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Risk management is essential in today’s business environment for banks and other financial institutions to
survive in highly competitive and volatile market environments. As the nexus of financial institutions grows

ever more complex, sound risk management practices, or the lack thereof, affect more than just the individual
institution. The subprime mortgage debacle in 2008 has clearly demonstrated this fact.
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Background
On June 26th, 1974, the troubled German bank
Herstatt was ordered into liquidation by the German
authorities. Earlier that day, several German banks
had paid deutsche marks to Herstatt, believing they
would receive U.S. dollars later in the same day.
However, because of time zone differences, the Ger-
man banks never received their dollars. It was only
early morning in New York when Herstatt was liq-
uidated and all outgoing U.S. dollar payments were
suspended.

This messy incident brought about the inter-
connectedness of the banking system around the
world. The national banking legislations were too
limited in their geography to be able to handle
such incidents. In response, the eleven G-10 nations
(Belgium, Canada, France, Germany, Italy, Japan,
The Netherlands, Sweden, Switzerland, the United
Kingdom, and the United States) and Luxembourg
decided to form a council to improve the quality of
banking standards and supervision within the mem-
ber states. Thus, a committee was formed in 1974,
informally known as the Basel Committee, consisting of
each country’s central banker and representatives of
her banking supervisory authorities. The committee
meets four times a year in Basel, Switzerland.

Soon after its inception, the Basel Committee began
efforts to harmonize the international banking sys-
tem. In July of 1988, after six years of deliberation,
the initial twelve nations plus Spain released a capital
accord, commonly referred to as Basel I (Basel Com-
mittee 1998). Basel I focused on credit risk, that is,
the risk that the borrower does not pay the agreed
upon amount (principal and/or interest). Basel I pro-
posed minimum capital requirements to be set aside
for internationally active banks to protect against
credit risk.

One of the criticisms of Basel I was its narrow
scope. Credit risk, although being very important, is
not the only risk banks face. Another major risk is
the market risk, which is the risk that the portfolio of
the bank’s market investments (stocks, bonds, trea-
suries, etc.) will decrease because of moves in market
factors such as changes in the interest rates. Basel I
was expanded in January 1996 with the Market Risk
Amendment.

This was just the beginning of an ever evolving
supervisory risk mitigation in the international bank-
ing system.

Operational Risk
In the words of Roger Ferguson—the vice chairman of
the board of governors of the Federal Reserve System
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from 2001 to 2006—at a hearing before the Committee
on Banking, Housing, and Urban Affairs of the United
States Senate in 2003:

In an increasingly technologically driven banking sys-
tem, operational risks have become an even larger
share of total risk. Frankly, at some banks, they are
probably the dominant risk.

But what is operational risk? Why and when did it
become so important?

The currently accepted definition of operational risk
is as follows (Basel Committee 2001)

Operational risk is the risk of loss resulting from inad-
equate or failed internal processes, people or systems
or from external events.

This is quite a general definition and covers a
multitude of risks such as employee fraud, credit
card fraud, worker’s compensation lawsuits, damage
to physical assets due to weather, and data entry
errors. It includes legal risk but excludes strategic
risk. Legal risk is the risk that the bank will face
lawsuits, adverse judgments, unenforceable contracts,
and penalties and sanctions pronounced by a regula-
tory body. Strategic risk, on the other hand, is the risk
associated with the bank’s future business plans and
strategies.

Operational risk can also be the cause of another
type of risk referred to as the reputation risk. For
instance, after a bank loses money because of inter-
nal fraud, this results in bad publicity, which could
then result in negative consequences like loss of exist-
ing customers or fewer new customers. According
to a study by Perry and de Fontnouvelle (2005) for
internal fraud events, the actual total loss, taking into
account losses due to reputational consequences, on
average, is three times larger than the operational
losses.

Most operational losses happen frequently and do
not result in major damages. These include small
data entry mistakes and minor fraud cases. How-
ever, banks (and other financial institutions) can suf-
fer from operational risks that can cause major losses
in excess of billions of dollars and even cause them
to go bankrupt. Therefore, it is paramount for banks
to protect themselves from losses due to operational
risks. Below are some examples of operational risk
that show the range and magnitude of this risk.

• Rogue Trading: A rogue trader is a professional
trader who makes unapproved financial transactions
to the detriment of his/her clients and institution.
Some of the most famous rogue traders are Nick Lee-
son (Barings Bank 1995, losses of $1.3 billion), John
Rusnak (Allied Irish Banks 2002, losses of $691 mil-
lion), Toshihide Iguchi (Daiwa Bank Group 1995,
losses more than $1 billion), and Jérôme Kervie

(Société Générale 2008, losses of $7.2 billion). Nick
Leeson wrote a book Rogue Trader, which was pub-
lished in 1997. It was later turned into a movie
starring Ewan McGregor, released in 1999. Leeson
had been making speculative unauthorized transac-
tions in Asian markets. At some point he had over
$3 billion in index futures on the Nikkei. In 1995,
Leeson incurred $1.3 billion in losses after the Kobe
earthquake in Japan resulted in broad-based sell-off.
As a result, the 233-year-old Barings Bank went into
bankruptcy. Leeson was charged with fraud and sen-
tenced to six and a half years in jail. This is an exam-
ple of “inadequate or failed internal processes” that
should have detected such activity earlier and “peo-
ple” (fraud) in the definition of operational risk.

• Terrorist Attacks of September 11, 2001: On the
morning of September 11, 2001, the world financial
system was shaken when two of the four hijacked
planes crashed into the World Trade Center in
New York City. Direct losses to the financial system
included damages to physical property, disruptions
in financial services around the world, and the loss
of employees. For instance, the global financial firm
Cantor Fitzgerald, which was headquartered on the
top floors of the north tower of the World Trade
Center, lost 638 employees. This is an example of a
loss from “external events” in the definition of oper-
ational risk.

• Cyber Attacks to Financial Institutions: In 2005,
MasterCard announced a security breach to its card-
holder data. At least 68,000 MasterCard account hold-
ers’ information was accessed. In September 2007, TD
Ameritrade, the online trading company, announced
that a security breach occurred with its client informa-
tion database. The database contained personal infor-
mation such as social security numbers of more than
six million customers. These are examples of failed
“systems.”

As the above examples illustrate, operational risks
have indeed become a larger share of the total risk, as
Ferguson noted. This is a consequence of the changes
that have been occurring in the financial system over
the last couple of decades. These changes include: (i)
increased globalization and the interdependencies in
the world’s financial systems, (ii) deregulation such as
the Financial Services Act of 1999 in the United States
that allows affiliations among different financial ser-
vices, (iii) the increase of computer-based banking ser-
vices that bring about a new set of operational risks
as illustrated above in different cyber attacks, and (iv)
an increase in the variety of types of financial instru-
ments being offered. As a result, the financial industry
has been exposed to new kinds of risk that it is still
learning how to deal with effectively. Many of these
risks fall under the operational risk category. It is fair
to say that the topic is still evolving.
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Basel II
In response to the changing global banking envi-
ronment and the enlarged risks banks are facing,
the Basel Committee decided to expand Basel I.
In 1998, the document Operational Risk Management
was released. After many changes, the currently
accepted form of Basel II was finalized in June 2006
(Basel Committee 2006). Basel II greatly expanded
Basel I—Basel I is approximately 30 pages and Basel
II is more than 300 pages. One of the most impor-
tant changes is the inclusion of the operational risk in
addition to credit and market risks.

The Basel II Capital Accord uses a three pillar sys-
tem to guide banks in risk management. The first
pillar defines minimum capital requirements banks
must hold in order to protect themselves from the
risks they face. The second pillar focuses on regu-
latory policies. For instance, banks should conduct
internal reviews involving the board and senior man-
agement to ensure adequate risk management, and
regulators should oversee the internal risk evalua-
tions. The third pillar complements the first two pil-
lars and focuses on market discipline through public
disclosure mechanisms.

Operational Risk in Basel II
The first pillar of Basel II proposes three ways for
banks to calculate capital to cover losses due to oper-
ational risks. The first and easiest of these meth-
ods is the basic indicator approach, which recommends
banks to hold capital equivalent to 15% of their aver-
age gross income in the past three years of positive
income. The second method, known as the standard-
ized approach, provides divides a bank by its busi-
ness lines and percentages of gross income to hold
as reserves within each business line. For instance,
Basel II recommends setting aside 18% of the gross
income for high risk business lines such as corporate
finance and sales and trading but only 12% of gross
income for low risk business lines such as asset man-
agement. Medium level risk items such as commercial
banking need a 15% allocation. Then, these are com-
bined to find the minimal capital requirements.

The third approach provides the most flexibility
to the banks. It is called the advanced measurement
approach (AMA). In AMA, banks are allowed to use
their own method for operational risk, but these must
be approved by the regulators. The AMA models are
more complex than the basic indicator or standard-
ized approaches but they typically yield better esti-
mates of risk. This is because they are based directly
on the operational loss data rather than the gross
income, which is used as a proxy for the first two
approaches. Another major advantage of AMA is that
it can result in a smaller (but still risk-appropriate)
amount of capital to be set aside for operational risk.

The 2008 loss data collection exercise conducted by
the Basel Committee shows that AMA results in a
capital reserve of approximately 10% of gross income
compared to 15% in the basic indicator approach and
the 12–18% in the standardized approach (Basel Com-
mittee 2009). This frees up capital for banks to use for
other profitable business. In addition, Basel II allows
banks that use AMA to qualify for deductions if they
have insurance for operational risk.

Basel II incentivizes the use of AMA to increase
self-surveillance of the banks. This way, banks become
aware of the risks they face and take action against it.
This in turn decreases the cost of regulation and
potential bankruptcies due to poor risk management.
As a result, banks can allocate more money to other
businesses and provide more capital to an economy.

Operational Risk Data
Data! Data! Data! he cried impatiently. I can’t make
bricks without clay.

(Sherlock Holmes, The Adventure of the Copper Beeches)

Although banks do want to use AMA because of
the aforementioned advantages, one of the biggest
challenges they face in its implementation is the avail-
ability of data for operational losses. Credit risk and
market risk models have been developed over the
years and extensive data for these models are readily
available. For example, stock prices and interest rates
are updated almost instantaneously. However, opera-
tional risk is a newer concept and thus, data for it has
not been collected over the years.

Losses that result from operational risk events can
be either high frequency and low impact (e.g., minor
data entry errors), or low frequency and high impact
(e.g., terrorist attacks, rogue trading). Banks can eas-
ily recover from high frequency and low impact
losses but they must protect themselves from the high
impact losses. The low frequency of these events poses
a major difficulty in the statistical analysis of oper-
ational risk. First, there are not enough data points
to allow for reliable statistical estimation. A common
approach adapted by banks is to supplement the data
with plausible scenarios for these tail events. In addi-
tion, because rare events that happen in the tail of a
distribution are of interest, statistical analysis requires
a large sample size.

Another problem with operational loss data is that
it is recorded only above a certain threshold. That
is, small values of losses are not typically recorded.
First, some of these small losses are easy to hide
and may not be detected. Second, given the high fre-
quency of these events, data recording of all events
might be quite costly. Third, because these are usu-
ally low impact events, financial institutions tend to
ignore them. However, small losses should be appro-
priately addressed in a thorough statistical analysis.
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Table 1 Databases for operational loss data

Database By Information

ORX Operational Riskdata
eXchange
Association, a
not-for-profit
association based in
Zurich, Switzerland

Founded in 2002. Has 53
members. Contains
170,081 losses of
E58 billion as of 31
March 2010.
www.orx.org

Algo OpData Algorithmics, part of
Fitch Group

Contains 12,000 publicly
reported losses in
excess of $1 million.
www.algorithmics.com

GOLD (Global
Operational
Loss
Database)

British Bankers’
Association

Initiated in 2000. Data
from UK, Europe and
Australia.
www.bba.org

DIPO
(Database
Italiano
Perdite
Operative)

DIPO Association,
previously under
the Italian Banking
Association

(An example of a national
database.) Initiated in
2003. In 2008, had
34 members and
200 entries.
www.dipo-operational
-risk.it

Given the scarcity of loss data for reliable opera-
tional risk modeling, the Basel Committee has con-
ducted three international data collection exercises
since 2001 called the loss data collection exercise (LDCE).
The last LDCE was conducted in 2008 with the partic-
ipation of 121 banks across 17 countries (Basel Com-
mittee 2009). The 2004 exercise in the United States
and the 2007 exercise in Japan were LDCEs at the
national level. The results of these studies show differ-
ences across geographical regions and countries. For
instance, data indicate that the Japanese banks have
lower frequency of losses compared to banks in the
United States.

As operational risk gained more importance, start-
ing in the early 2000s, a number of international and
national operational loss databases have been ini-
tiated. Table 1 provides examples and information
about some of these databases. These databases con-
tain invaluable information for business practitioners.

A Bank
Banks in the G-10 countries were to implement
Basel II by the end of 2008. This is where A Bank
stands right now.
Remarks: Note that A Bank is facing this issue at

around 2006–2007, when our case study takes place.
At the time of writing, new updates to the Basel
Accords are underway. These updates are referred to
as Basel III and include revised definitions of cap-
ital, introduction of a leverage ratio, countercyclical
capital buffers, mitigations to counterparty credit risk,

Table 2 The largest banks in the United States as of March 31, 2008

Assets
Rank Name (city, state) (in millions)

1 Citigroup (New York, NY) 211991848
2 Bank of America Corp. (Charlotte, NC) 117431478
3 J. P. Morgan Chase & Company (New York, NY) 116421862
4 Wachovia Corp. (Charlotte, NC) 8081575
5 Taunus Corp. (New York, NY) 7501323
6 Wells Fargo & Company (San Fransisco, CA) 5951221
7 HSBC North America Inc. (Meltawa, IL) 4931010
8 U.S. Bancorp (Minneapolis, MN) 2411781
9 Bank of the New York Mellon Corp. (New York, NY) 2051151

10 Suntrust, Inc. (Atlanta, GA) 1781986
11 Citizens Financial Group, Inc. (Providence, RI) 1611759
12 National City Bank (Cleveland, OH) 1551046
13 State Street Corp. (Boston, MA) 1541478
14 Capital One Financial Corp. (McLean, VA) 1501608
15 Regions Financial Corp. (Birmingham, AL) 1441251
16 PNC Financial Services Group, Inc. (Pittsburg, PA) 1401026
17 BB&T Corp. (Winston-Salem, NC) 1361417
18 TD Bank North, Inc. (Portland, MA) 1181171
19 Fifth Third Bankcorp (Cincinnati, OH) 1111396
20 Keycorp (Cleveland, OH) 1011596

Notes. The assets are listed in millions of dollars. Data from: Federal Reserve
System, National Information Center.

and quantitative liquidity ratios. Current Basel III pro-
posed regulations do not significantly change opera-
tional risk regulations as defined in Basel II. Financial
institutions are tentatively planning Basel III imple-
mentation in early 2013.

A Bank is one of the nation’s largest bank-based
financial services companies with assets valued more
than $100 billion. (See Table 2 for a list of the 20
largest banks in terms of their assets in the United
States as of May 30, 2008. A Bank is one these banks
but the name of the bank is hidden and the exam-
ple data was artificially generated for confidentiality
reasons.) A Bank provides investment management,
retail and commercial banking, consumer finance, and
investment banking products and services to individ-
uals and companies throughout the United States and,
for certain businesses, internationally.

Like all financial institutions in the United States,
A Bank is subject to periodic reviews by federal regu-
lators. These regulatory reviews require, among many
things, that A Bank sets aside cash reserves to off-
set the potential risk of loss that it faces every day.
A Bank wants to hold the correct amount of capital
(cash reserves) required to cover its risk. If this capital
is too small, A bank could suffer a large loss and go
bankrupt. If this capital is too large, the bank will lose
out on earning money on the excess capital, hence, its
profitability will go down.

A Bank has credit and market risk models that have
been used for many years and are well calibrated.
These models allow A Bank to allocate an appropri-
ate amount of capital to cover credit and market risks.
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However, operational risk is a relatively new concept.
A Bank realizes that with sensitive risk models it can
lower its operational risk capital and increase its earn-
ings. However, A Bank does not want to go bankrupt.
To find the appropriate level of capital, they want to
build risk models sensitive to operational risk.

Loss Distribution Approach
After some initial studies, A Bank has decided to use
the AMA approach. Within this approach, they have
narrowed down their focus to a method that has been
in use in the actuarial risk calculations, known as the
loss distribution approach (LDA). In LDA, operational
risk is composed of two basic components:

(i) frequency of loss events, and
(ii) severity of each loss.

Frequency of loss events refers to the number of losses
that occur within a given time period. Typically (and
because of Basel II) this is taken as one year. The
severity of each loss then refers to the amount of
money lost because of the event that occurred.

The bank is ultimately interested in the aggregate
loss, that is, the total amount of money that the bank
may lose because of operational risk in any given
year, which is found by combining the two basic
components above. Let X be the random variable
corresponding to aggregate loss, Y be the random
variable corresponding to the number of loss events
(frequency) in a given time period (e.g., a year),
and Z be the random variable corresponding to the
amount of money lost on each loss event (severity).
Then, the aggregate loss is given by

X =

Y
∑

i=1

Zi0

To find the capital to hold, A Bank wants to
cover 99.5% of the losses it may face. Then, there is
only a 0.5% chance that total losses in a given year
may cause A Bank to go bankrupt. Let FX4x5 be the
cumulative distribution function of the aggregate loss;
FX4x5 = P4X ≤ x5. Then, A Bank is interested in find-
ing the quantity

VaR009954X5= min8x2 FX4x5≥ 0099590

This resulting quantity is known as the value at risk
(VaR) with confidence level 0.995 and gives the capital
reserves for operational risk. If the bank has capital
for 99.5% of losses, then it expects that its capital will
only be exceeded one out of every 200 years.

Data and Risk Modeling
A Bank has collected data on how many losses have
occurred in the last 15 years and the amount of
money lost on each loss event. The data set has been
expanded with plausible scenarios for very large loss

Table 3 Number of Losses in the Past 15 Years (Frequency Data)

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
No. of 8 7 14 16 7 23 21 12 6 7 11 5 9 12 6
losses

events and also adjusted for small losses that might
have been ignored. The resulting data are given in
Tables 3 and 4, and plots of the frequency data and
severity data are provided in Figure 1. As can be seen
in the plots, the severity data has a large number of
small losses but a small number of very large losses.
That is, it has a high peak at a small value and is
heavily skewed to the right. Distributions of this type
of data are called leptokurtic.

The bank plans to model the loss frequency with
a discrete probability distribution and model the loss
severity with a continuous probability distribution. By
combining these two distributions, the bank can come
up with an estimate of the capital required to cover
99.5% of losses that it may face. Some initial studies
suggest that the frequency distribution is best mod-
eled by either the Poisson or the negative binomial
distributions. The Poisson distribution is often used
to model the number of events in a given time. In this
case, it can be used to model the number of losses
within a year. The negative binomial is sometimes
referred to as the “over dispersed Poisson” because its
variance is greater than its mean. Recall that Poisson
has its mean equal to its variance. Initial studies also
indicate that the severity distribution is best mod-
eled by either the lognormal, or by the generalized
Pareto distribution (GPD), or a combination of the
two. The severity of the losses are heavily skewed to
the right, which makes modeling difficult. The lognor-
mal models the body of the losses well but does not
capture the extreme losses. The GPD does not model
the body well, but it does an excellent job of mod-
eling the extreme losses. Sometimes the lognormal
is spliced together with the GPD to model both the
body and tail of the loss distribution. Appendices A
and B provide information about these probability
distributions.

Unfortunately, the distribution of X (the aggregate
loss) cannot be written in closed form; instead, it
is usually simulated to make inferences. Monte Carlo
simulation can be easily done by first generating a real-
ization of the frequency random variable to simulate
the number of losses in a year. Then, that many losses
are generated from the severity distribution and are
summed to get one observation from the aggregate
loss distribution. After enough observations of X are
generated, the observations create a “picture” of what
the true distribution looks like. Figure 2 shows the
histogram of 100,000 simulated yearly total losses
from the aggregate loss distribution. As can be seen
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Table 4 Severity of Losses (Severity Data)

216661000 6861000 2115441000 141000 71000 161000 113311000 391000 31000
11000 500 161000 31000 911000 4401000 61000 11000 11000

100 161000 291000 501000 3701000 311000 921000 2011000 313781000
161000 3111000 5511000 471000 391000 2321000 2321000 571000 1301000

11000 1251000 7181000 1051000 851000 11000 331000 41000 900
1951000 1221000 9331000 101000 921000 21000 51000 111000 111000

11000 111000 231000 300 1811000 3791000 471000 11000 3741000
51000 3471000 71000 221000 691000 21000 1731000 515151000 451000

1241000 281000 221000 2301000 31000 31000 211000 5811000 21000
200 141000 1301000 61000 11000 51000 811000 2711000 11000

117411000 61000 241000 1471000 6181000 11000 4991000 1331000 31000
41000 81000 321000 800 51000 11000 21000 100 2421000

301000 91000 81000 211000 31000 1311000 351000 371000 9261000
11000 591000 261000 981000 31000 71000 61000 110091000 2621000

171000 391000 11000 201000 2471000 110881000 11000 161000 31000
121000 5331000 381000 600 881000 131000 417821000 910691000 411451000

300 691000 2961000 51000 91000 1951000 11000 241000 310431000
81000 391000 2701000 181000 71000 1371000 1171000 4381000 119831000

341000 131000

from Figure 2, the distribution of the aggregate loss is
also leptokurtic.

The bank needs to come up with an estimate of the
capital required to cover 99.5% of losses that it may

Figure 1 Histograms of (a) Frequency of Loss Events Each Year, and
(b) Severity of Loss from Each Loss Event
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face. This can be accomplished by taking the 99.5%
quantile by sorting the list of simulated observations
and taking the n4009955th observation, where n is the
total number of simulated values. For example, if you
have 1,000 observations, you take the 995th sorted
observation (i.e., the 995th order statistic).

When banks do not have sensitive risk models, reg-
ulators force banks to hold larger amounts of capi-
tal than actually required. Therefore, A Bank needs
to show the regulators that its model is adequate
and valid. A Bank is fairly confident that its data is
representative but the regulators need to see if the
approach and model of A Bank is statistically valid.

Given the difficulties in data collection with respect
to operational losses, issues with respect to fitting a
distribution to severity data, and the difficulties in
determining the distribution of aggregate loss, A bank
is considering some nonparametric statistical methods
to validate its models. Appendices C and D provide

Figure 2 Histogram of 100,000 Simulated Yearly Total Losses from the
Aggregate Loss Distribution
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background information on selected parametric and
nonparametric statistical methodology.
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Appendix A. Selected Frequency Distributions
• Poisson. The Poisson distribution is used to model

the number of things happening within a certain interval.
Here, A Bank is interested in modeling the number of loss
events per year. Let �> 0. The probability mass function is
given by

p4x � �5= P4X = x5=
�xe−�

x!
1 x = 011121 0 0 0 0

The mean and variance of a Poisson random variable are
equal; E6X7= var4X5= �.

The Poisson distribution has the following property: if
X is distributed Poisson with mean �1 and Y is distributed
Poisson with mean �2, and X and Y are independent from
one another, then, X + Y has a Poisson distribution with
mean �1 +�2. This can be useful when modeling the number
of loss events from different lines of business of a bank or
a financial institution, assuming the lines of business are
independent from one another.

• Negative binomial. There is another form of this distri-
bution; however, the bank requires that you use the one
given below. Let r ≥ 1 be an integer and 0 < p < 1. The prob-
ability mass function is given by

p4x � r1 p5= P4X = x5

=

(

r + x− 1
x

)

pr 41 − p5x1 x = 011121 0 0 0 0

The mean of a negative binomial random variable is E6X7=
r41 − p5/p and variance is var4X5 = r41 − p5/p2. Hence, its
variance is larger than the mean.

The relationship between the Poisson and negative bino-
mial distributions is as follows: let X be such that for a given
value of �, it is a Poisson random variable with mean �.
However, � is not constant and is assumed to be a random
variable that has a Gamma distribution with parameters r
and �, where �= p/41 − p5. Then, X is a negative binomial
random variable.

The negative binomial also has the property that if two
independent random variables, X and Y , are distributed as
negative binomials with same p but with respective param-
eters r1 and r2, their sum, X + Y , has a negative binomial
distribution with parameters r1 + r2 and p.

Appendix B. Selected Severity Distributions
• Lognormal. If Y is a normally distributed random vari-

able with mean � and variance �2, then, X = eY has a log-
normal distribution with the probability density function

f 4x ��1�25=
1

√
2��x

e−1/24ln x−�52�−2
1 x > 00

The lognormal distribution has a large spike at a small
value close to zero and has moderately heavy tails.

The lognormal distribution can be used to model quanti-
ties that are products of other independent quantities. (This
is due to the central limit theorem.) For instance, if certain
loss types can be viewed as a product of many independent
losses, then the lognormal distribution may be appropriate
to model such losses.

• Generalized Pareto distribution (GPD). Let � > 0 and
� > 0. Then, the probability density function of GPD is
given by

f 4x � �1�5=
1
�

(

1 +
�x

�

)−1−1/�

1 x > 00

(Note that we assumed the shape parameter � to be posi-
tive; � > 0. In this case, the GPD has a heavy tail. However,
there are more general forms of the GPD where � can take
other values. For instance, when � = 0, the GPD is equiva-
lent to an exponential distribution, when � = −1 the GPD
is the uniform distribution.)

The GDP is important in extreme value theory, which deals
with rare events that lie in the tail of a probability distribu-
tion. Consider Y , a random variable, and define the excess
distribution function, F� 4y5, as the conditional distribution of
Y over a certain threshold � :

F� 4y5= P4Y − � ≤ y � Y > �50

The Pickands-Balkema-de Haan theorem states that, for suf-
ficiently large values of � , under certain regularity con-
ditions, the excess distribution function F� 4y5 is approxi-
mately distributed as GPD (in its more general form than
we presented).

Appendix C. Maximum Likelihood Estimation
Maximum likelihood is a widely used method of estimating
the unknown parameters of a probability distribution. It has
several important properties that make it useful for statis-
tical inference. For instance, maximum likelihood estima-
tors are asymptotically normal, which is often used to make
inferences. They yield consistent estimators under mild reg-
ularity conditions and these estimators have the invariance
property, that is, if �̂MLE is the maximum likelihood esti-
mator of �, then, given a function h, h4�̂MLE5 is the maxi-
mum likelihood estimator of h4�5. We briefly describe this
method here.

Let f 4x � �5 be the pdf or pmf of a random variable X with
parameter �. Although � could represent a vector of param-
eters, for ease of exposition, let us assume there is only one
unknown parameter. Given an independent and identically
distributed sample of observations, x = 4x11x21 0 0 0 1 xn5, the
likelihood function is defined as

L4� � x5=

n
∏

i=1

f 4xi � �50

The likelihood function gives the likelihood of a parame-
ter � for the observed sample x. For instance, if �1 yields
a higher value than �2, then, �1 has a higher likelihood of
being the unknown parameter given the observations x. So,
the idea of maximum likelihood estimation (MLE) is to find
the value of � that maximizes the likelihood function. The
resulting estimator is

�̂MLE = arg max
�∈ä

L4� � x50
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This is often done by first taking the logarithm of the
likelihood function, which turns the product into a sum,
and then maximizing the loglikelihood function over the set
of possible parameter values, ä. Because the logarithm is a
monotonically increasing function, maximizing the loglike-
lihood function is equivalent to maximizing the likelihood
function. When this function is differentiable, the value of �
that yields a first derivative equal to zero is typically the
MLE. For some distributions, an analytical solution is not
available and some numerical optimization technique must
be used.

Example. Let X11X21 0 0 0 1Xn be a random sample from
a normal distribution with unknown mean � and known
variance �2. (So, here, � = � is the unknown parameter.)
The likelihood function is

L4� � x5=

n
∏

i=1

1
√

2�
e−4xi−�52/2

=
1

42�5n/2
e−

∑n
i=14xi−�52/20

Now, maximizing this function with respect to � is equiva-
lent to maximizing the power of the exponent (because the
exponent is a monotonically increasing function). Therefore

¡−
∑n

i=14xi −�52/2
¡�

= 0

yields
∑n

i=14xi −�5= 0. So, the maximum likelihood estima-
tor of � is

�̂MLE =

∑n
i=1 xi
n

1

which is the well-known sample mean.

Appendix D. Goodness of Fit
In this section, we summarize some commonly used
goodness-of-fit tests. In these tests, the alternatives are as
follows:

H0 = the data follow the specified distribution, and
H1 = the data does not follow the specified distribution.
• Chi-Squared test. In the chi-squared test, the distribu-

tion specified in the null hypothesis as well as the data are
divided into cells. Then, the number of observed values in
each cell is compared to the expected number of observa-
tions under the distribution specified in the null hypoth-
esis. If these values are close to one another, then we fail
to reject the null hypothesis, and the specified distribution
is a “good fit” for the data. Let k be the number of cells,
Oi be the number of observations, and Ei be the expected
number of observations under the null distribution in cell
i, i = 1121 0 0 0 1 k. The test statistic is

�2
=

k
∑

i=1

4Oi −Ei5
2

Ei

0

Larger values of �2 indicate that the null distribution may
not be a good fit for the data. When the expected num-
ber of observations are sufficiently large for each cell, �2 is
approximately distributed as a chi-squared random variable
with k − c degrees of freedom, where c is the number of
estimated parameters.

The chi-squared test can be applied to both continu-
ous and discrete distributions. The test is sensitive to the

number of cells used and the size of each cell. A common
rule of thumb is to select the cells such that each cell has at
least five observations in it.

• Kolmogorov-Smirnov (KS) test. The KS test is a nonpara-
metric test that compares the empirical cumulative distribu-
tion function (cdf) with the cdf of the null distribution. Let
Fn4x5 be the empirical cdf and let F 4x5 be the null distribu-
tion. Then, the KS test looks at the largest distance between
Fn4x5 and F 4x5. The test statistic is

D = sup
x

�Fn4x5− F 4x5�0

Large values of D indicate a poor fit. The KS test is only
applicable to continuous distributions but its test statistic is
distribution free. When the parameters of the null distribu-
tion are estimated, the critical values need to be simulated.
Another important characteristic of the KS test is that it is
more sensitive to the deviations in the center of the distri-
bution rather than its tails.

• Anderson-Darling (AD) test. The AD test is similar to
the KS test in the sense that it also uses the empirical cdf.
However, unlike the KS test, which puts more weight in the
center of the distribution, the AD test puts more weight on
the tails of the distribution. This can be important for the
severity distributions. Although there is a supremum type
AD test, A Bank prefers the more commonly used quadratic
type AD test, for which the test statistic is

A2
= n

∫ +�

−�

4Fn4x5− F 4x552

F 4x541 − F 4x55
dF 4x50

Different critical values for some distributions (e.g., nor-
mal, lognormal, Weibull) have been tabulated. When one
of these distributions is tested, Anderson-Darling is a pow-
erful goodness-of-fit test. Critical values for other distribu-
tions can be simulated.

Above, we presented the formal definitions for the KS
and AD test statistics. Formulas to calculate these statistics
based on the empirical cdf can be found in many statis-
tics books, see also §§1.3.5.16 and 1.3.5.14 of the Engineering
Statistics e-Handbook (NIST/SEMATECH 2011).
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