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A side show at Coney Island claiming to be “The
Squarest Game on the Beach” is described in (Loyd
1914, p. 8) as follows.

There were ten little dummies which you were to
knock over with baseballs. The man said: “Take as
many throws as you like at a cent apiece and stand
as close as you please. Add up the numbers on all
the men that you knock down and when the sum
amounts to exactly fifty, neither more nor less you get
a genuine 25 cent Maggie Cline cigar with a gold band
around it.”

The numbers on the ten dummies were 3, 6, 9, 12, 15,
30, 21, 25, 27, 30.

This is a classical knapsack problem with binary
variables and is modeled with the constraint

∑

i∈N

vixi = 501

with vi as the value of dummy i, xi = 1 if dummy i is
knocked over, 0 otherwise, and N = 11 0 0 0 110.

We merely need to achieve the target score and
hence no objective function is required.

A similar puzzle, also in Loyd (1914), requires an
archer to achieve a score of exactly 100. The rings
on the target have values 16, 17, 23, 24, 39, and 40,
respectively, but in this case more than one arrow may
hit a particular ring. This may be solved using the
above model with the modification that the variables
are defined as integers rather than as binary variables.

The following puzzle from Love (2011) is in the
same spirit as the above but provides us with a more
interesting formulation exercise.

At a fairground stall there are three piles of cans. You
get three throws and you may only knock off the top
can of a pile. The second throw counts double and the
third triple. How do you achieve a score of exactly 50?

The values on each of the cans are shown in Figure 1.

Define the set N = 11 0 0 0 1n where n is the number
of cans in each pile, the number of piles and also the
number of throws allowed, in this case n= 3.

Decision variables, defined over the range ∀ i ∈ N ,
j ∈N , k ∈N1 are as follows:

xi1 j1 k = 1 if can i from pile j is hit by throw k1

0 otherwise.

Define parameters as follows:

vi1 j = numerical value of can i in pile j .

The following constraints ensure that the conditions
of the puzzle are fulfilled.

Achieve the target score:
∑

i∈N

∑

j∈N

∑

k∈N

kvi1 jxi1 j1 k = 500

Each can is hit no more than once:
∑

k∈N

xi1 j1 k ≤ 1 ∀ i ∈N1 j ∈N0

Each shot hits a single can:
∑

i∈N

∑

j∈N

xi1 j1 k = 1 ∀k ∈N0

The first shot hits the top row:
∑

j∈N

x11 j11 = 10

Thereafter only hit the top can of a pile:

xi1 j1 k ≤

k
∑

l=1

xi−11 j1 l ∀ i ∈ 21 0 0 0 1n1 j ∈N1 k ∈ 21 0 0 0 1n0

Despite the fact that this problem presents a more
challenging formulation, it may be solved quite easily
by inspection. This is due to the fact that at each
throw there are only three possible targets, that is, the
top can of each pile. A brute force search can be car-
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Figure 1 Cans Puzzle
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Figure 2 Maximize Score
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Figure 3 Target= 100
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ried out in the form of a three stage decision tree with
27 end nodes.

The model may also be used to check for unique-
ness. For example, the solution to the above puzzle

is x11311 = 1, x11112 = 1, and x21313 = 1, that is, the first
shot hits the seven from the third pile, the second
shot hits the eight from the first pile and the final
shot hits the nine from the third pile. Hence, the con-
straint x11311 + x11112 + x21313 ≤ 2 will allow us to check
whether other optimal solutions exist.

The puzzle may be generalised to larger sizes and
we may also require that a score must be maximised
rather than a target score achieved. The above model
may be used to help create such puzzles and also to
check solutions for uniqueness. Additional examples
(Figures 2 and 3) are presented for the edification of
the reader.

GNU Linear Programming Kit (GLPK 2010)
MathProg implementations of the above formula-
tions are included with this article (squaregame.mod,
archery.mod, cans.mod).

Supplementary Material
Files that accompany this paper can be found and
downloaded from http://ite.pubs.informs.org/.

References
GLPK. 2010. Accessed December 7, http://www.gnu.org/software/

glpk/.
Love, T. 2011. Mathematical puzzles. Accessed December 14,

http://www2.eng.cam.ac.uk/∼tpl/maths/puzzles.html.
Loyd, S. 1914. Cyclopedia of Puzzles. The Lamb Publishing Company,

New York. Available at http://www.mathpuzzle.com/loyd/.

A
d
d
it
io
n
al

in
fo
rm

at
io
n
,
in
cl
u
d
in
g
su

p
p
le
m
en

ta
l
m
at
er
ia
l
an

d
ri
g
h
ts

an
d
p
er
m
is
si
o
n
p
o
lic

ie
s,

is
av

ai
la
b
le

at
h
tt
p
:/
/it
e.
p
u
b
s.
in
fo
rm

s.
o
rg
.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

47
.8

8.
87

.1
8]

 o
n 

02
 A

pr
il 

20
17

, a
t 1

5:
21

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

http://ite.pubs.informs.org/
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
http://www2.eng.cam.ac.uk/~tpl/maths/puzzles.html
http://www.mathpuzzle.com/loyd/

