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Abstract. Implementing a secure cryptosystem requires operations involving 

hundreds of bits. One of the most recommended algorithm is Elliptic Curve 

Cryptography (ECC). The complexity of elliptic curve algorithms and 

parameters with hundreds of bits requires specific design and implementation 

strategy. The design architecture must be customized according to security 

requirement, available resources and parameter choices. In this work we propose 

the use of composite field to implement finite field multiplication for ECC 

implementation. We use 299-bit keylength represented in GF((2
13

)
23

) instead of 

in GF(2
299

). Composite field multiplier can be implemented using different 

multiplier for ground-field and for extension field. In this paper, LUT is used for 

multiplication in the ground-field and classic multiplieris used for the extension 

field multiplication. A generic architecture for the multiplier is presented. 

Implementation is done with VHDL with the target device Altera DE2. The work 

in this paper uses the simplest algorithm to confirm the idea that by dividing 

field into composite, use different multiplier for base and extension field would 

give better trade-off for time and area. This work will be the beginning of our 

more advanced further research that implements composite-field using 

Mastrovito Hybrid, KOA and LUT. 

Keywords: composite field; cryptography, elliptic curve, finite field, multiplier, 

security. 

1 Introduction 

Elliptic Curve Cryptography (ECC) is a public-key encryption that requires 

high computation for solving complex arithmetic operations. Elliptic curve is 

used in cryptography because of its special mathematical properties match 

cryptographic requirements for encryption and decryption. Elliptic curve has its 

own arithmetic operation, that is very specific and unpredictable, makes it 

cryptographically strong and becomes the most preferable cryptography 

algorithm to replace RSA. Unfortunately, implementing ECC requires 

sophisticated mathematical skills. There are many layers, restrictions, and 
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combinations that make various ECC implementations difficult to compare. 

Every level of ECC offers many things to explore. In this work we focus on the 

lowest level: finite field operations. Since multiplication is the most frequently 

used operations, we investigate existing multipliers algorithms and make 

improvements.  

The keylength used in ECC determines the level of security. In general, longer 

key requires more components in the corresponding hardware implementation. 

As the internet technology grows, the demand to implement ECC on constraint 

devices increases. As a consequence, there is a need for efficient algorithm and 

architecture for implementing ECC on constraint devices. To fulfill the security 

level requirement at the present, ECC should have above 160 bits keylength. 

We choose to implement 299 bits in this research. However implementing 299-

bit ECC in constrained devices, simulated with FPGA board, cannot be done 

using conventional algorithm and architecture. For example, 299-bit binary 

classic multiplier cannot fit in most FPGA devices. One alternative solution is 

by using composite field. 

Composite field can be seen as a finite field divided into subfields (ground 

fields) and extended fields. The representation of composite field can be seen as 

composing a long string of bits into smaller groups of bits. This representation 

allows arithmetic operations to be done in smaller chunks of string so the 

complex operations can be broke down into simpler operations. The focus of 

our paper is the implementation of multiplier using composite field. We focus 

on multiplier because multiplication is the most frequently used operation in 

ECC. The benefit of using composite field is the lower of memory usage and 

lower components. Thus if the process of multiplication is more efficient, the 

whole performance of cryptosystem will be improved. 

This work uses of composite field characteristic of dividing one big chunk of 

operation into smaller ones, with the classic multiplication for the extension 

field multiplication and LUT for base multiplication. We chose to use the 

easiest multiplier algorithm just to confirm the idea that composite field is 

promising to be able to perform operations for long bits. 

2 Background and Previous Work 

2.1 Elliptic Curves 

Given a field F of characteristic 2, an elliptic curve E over F is an equation of 

the form 

 y
2
 + a1xy + a3y = x

3
 + a2x

2
 + a4x + a6, 
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wherea1,a2 ,a3,a4,a6  in F. 

The set of rational points on E over F denoted by E(F) is 

 E(F) = {(x,y) F
2
 : y

2
 + a1xy + a3y = x

3
 + a2x

2
 + a4x + a6}  

where O is the projective closure of the equation y
2
 + a1xy + a3y = x

3
 + a2x

2
 + 

a4x + a6 .The point O is called the point at infinity.  

The set of rational points E(F) carries a commutative group structure with some 

addition operation with the point at infinity acting as the zero element. The 

following is the explicit formula for the group operation.  

Composition Rule. Let P,Q E, and L be a line connecting P and Q (the tangent 

line of E if P=Q), and R the third point which is the intersection of L and E. Let 

L’ be the line connecting R and O. Then P+Q will be the point where L’ 

intersect E. 

Proposition 1. The composition rule above satisfies the following: 

If L intersect E at P,Q,R (not necessarily different) then (P+Q)+R=O. 

1. P+O = P for all P  E 

2. P+Q=Q+P for all P,Q  E 

3. For all P  E there exists a point (-P), such that P+(-P)=O 

4. For all P  E(P+Q)+R=P+(Q+R). 

5. Hence E with the composition rule form an abelian group with identity O. 

Explicit Group Operation. Let E be an elliptic curve satisfies the Weierstrass 

equation  

 E: y
2
 + a1xy + a3y = x

3
 + a2x

2
 + a4x + a6 

1. Let  P0 = (x0, y0)  E. Then −P0 = (x0,−y0 − a1x0 − a3). 

2. Let P1 + P2 = P3 with Pi = (xi, yi)  E. If x1 = x2and y1 + y2 + a1x2 + a3 = 0, 

then  P1 + P2 = O.                                                            

Otherwise, let 
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for , and 

  

  

 for . 

 Then  is the line through P1and P2, or the tangent line of E if P1= P2. 

 
3. P3 = P1 + P2 is given by  

 x3 = 
2
+ a1  − a2 − x1 − x2 

 y3 = −(  + a1)x3 −  − a3. 

 For an integer m and P  E, define  

 [m]P = P + … + P (m terms) for m> 0, 

 [0]P = O, and [m]P = [−m](−P) for m< 0 

The El Gamal elliptic curve encryption based on binary field is as following: 

INPUT: Elliptic curve domain parameter (k,E,P,n), public key Q, plaintext m 

OUTPUT: Ciphertext (C1,C2) 

1. Represent the message m as a point M in E(GF(2
k
)) 

2. Select k [1, n-1] 

3. Compute C1=[k]P 

4. Compute C2=M+ [k]Q 

5. Return (C1,C2) 
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The encryption process is shown in Figure 1 

 

Figure 1  Encryption process in ECC. 

For the decryption is as following: 

INPUT: Elliptic curve domain parameter (k,E,P,n), private key d, ciphertext 

(C1,C2) 

OUTPUT: Plaintext m 

1. Compute M= C2 –[d] C1 

2. Extract m from M 

3. Return (m) 

 

Figure 2 Decryption process in ECC. 

From the elliptic curve encryption and decryption and elliptic curve operation, 

one can see that the role of operations in ground field is very important.  In this 

research we choose composite field as the ground field. 

2.2 Composite Fields 

Assume that  is a number to be used to construct a field. does not have to be 

prime if the order of the finite field is power of a prime or  where  is a 

prime. Thus the finite field can be extends to an extension field so the field 

 can be extended to . 
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Both in hardware or software implementation performing finite field 

arithmetics, choosing  is a big advantage because information is only 

representated in 0 or 1.  

Referring to [1], certain kinds of finite field can be defined as: 

Two pairs of  dan 

 is a composite field if  is constructed as extension field of 

 by  and  is construced as extension field of  by 

. and is irreducible polynomials over .  

Mathematically,  is isomorphic to  for  [2]. Although 

a field of order  is isomorphic to a field of order , the algorithmic 

complexity of both fields are different in additions and multiplication 

operations. Generally it depends on the chosen  and  and more specifics on 

polynomials  and  [3]. 

All curve representations in  can be converted to curves in  . If 

both  and  are finite fields with equal number of elements, there exists way 

to correlate each element in  with corresponding element in   so addition and 

multiplication tables of  and are equal (  and  isomorphic)[4], Theorem 

2.60 page 104.Curve representations in composite field converted to non-

composite field has been done in [5]. 

In finite field, composite field can perform same operations as non-composite. 

Only the operation has to be modified to be able to do in composite 

representation. In composite field, the field is divided into sub-fields. can 

be divided into  or . Sub-fields can be processed faster dan 

implemented in parallel. 

The reason why we use GF((2
13

)
23

) in this implementation is because 

GF((2
13

)
23

)=GF(2
299

)  which complies with the security level needed. The other 

reasons is that GCD(13,23)=1  so irreducible polynomial can be used for both 

ground field and extension field, and there are trinomials and polynomials 

available. Carefully chosen irreducible polynomial will reduce the complexity 

of multiplication operation. 

Previous Works. The first idea multiplier for composite field was initiated by 

Mastrovito [6]. The multiplier is called hybrid-multiplier. It performs the 

multiplication by doing multiplication serially in the ground field and parallel in 

the extension field. Mastrovito's multiplier basically works using a 

multiplication matrix that includes the reduction process. Paar in his works 

[3],[7],[8] added some improvements to Mastrovito's. Paar implemented 
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multiplication in the ground field using KOA and Mastrovito for multiplication 

in the extension field. Later, Rosner [9] conducted further research of 

Mastrovito and Paar.  

Look-Up Table (LUT) for composite field operations has been implemented in 

[9]. The algorithm for ground field multiplication using logaritmic table lookup 

is proven to be fast. 

3 Methodology 

3.1 Look-Up Table (LUT) 

LUT is used for storing log and alog (anti log) table to make multiplication 

operation in the ground field GF(2
n
)  perform faster. In [2] it is concluded that n 

does not have to be exactly the same as a single computer word (e.g. 8, 16). It 

has been proved that n <2is more efficient because the table will be smaller and 

thus will take advantage of the first level cache of computers.  

One of the reason why this research uses LUT for storing precomputed log and 

alog table in GF(2
13

) is that Table 2 in [2] shows that LUT for n =13  is 

efficient for polynomial basis multiplication compared to bigger n. To construct 

logaritmic lookup table, a primitive element g in GF(2
n
)  is selected to be the 

generator of the field GF(2
n
), so that every element A in this field can be written 

as a power of g  as A=g
i
 , where 0 < i < 2

n
-1 . Then the powers of the primitive 

element g
i
 can be computed for i=0, 1, 2,.. , 2

n
-1, and obtain 2

n
 pairs of the form 

(A, i). Two tables sorting these pairs have to be constructed in two different 

ways: the log table sorted with respect to A and the alog table sorted with the 

respect i. These tables then can be used for performing the field multiplication, 

squaring and inversion operations. Given two elements A, B in GF(2
n
) , the 

multiplication C=AB  is performed as follows: 

1. i := log[A] 

2. j := log[B] 

3. k := i+j (mod 2
n
-1) 

4. C := alog[k] 
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The steps above is based on the fact that C = AB = g
i
gj = g

i+j mod 2n-1
. Ground 

field multiplication requires three memory access and a single addition 

operation with modulus 2
n
-1. 

Savas and Koc [2] also proposed the use of the extended alog table for 

eliminating modular addition operation (step 3). The extended alog table is 2
n+1

-

1  long, which is about twice the length of the standard alog table. It contains 

the values (k,  g
k
)  sorted with repect to the index k , where k = 0, 1, 2, . . .,2

n+1
-2 

. Since the values of i and j  in step 1 and 2 of the multiplications are in the 

range 0, 2
n
-1 , the range of k = i + j  is 0, 2

n+1
-2 . Thus modular addition 

operation can be omitted and the ground field multiplication operation can be 

simplified as follows: 

1. i := log[A]  

2. j := log[B] 

3. k := i + j  

4. C := extended-alog[k]  

Figure 3 shows the process of reading LUT to compute multiplication using log 

and alog table. 

 

Figure 3 Multiplying using LUT. 



 Elliptic Curve Cryptography Implementation 71 
 

 

Figure 4 13-bit LUT implementation. 

 

Figure 5 Multiplication of GF(2
4
) using log and alog table with LUT. 
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Figure 6 The waveform of multiplication of GF(2
4
) using log and alog table 

with LUT. 

Figure 4 shows the RTL diagram of LUT implemented using Quartus and 

Altera DE2while Figure 5 shows the RTL of GF(2
4
) using LUT for storing log 

and a-log table with algorithm from [2]. There are two LUTs in the 

implementation, one is for storing 2
4
-blocks log table, and the other is for 

storing 2
4
 –blocks alog table. Log table put n-bits i values on the first column 

and n-bits g
i
 values on the second column. alog table sorted the table based on 

g
i
 values, and put the corresponding i values on the second column. Thus, each 

multiplier unit requires at least one LUT for storing i and j values in serial 

implementation and two LUTs for parallel implementation. Another LUT is 

needed for storing alog table.  

Figure 6 shows the simulation waveform of multiplier implemented in Figure 5. 

As a comparison, Figure 7 shows that straightforward 299-bit implementation 

failed for the available resources. 

4 Design and Implementation 

The generic architecture of our circuit is shown in the Fig 8. On the left side 

there are two set of input registers, each for input A and B. The size of the input 

registers depends on the bit size. For our particular case, which is a custom 

design, it is 13-bit. If we use off the shelf components, we may have to use 16-

bit registers since common components usually have 2
n
 word size. 
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Figure 7 Failed implementation for straightforward 299-bit implementation. 

 

Figure 8 Multiplier General Architecture. 
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Right next to the input registers are temporary registers that are used to store 

addition terms before they are multiplied. The decision will effect the number of 

temporary registers (and adders needed).  

In the center of our circuit is the GF(2
13

)  multiplier. In this particular design we 

have only one multiplier, implemented as LUT multiplier. Multiplication is 

done in serial fashion. Figure 9 shows an estimated timing diagram, which will 

be implemented in the sequencer. For example, when multiplying a22 andb22,  

the enable lines of registers related to those element and the result register are 

activated. 

If area is permitting, we could add more multipliers to perform parallel 

multiplication. Additional multipliers will reduce the time to perform all 

multiplications at the expense of more area. Careful timing consideration must 

be done in order to avoid race condition is multiple multipliers are 

implemented. 

The results of multiplications are stored in temporary registers before they are 

added to create the final results. Thus, there is a network of adders on the right 

side. 

 

Figure 9 Estimated timing diagram. 
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Figure 10 below is the snippets of VHDL code LUT implementing GF(2
13

)  

multiplier. A 13-bit multiplier requires 2
13

entries ≈ 8000  entries, for each table. 

If we implement this in general purpose hardware then it should be 

implemented in 16 bit (2 bytes). In our implementation, the log and alog table 

occupies 2*8*2 bytes = 32 Kbytes . 

 

Figure 10 Snippet ofGF(2
13

) LUT implementation in VHDL. 

ECC Processor Architecture. Figure 11 shows the general architecture of 

ECC processor. FFAU (Finite Field Arithmetic Unit) is an arithmetic unit 

specifically used for calculating finite fields operations. 

The processor will accept input data (plaintext) through data_in pin then will 

process the command given according to the opcode. The processor will execute 

the command after “start” command. Status of the processor (busy, done) can be 

monitored through “status” line. After the process is done, the result (ciphertext) 

will be send through “data_out” pin. “reset” pin is used to return the processor 

to the initial state.  

The ECC processor can process data in different length of bits. For long bits, 

the transfer process has to be carefuly considered to fit in the data bus. General 

process (clk) begin     

if clk'event and clk = '1' then        

case a is  

when "0000000000000" => i <= "0000000000001";  

when "0000000000001" => i <= "0000000000010";  

when "0000000000010" => i <= "0000000000100";  

when "0000000000011" => i <= "0000000001000";  

when "0000000000100" => i <= "0000000010000";   

when "0000000000101" => i <= "0000000100000"; 

… 
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computers use 32-bits data bus. Meanwhile the data to be processed by ECC 

processor is more than 100bits length. 

 

Figure 11 ECC top level processor architecture. 

 

Figure 12 FFAU (Finite Field Arithmetic Unit). 

One method to solve this is to divide data into several blocks (for example each 

blocks is 32-bit length) and load the data to the processor several times. Even 
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for the most extreme cases, data can be loaded serially. This ECC processor has 

several parameters stored in the register. The parameters are elliptic curve 

equation used, private key and public key. The parameters can be stored 

permanently (hardcoded) or can be loaded through the ”data_in” using a 

specific opcode. ”reset” pin is used to set the parameter to the initial condition 

(for example all zero). At the earlier stage of research, the parameters are stored 

permanently to simplify the problem.   

Figure 12 shows the block diagram of FFAU shown earlier in Figure 11. 

GF((2
13

)
23

) requires 23 GF(2
13

) multipliers.Figure 13 shows the concept of 

GF((2
13

)
23

) multiplier. 

 

Figure 13 GF(2
13

)
23

) Classical Multiplier-LUT. 

5 Analysis 

We compare our composite field multiplier with standar non-composite 

multipliers: classic multiplier, interleaved multiplier, Karatsuba-Offman 

multiplier, Mastrovito multiplier Type-1 and Type-2 and Montgomery 

multiplier. 

The experiment is done by running each multiplier using Quartus II Version 9.1 

Build 350 03/24/2020 SP 2 SJ Web Edition. All multipliers are implemented 

using family device is Stratix II, device EP2S15F484C3.  

As shown in Table 1, not all multipliers design fit in the standard device. Only 

interleaved multiplier and Mastrovito 2 multiplier can handle up to 233 bits. 
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Our design has been tested for lower bits and gives promising result that it can 

also works for 233 bits or more. This is the subject of our further research since 

the architecture should be customized to able to process longer bits. 

Table 2 shows the result of all multipliers comparation based on logic 

utilization, combinational ALUT(s), dedicated logic registers, total registers and 

total pins. The performance of our multiplier is in general better than other 

multipliers except it requires more pins. 

Our multiplier number of register is 56% lower than interleaved and 

Montgomery multiplier and 83% lower than Karatsuba multiplier. Karatsuba 

multiplier requires more register due to its recursive process in multiplying 

process. 

The use of combinational ALUT is less than 1%, which makes our multiplier 

use combinational ALUT less than Mastrovito, Mastrovito 2, Classic and 

Karatsuba. 

Our design uses more pins as a tradeoff of less registers and ALUT.   

Figure 15shows gives multipliers compared with all variables. Figure 16 is the 

brief version of Figure 15, focusing on variables not significantly observed in 

Figure 15.  

 

Figure 14 Multiplier Area Usage Comparison. 
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Table 1 Multiplier Comparison. 

Stratix II 

Logic 

utiliza-

tion (%) 

Combina-

tional 

ALUT(s) 

Combina-

tional 

ALUT(s) 

(%) 

Dedicated 

logic 

registers 

Dedica-

ted logic 

registers 

(%) 

Total 

regis-

ters 

Total 

pins 

Total 

pins 

(%) 

Composite < 1 91/12480 < 1 24/12480 < 1 24 122/343 36 
Mastrovito 2 169/12480 1 0/12480 0 0 48/343 14 

Mastrovito 2 2 128/12480 1 0/12480 0 0 48/343 14 

Interleaved < 1 31/12480 < 1 55/12480 < 1 55 52/343 15 
Classic 2 128/12480 1 0/12480 0 0 48/343 14 

Montgomery < 1 28/12480 1 55/12480 < 1 55 52/343 15 

Karatsuba 2 187/12480 1 141/12480 1 141 44/343 13 

Table 2 Multiplier Processing Limit. 

Multiplier m 

Classic 8, 16, 32, 64, 128, 163 

Interleaved 8, 16, 32, 64, 128, 163, 233 

Mastrovito 8, 16, 32, 64 

Mastrovito 2 8, 16, 32, 64, 128, 163, 233 

Montgomery 8, 16, 32, 64, 128 

Karatsuba-Offman 8, 16, 32, 64 

Composite *our experiments so far shows 

a strong indication that it is 

implementable for m >= 233  

 

Figure 15   Multiplier Comparison. 
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Figure 16   Brief Multiplier Comparison. 

6 Conclusions 

Our multiplier has been compared with other multipliers and the result 

conforms our hypothesis that our multiplier gives better trade off for time and 

space, like shown in Figure 15 and Figure 16.  The number of total pins is 

higher in order to lower the use of ALUT and registers.  

The experiment results in Table 1.shows that composite field implementation 

requires less combinational ALUT and registers (area) than most of multipliers. 

This advantage achieved by gaining better trade off for time is space is the 

flexibility of the architecture design that can be modified to fit devices 

according to space of time available. 
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