Excel Solver for the
Inventory Simulation-Optimization System

One of the major benefits of MS Excel is the built-in
Solver, which allows business users to solve vari-
ous optimization problems. Based on the simulation
model described above, by fixing the demand, Solver
can be conveniently used to solve the deterministic
optimization problem, transformed from the stochas-
tic inventory problem, to find the optimal or near-
optimal inventory policy, defined by variables (s1 S).

There are three optimization methods built into
the Excel Solver: simplex LP, GRG nonlinear, and
evolutionary. The simplex LP is designed for linear
programs, the GRG nonlinear engine for smooth non-
linear programs, and the evolutionary engine for non-
smooth problems. Here, we again use the drug shown
in Figure 3 as an example to demonstrate the perfor-
mance of the Excel Solvers and justify the motivation
of our algorithm. Here cell N3 holds the objective to
be minimized, and D3 and F3 hold the decision vari-
ables, s and S, respectively.

The inventory simulation and optimization model
is highly nonlinear and both the GRG nonlinear solver
and evolution algorithm can be used. Our computa-
tional experience showed that (a) If the GRG non-
linear solver is chosen, the quality of the solutions
obtained often depended on the initial solution pro-
vided; (b) if the evolutionary solver is chosen, typi-
cally, the solution quality is higher, but convergence is
slower. In any case, Excel Solver is able to find near-
optimal solutions to the example problem, as shown
in Figure 4 (in this case, evolutionary algorithm, was
used). In this solution, the total orders are 53, the aver-
age inventory is 163 units, the stock-out is 0, and the
objective value is 11.96.

In concluding this section, we would like to men-
tion that the spreadsheet model is easy to construct
by undergraduate students (though certain knowl-
edge of spreadsheet modeling is required). It strength-
ens students’ appreciation of the ordering process
and provides a clear visual of the seesaw inven-
tory pattern. Moreover, Solver produces near-optimal
solutions that are understood by all students who
get hands-on experience in solving real-world inven-
tory problems. As a final point, it should be noted
that the performance of the default Excel Solver
was not wholly satisfactory. Consequently, to obtain
robust near-optimal solutions quickly, customized
algorithms were designed.

Figure 4 Excel Solver Was Able to Find Near Optimal Solution, Yet Its Computational Performance Calls for Customized Algorithms

Objectives

Reorder
point

Order-up-
to level

Total
orders

Average
inventory

No. of
OOS Objective

165 235 53 163.30 0 11.96

Performance metricsDecision variables

5. Local Search Heuristic
Design for the Inventory
Simulation-Optimization Problem

Modern heuristics are becoming an integral part
of operations research curricula for graduate study
because of their capability to solve difficult optimiza-
tion problems, for example, the well-known vehi-
cle routing problem. In this section, we describe the
development of a local search heuristic for the solu-
tion of inventory simulation-optimization problems.
This material could be used in a heuristic design
course for graduate students.

5.1. Motivation for the Heuristics
The spreadsheet simulation provides a rich source of
insights from which we have devised heuristic proce-
dures to “move” or “adjust” the (s1 S) values in the
search for near-optimal inventory policies. The heuris-
tic mainly alternates between two phases or proce-
dures: the first attempts to find the reorder point
under specific order sizes to achieve a balance of
inventory and shortage costs; the second is aimed at
balancing the ordering and inventory costs.

These procedures are accomplished through sev-
eral moves. Specifically, procedure 1 is accomplished
through move 1 by increasing or decreasing (s1 S)
both by an equal amount; and procedure 2 is accom-
plished through move 2 by increasing s while keeping
S unchanged to decrease the order size Q, or move 3
by increase S while s unchanged to increase the order
size Q0 Though the moves or procedures are similar
to those used in the literature, the most salient feature
of our heuristic is the selection of step size to achieve
quick convergence.

To illustrate, we present an example of how these
moves work for the inventory problem outlined in
Figure 3. For this particular problem, the demand is
mostly 30, 60, or 90 units, with occasional demand of
10, 15, or 45 units. The package size is assumed to be
10 units per bottle and an order has to be a multiple
of this package size.

Starting Solution (180, 220). For simplicity, we start
the algorithm with the maximum demand in the
order period; in this case, this value turns out to
be 180. The economic order quantity is calculated to
be 40, which gives the solution of (180, 220) with an
objective value of 25.17. The calculation of starting
solution is shown in cell P3 (EOQ), Q3 (s5, and R3 (S5
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Figure 5 Simulation of (180, 220) Suggests Either an Increase of s by 20 Units to Increase Negative Inventory from −20 to 0 or a Decrease of s by
10 Units to Bring the Next Positive Inventory from 10 to 0 in Search of Local Optimum Under Q= 40
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in the supplemental spreadsheet file. Figure 5 shows
how ending inventory (top panel) and demand (bot-
tom panel) evolve over time for (s1 S5= (180, 220).

Let us start with strategy 1 and move 1. As we
can see, the maximum negative ending inventory is
−20 and the minimum positive inventory is 10. If we
are to increase s, it is intuitive to increase it by 20 to
bring the next negative inventory to 0. If we are to
decrease s, it is intuitive to decrease it by 10 units so
as to bring the next positive inventory to 0. Increas-
ing the reorder point, from 180 to 200, in this case,
leads to a better objective and is adopted. By keeping
Q at 40, we can move to the next inventory policy,
given by (200, 240) with an objective value of 12.97,
for which the ending inventory is shown in Figure 6.

Figure 6 Simulation of (200, 240) with the Objective Value of 12.97 Under Q= 40

0
50

10
0

15
0

20
0

25
0

Min: 200   Max: 240, OBJ: 12.97

In
ve

nt
or

y

30 30 30 30
0 0

0 100 200 300 400

0
10

0

D
em

an
d

Days

Note. The minimum inventory is 30, which suggests a potential change in order size of 30 units will be required to find a better solution.

Solution 2. Inventory policy (200, 240) exhibits no
excess inventory or stock-out and also has no nega-
tive inventory. Inventory policy (200, 240) is the local
optimal inventory policy under Q= 40, as no move 1
will lead to better solutions. This concludes the search
in procedure 1.

Once procedure 1 reaches local optimum, a change
of order size Q is necessary and this is performed
in procedure 2 where we can either increase or
decrease Q. Silver et al. (1998) state that when s and S
(or Q) are determined simultaneously, Q is always
larger than the EOQ; therefore, to start, we decided to
increase the size of Q.

Notice that in the ending inventory plot for solu-
tion 2, (200, 240), the minimum positive inventory
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Figure 7 Simulation of (170, 240) Suggests a Parallel Reduction in Both s and S by 5 (Move 1)
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Note. This is because all ending inventory are above 0.

level is 30. Here, if we are to increase the size of Q,
there are two options available. The first option is to
apply move 2, which decreases s by 30 while keep-
ing S the same at 240; here we would move from
(200, 240) to (170, 240). The second option is to apply
move 3, which increases S by 30 units while keeping s
the same at 200; here we would move from (200, 240)
to (200, 270). By increasing the order size Q, the policy
is likely to increase the inventory holding cost. Here,
the first option is chosen so as to offset this inventory
increase, so we end up at (170, 240). Nevertheless, the
second option, if applied, will lead to the same local
optimal solution under the same order size (Q = 70)
and is not shown here. Similar moves exist for the

Figure 8 Simulation of (165, 235) Was Locally Optimal with Respect to Q, and Later Confirmed to Be the Global Optimum
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case where Q is decreased and is not explained here
in detail.

Solution 3. Inventory policy of (170, 240) has an
objective value of 12.31, for which the ending inven-
tory is shown in Figure 7. Notice that the ending
inventory was 5, well above 0, suggesting a parallel
reduction in both s and S, move 1, which leads to the
solution (165, 235).

Solution 4. Inventory policy (165, 235) has an objec-
tive value of 11.96, for which the ending inventory
is shown in Figure 8. This solution was confirmed
to be best solution in the discrete solution space
through an exhaustive enumeration of all possible
(s1 S) combinations.
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5.2. The Algorithm
In the presentation of the algorithm, let f be the objec-
tive function value and superscript ′ the neighbor-
ing solution. Let Q+, Q− be an upper and a lower
bounds for Q, respectively, and ãQ be the direction
of change for Q, i.e., ãQ =+1 represents an increase
of Q; ãQ =−1, a decreases of Q. Similarly, let ãs be
the change of direction for s, i.e., ãs =+1 represents
an increase of s; ãs = −1, an decreases of s. Let B
be the set of order quantities, and let P be the set of
inventory policies encountered in the search process.
P consists of the three-tuple (s1 S1 f ).

Our iterative algorithm for finding near-optimal
(s1 S) policy is the following:

Step 1: Initialization. Start the algorithm with s = s′,
the reorder point, as the maximum demand in a
period, Q = EOQ (the economic order quantity), S =

S ′ = s +Q, f , the current objective is set to +�, set
ãQ = +1 to increase Q and ãs = 1, to increase the
reorder point. Push Q into set B.

Step 2: Simulation. Perform simulation under
(s′1 S ′), denote the simulation objective value as f ′,
push policy (s1 S1 f 5 into set P . Denote I4t5 as
the ending inventory of each period, and let I+ =

mint2 I4t5>08�I4t5�9 be the minimum positive inventory,
I− = mint214t5<08�I4t5�9 be the absolute value of the max-
imum negative ending inventory.

Step 3: Increase or Decrease Reorder Point. If f ′ < f ,
continue search as follows. If ãs =+1, set s′ = s′ + I−

and S ′ = s′ +Q, in an effort to raise the smallest neg-
ative inventory to zero. Else ãs =−1. Set s′ = s′ − I+
and S ′ = s′ + Q in an effort to lower the next posi-
tive inventory to zero, go to Step 2. Otherwise, f ′ > f ,
local optimal under Q is found, go to Step 4.

Step 4: Increase or Decrease Q? Let Qã be the min-
imum of I+ and I−, if ãQ =+1, then Q=Q+Qã; oth-
erwise, Q=Q−Qã. If no Q exist inside (Q−1Q+), set
ãQ =−ãQ, reverse search directions for order size Q.
If Q exists in set B already, go to Step 6; otherwise,
push Q into set B, go to Step 5.

Step 5: Perform moves 2 or 3 to a new (s′1 S5′ if
ãQ = +1, then move to (s′ = s′ −Qã1S = S) and set
ãs = 1. If ãQ =−1, then move to (s′ = s1 S ′ = s′ +Q),
set ãs =−1. Go to Step 2.

Step 6: Termination. Output the best solution in
set P

In Step 1, we start with an order size equal to EOQ.
Silver et al. (1998) state that in simultaneous deter-
mination of s and S, (or Q), Q is always larger than
EOQ. As such, we set ãQ=+1 to increase EOQ. The
reorder point can be set in different ways; for exam-
ple, the maximal demand in lead-time, or with any
analytical approximation solutions.

In Steps 2 and 3, we perform simulation with
given values of s and S. Based on the ending inven-
tory resulting from the simulation, we adjust both

the reorder and order-up-to quantities by the same
number so as to keep the order size unchanged.
Specifically, if the current solution is improving, then
we continue the search until a local optimum under
a fixed order size is obtained. In making these adjust-
ments, if we increase the reorder point, then the algo-
rithm increases the reorder by I− to bring the next
negative inventory to zero (reducing stock-out cost);
if we decrease the reorder point, then the algorithm
decreases the reorder point by I+ to bring the next
positive inventory to zero (reducing inventory cost).

In Steps 4 and 5, we perform an adaptive search
with respect to the order size, Q. Rather than enu-
merate all possible breakpoints as proposed by Fu
and Healy (1997), which could be time consuming,
we increase or decrease the order size based on the
ending inventory level derived from the simulation.
Finally, we stop if no improvement has been made or
Q is outside the predefined bounds and output the
final best solution encountered in the search process
in Step 6.

Computational Summary. Our computational experi-
ments showed that for most of the drugs stocked by
the sponsoring company, the algorithm converged in
only 10 to 20 milliseconds on an Intel i7 desktop. See
Zhang et al. (2014) for details.

6. Suggested Use and
Classroom Results

The simulation-optimization method for inventory
management adopted by the sponsoring pharmacy
chain has been used by the corresponding author
in courses such as (a) inventory management, as
visual tools for solving practical inventory problems;
(b) simulation, as material for spreadsheet- based sim-
ulation optimization; (c) optimization techniques, as
case studies for spreadsheet optimization; (d) modern
heuristics, as material for neighborhood search; and
(e) successful applications of operations and research,
as case studies in industry.

Each of the §§3, 4, and 5 centers on a specific topic
and can be reorganized to fit the specific course. For
example, §§3 and 4 can be combined and used in
inventory management or simulation or an optimiza-
tion course, and §§4 and 5 can be combined and used
in a heuristic course. The following questions in con-
junction to the sections selected provide a basis for
further investigation to suit an instructor’s need.

Section 3: Distribution fitting. (a) What is the best
fitting distribution(s) for the demand distribution(s)
from industry data? (b) Why do the normal distribu-
tions appear in fast-moving drugs whereas Poisson
distributions appear in slow- moving drugs? (c) What
causes demand in a pharmacy store to follow a mul-
timodal distribution? (d) What are the errors induced
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when a wrong distribution is selected for an inventory
model? (e) In what cases can I use normal or Poisson
distributions? (f) How is a distribution selected that
best fits a particular demand?

Section 4: Spreadsheet simulation and optimization.
(a) construct the spreadsheet model from the data
sheet; (b) run the simulation and use Solver to find
the near optimal solutions; (c) determine how the sim-
ulation model can be changed from a periodic to a
continuous review system and how the solution will
be affected; (d) given a continuous review system,
determine if we change the demand to a normal or
Poisson distribution, and compare the corresponding
analytic solutions with the simulation results; (e) per-
form a grid search on (s1 S5, table the results, evaluate
the performance of Solver under various options and
why starting solutions affect the convergence of the
GRG algorithm, yet not the evolutionary algorithm;
how can the optimization algorithm be speeded up
when additional constraints such as bounds being
included; and (f) determine the benefits provided by
the simulation-optimization model and will different
forms of demand distributions affect the simulation-
optimization models?

Section 5: Heuristic design. (a) Determine the local
moves used and how they can be controlled; (b) man-
ually perform these moves to gain insight into the
selection of moves and the step size of a move;
(c) consider how an approximate solution can be used
to speed up the solution process; (d) implement the
algorithm using a language of your choice.

These considerations extend the models beyond the
pharmacy application. For example, by changing the
“Demand” column (column C in Figure 3) to a normal
distribution, say NORMINV (RAND( ), 100, 25) where
10 is the mean, 25 is the standard deviation, and by
changing the “order or not” column (column E in
Figure 3) to 1 for a continuous review system, the
spreadsheet model can serve as a visual tool to eval-
uate the traditional inventory policies. If desired, the
optimization can be used to jointly optimize both the
reorder-point and order-up-to quantities, and com-
pare the solution to iterative procedures for solving
this problem; see Silver et al. (1998) for such pro-
cedures. With these issues in mind, we now outline
how the material can be inserted into our operations
research curriculum.

Inventory management. The focus is inventory opti-
mization through simulation. The students are asked
to fit a demand distribution, explain the reasons
behind the existence of multimodal distributions, con-
struct the simulation model, and run the simula-
tion; to evaluate various inventory policies, compare
them with analytic solution obtained by using, say,
a normal demand—by changing “demand” column
(column C in Figure 1) with normal distributions,

visualize solutions; and to compare periodic and con-
tinuous systems by changing the values in the “order-
ing period” column (column E in Figure 1) to 1.

Simulation. The focus is on a combination of simu-
lation and optimization through Excel. The students
are asked to fit distributions, construct the simula-
tion model, run the simulation, and run the Excel
Solver. In the case of random demand—by chang-
ing the “demand” column (column C in Figure 1)
to reflect normal distributions, they are asked to run
multiple scenarios and perform statistical analysis of
the output.

Modern heuristic. The focus is on algorithm design
so the simulation model is provided to the students.
The students, however, are asked to manually eval-
uate the moves based on simulation output, under-
stand the procedures or meta-strategies to guide the
moves, provide a pseudocode, and then write a com-
puter code using a language of their choice.

This material has received positive feedback from
students and helped them to better understand dis-
tribution fitting, inventory models, and the ordering
process, simulation construction, and optimization
techniques. For the inventory class, it should be men-
tioned that the material is not intended to replace
the current analytic approaches that are traditionally
taught; rather, the spreadsheet model can serve as a
tool for students to understand inventory models—
the process of constructing the inventory model helps
students understand how inventory is ordered and
how the results can be visualized, gives students con-
fidence on the use of these models, and is mostly
appreciated by the students.

However, it is our experience that for undergradu-
ate students to successfully construct the spreadsheet
simulation model, it is necessary to include basic
materials on spreadsheet modeling; a programming
language is a prerequisite for the modern heuris-
tics course for graduate students to be able to write
a pseudo-code or a computer code for algorithmic
implementation. Such prerequisites, however, should
already exist for any course in heuristics.

7. Concluding Remarks and Special
Acknowledgement to Dr. Jensen

The material described in this paper along with
the material developed for the Edelman competition
offers intuitive tools for helping students to better
understand spreadsheet modeling, inventory control,
simulation and optimization, heuristic design, and
operations research in general. Using a case study for-
mat, it bridges all of these topics while enhancing the
skills needed by analysts to solve practical inventory
problems. It is our belief that the innovative approach
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described herein can be applied in many retail con-
texts and so strengthens lifelong learning for both stu-
dents and practitioners alike.

This paper is dedicated to the memory of Dr.
Paul A. Jensen. While the corresponding author, Xin-
hui Zhang, was a doctoral student at the University
of Texas at Austin he benefited tremendously from
Dr. Jensen’s enthusiasm toward operations research
applications, and he remains grateful for the guidance
Dr. Jensen provided as a doctoral committee mem-
ber. Since graduating he has used Dr. Jensen’s Excel
add-ins for years in his teaching of optimization,
queueing, and simulation, and he grew to understand
their enormous potential. In fact, they provided the
foundations for the design of the spreadsheet models
described here.

Supplemental Material
Supplemental material to this paper is available at
http://dx.doi.org/10.1287/ited.2013.0114.
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