

ITB J. ICT, Vol. 6, No. 1, 2012, 63-81 63

Received November 29th, 2011, Revised April 16th, 2012, Accepted for publication April 25th, 2012.
Copyright © 2012 Published by LPPM ITB,ISSN: 1978-3086, DOI: 10.5614/itbj.ict.2012.6.1.4

Composite Field Multiplier based on Look-Up Table

for Elliptic Curve Cryptography Implementation

Marisa W. Paryasto
1
, Budi Rahardjo

1
, Fajar Yuliawan

2
, Intan Muchtadi-

Alamsyah
2
& Kuspriyanto

1

1
School of Electrical Engineering and Informatics, Institut Teknologi Bandung

Jl. Ganesha No. 10 Bandung 40132 – Indonesia
2
Algebra Research Group, Faculty of Mathematics and Natural Sciences,

Institut Teknologi Bandung, Jl. Ganesha No. 10 Bandung 40132 – Indonesia

Email: marisa@stei.itb.ac.id

Abstract. Implementing a secure cryptosystem requires operations involving

hundreds of bits. One of the most recommended algorithm is Elliptic Curve

Cryptography (ECC). The complexity of elliptic curve algorithms and

parameters with hundreds of bits requires specific design and implementation

strategy. The design architecture must be customized according to security

requirement, available resources and parameter choices. In this work we propose

the use of composite field to implement finite field multiplication for ECC

implementation. We use 299-bit keylength represented in GF((2
13

)
23

) instead of

in GF(2
299

). Composite field multiplier can be implemented using different

multiplier for ground-field and for extension field. In this paper, LUT is used for

multiplication in the ground-field and classic multiplieris used for the extension

field multiplication. A generic architecture for the multiplier is presented.

Implementation is done with VHDL with the target device Altera DE2. The work

in this paper uses the simplest algorithm to confirm the idea that by dividing

field into composite, use different multiplier for base and extension field would

give better trade-off for time and area. This work will be the beginning of our

more advanced further research that implements composite-field using

Mastrovito Hybrid, KOA and LUT.

Keywords: composite field; cryptography, elliptic curve, finite field, multiplier,

security.

1 Introduction

Elliptic Curve Cryptography (ECC) is a public-key encryption that requires

high computation for solving complex arithmetic operations. Elliptic curve is

used in cryptography because of its special mathematical properties match

cryptographic requirements for encryption and decryption. Elliptic curve has its

own arithmetic operation, that is very specific and unpredictable, makes it

cryptographically strong and becomes the most preferable cryptography

algorithm to replace RSA. Unfortunately, implementing ECC requires

sophisticated mathematical skills. There are many layers, restrictions, and

64 Marisa W. Paryasto, et.al.

combinations that make various ECC implementations difficult to compare.

Every level of ECC offers many things to explore. In this work we focus on the

lowest level: finite field operations. Since multiplication is the most frequently

used operations, we investigate existing multipliers algorithms and make

improvements.

The keylength used in ECC determines the level of security. In general, longer

key requires more components in the corresponding hardware implementation.

As the internet technology grows, the demand to implement ECC on constraint

devices increases. As a consequence, there is a need for efficient algorithm and

architecture for implementing ECC on constraint devices. To fulfill the security

level requirement at the present, ECC should have above 160 bits keylength.

We choose to implement 299 bits in this research. However implementing 299-

bit ECC in constrained devices, simulated with FPGA board, cannot be done

using conventional algorithm and architecture. For example, 299-bit binary

classic multiplier cannot fit in most FPGA devices. One alternative solution is

by using composite field.

Composite field can be seen as a finite field divided into subfields (ground

fields) and extended fields. The representation of composite field can be seen as

composing a long string of bits into smaller groups of bits. This representation

allows arithmetic operations to be done in smaller chunks of string so the

complex operations can be broke down into simpler operations. The focus of

our paper is the implementation of multiplier using composite field. We focus

on multiplier because multiplication is the most frequently used operation in

ECC. The benefit of using composite field is the lower of memory usage and

lower components. Thus if the process of multiplication is more efficient, the

whole performance of cryptosystem will be improved.

This work uses of composite field characteristic of dividing one big chunk of

operation into smaller ones, with the classic multiplication for the extension

field multiplication and LUT for base multiplication. We chose to use the

easiest multiplier algorithm just to confirm the idea that composite field is

promising to be able to perform operations for long bits.

2 Background and Previous Work

2.1 Elliptic Curves

Given a field F of characteristic 2, an elliptic curve E over F is an equation of

the form

 y
2
 + a1xy + a3y = x

3
 + a2x

2
 + a4x + a6,

 Elliptic Curve Cryptography Implementation 65

wherea1,a2 ,a3,a4,a6 in F.

The set of rational points on E over F denoted by E(F) is

 E(F) = {(x,y) F
2
 : y

2
 + a1xy + a3y = x

3
 + a2x

2
 + a4x + a6}

where O is the projective closure of the equation y
2
 + a1xy + a3y = x

3
 + a2x

2
 +

a4x + a6 .The point O is called the point at infinity.

The set of rational points E(F) carries a commutative group structure with some

addition operation with the point at infinity acting as the zero element. The

following is the explicit formula for the group operation.

Composition Rule. Let P,Q E, and L be a line connecting P and Q (the tangent

line of E if P=Q), and R the third point which is the intersection of L and E. Let

L’ be the line connecting R and O. Then P+Q will be the point where L’

intersect E.

Proposition 1. The composition rule above satisfies the following:

If L intersect E at P,Q,R (not necessarily different) then (P+Q)+R=O.

1. P+O = P for all P E

2. P+Q=Q+P for all P,Q E

3. For all P E there exists a point (-P), such that P+(-P)=O

4. For all P E(P+Q)+R=P+(Q+R).

5. Hence E with the composition rule form an abelian group with identity O.

Explicit Group Operation. Let E be an elliptic curve satisfies the Weierstrass

equation

 E: y
2
 + a1xy + a3y = x

3
 + a2x

2
 + a4x + a6

1. Let P0 = (x0, y0) E. Then −P0 = (x0,−y0 − a1x0 − a3).

2. Let P1 + P2 = P3 with Pi = (xi, yi) E. If x1 = x2and y1 + y2 + a1x2 + a3 = 0,

then P1 + P2 = O.

Otherwise, let

66 Marisa W. Paryasto, et.al.

for , and

 for .

 Then is the line through P1and P2, or the tangent line of E if P1= P2.

3. P3 = P1 + P2 is given by

 x3 =
2
+ a1 − a2 − x1 − x2

 y3 = −(+ a1)x3 − − a3.

 For an integer m and P E, define

 [m]P = P + … + P (m terms) for m> 0,

 [0]P = O, and [m]P = [−m](−P) for m< 0

The El Gamal elliptic curve encryption based on binary field is as following:

INPUT: Elliptic curve domain parameter (k,E,P,n), public key Q, plaintext m

OUTPUT: Ciphertext (C1,C2)

1. Represent the message m as a point M in E(GF(2
k
))

2. Select k [1, n-1]

3. Compute C1=[k]P

4. Compute C2=M+ [k]Q

5. Return (C1,C2)

 Elliptic Curve Cryptography Implementation 67

The encryption process is shown in Figure 1

Figure 1 Encryption process in ECC.

For the decryption is as following:

INPUT: Elliptic curve domain parameter (k,E,P,n), private key d, ciphertext

(C1,C2)

OUTPUT: Plaintext m

1. Compute M= C2 –[d] C1

2. Extract m from M

3. Return (m)

Figure 2 Decryption process in ECC.

From the elliptic curve encryption and decryption and elliptic curve operation,

one can see that the role of operations in ground field is very important. In this

research we choose composite field as the ground field.

2.2 Composite Fields

Assume that is a number to be used to construct a field. does not have to be

prime if the order of the finite field is power of a prime or where is a

prime. Thus the finite field can be extends to an extension field so the field

 can be extended to .

68 Marisa W. Paryasto, et.al.

Both in hardware or software implementation performing finite field

arithmetics, choosing is a big advantage because information is only

representated in 0 or 1.

Referring to [1], certain kinds of finite field can be defined as:

Two pairs of dan

 is a composite field if is constructed as extension field of

 by and is construced as extension field of by

. and is irreducible polynomials over .

Mathematically, is isomorphic to for [2]. Although

a field of order is isomorphic to a field of order , the algorithmic

complexity of both fields are different in additions and multiplication

operations. Generally it depends on the chosen and and more specifics on

polynomials and [3].

All curve representations in can be converted to curves in . If

both and are finite fields with equal number of elements, there exists way

to correlate each element in with corresponding element in so addition and

multiplication tables of and are equal (and isomorphic)[4], Theorem

2.60 page 104.Curve representations in composite field converted to non-

composite field has been done in [5].

In finite field, composite field can perform same operations as non-composite.

Only the operation has to be modified to be able to do in composite

representation. In composite field, the field is divided into sub-fields. can

be divided into or . Sub-fields can be processed faster dan

implemented in parallel.

The reason why we use GF((2
13

)
23

) in this implementation is because

GF((2
13

)
23

)=GF(2
299

) which complies with the security level needed. The other

reasons is that GCD(13,23)=1 so irreducible polynomial can be used for both

ground field and extension field, and there are trinomials and polynomials

available. Carefully chosen irreducible polynomial will reduce the complexity

of multiplication operation.

Previous Works. The first idea multiplier for composite field was initiated by

Mastrovito [6]. The multiplier is called hybrid-multiplier. It performs the

multiplication by doing multiplication serially in the ground field and parallel in

the extension field. Mastrovito's multiplier basically works using a

multiplication matrix that includes the reduction process. Paar in his works

[3],[7],[8] added some improvements to Mastrovito's. Paar implemented

 Elliptic Curve Cryptography Implementation 69

multiplication in the ground field using KOA and Mastrovito for multiplication

in the extension field. Later, Rosner [9] conducted further research of

Mastrovito and Paar.

Look-Up Table (LUT) for composite field operations has been implemented in

[9]. The algorithm for ground field multiplication using logaritmic table lookup

is proven to be fast.

3 Methodology

3.1 Look-Up Table (LUT)

LUT is used for storing log and alog (anti log) table to make multiplication

operation in the ground field GF(2
n
) perform faster. In [2] it is concluded that n

does not have to be exactly the same as a single computer word (e.g. 8, 16). It

has been proved that n <2is more efficient because the table will be smaller and

thus will take advantage of the first level cache of computers.

One of the reason why this research uses LUT for storing precomputed log and

alog table in GF(2
13

) is that Table 2 in [2] shows that LUT for n =13 is

efficient for polynomial basis multiplication compared to bigger n. To construct

logaritmic lookup table, a primitive element g in GF(2
n
) is selected to be the

generator of the field GF(2
n
), so that every element A in this field can be written

as a power of g as A=g
i
 , where 0 < i < 2

n
-1 . Then the powers of the primitive

element g
i
 can be computed for i=0, 1, 2,.. , 2

n
-1, and obtain 2

n
 pairs of the form

(A, i). Two tables sorting these pairs have to be constructed in two different

ways: the log table sorted with respect to A and the alog table sorted with the

respect i. These tables then can be used for performing the field multiplication,

squaring and inversion operations. Given two elements A, B in GF(2
n
) , the

multiplication C=AB is performed as follows:

1. i := log[A]

2. j := log[B]

3. k := i+j (mod 2
n
-1)

4. C := alog[k]

70 Marisa W. Paryasto, et.al.

The steps above is based on the fact that C = AB = g
i
gj = g

i+j mod 2n-1
. Ground

field multiplication requires three memory access and a single addition

operation with modulus 2
n
-1.

Savas and Koc [2] also proposed the use of the extended alog table for

eliminating modular addition operation (step 3). The extended alog table is 2
n+1

-

1 long, which is about twice the length of the standard alog table. It contains

the values (k, g
k
) sorted with repect to the index k , where k = 0, 1, 2, . . .,2

n+1
-2

. Since the values of i and j in step 1 and 2 of the multiplications are in the

range 0, 2
n
-1 , the range of k = i + j is 0, 2

n+1
-2 . Thus modular addition

operation can be omitted and the ground field multiplication operation can be

simplified as follows:

1. i := log[A]

2. j := log[B]

3. k := i + j

4. C := extended-alog[k]

Figure 3 shows the process of reading LUT to compute multiplication using log

and alog table.

Figure 3 Multiplying using LUT.

 Elliptic Curve Cryptography Implementation 71

Figure 4 13-bit LUT implementation.

Figure 5 Multiplication of GF(2
4
) using log and alog table with LUT.

72 Marisa W. Paryasto, et.al.

Figure 6 The waveform of multiplication of GF(2
4
) using log and alog table

with LUT.

Figure 4 shows the RTL diagram of LUT implemented using Quartus and

Altera DE2while Figure 5 shows the RTL of GF(2
4
) using LUT for storing log

and a-log table with algorithm from [2]. There are two LUTs in the

implementation, one is for storing 2
4
-blocks log table, and the other is for

storing 2
4
 –blocks alog table. Log table put n-bits i values on the first column

and n-bits g
i
 values on the second column. alog table sorted the table based on

g
i
 values, and put the corresponding i values on the second column. Thus, each

multiplier unit requires at least one LUT for storing i and j values in serial

implementation and two LUTs for parallel implementation. Another LUT is

needed for storing alog table.

Figure 6 shows the simulation waveform of multiplier implemented in Figure 5.

As a comparison, Figure 7 shows that straightforward 299-bit implementation

failed for the available resources.

4 Design and Implementation

The generic architecture of our circuit is shown in the Fig 8. On the left side

there are two set of input registers, each for input A and B. The size of the input

registers depends on the bit size. For our particular case, which is a custom

design, it is 13-bit. If we use off the shelf components, we may have to use 16-

bit registers since common components usually have 2
n
 word size.

 Elliptic Curve Cryptography Implementation 73

Figure 7 Failed implementation for straightforward 299-bit implementation.

Figure 8 Multiplier General Architecture.

74 Marisa W. Paryasto, et.al.

Right next to the input registers are temporary registers that are used to store

addition terms before they are multiplied. The decision will effect the number of

temporary registers (and adders needed).

In the center of our circuit is the GF(2
13

) multiplier. In this particular design we

have only one multiplier, implemented as LUT multiplier. Multiplication is

done in serial fashion. Figure 9 shows an estimated timing diagram, which will

be implemented in the sequencer. For example, when multiplying a22 andb22,

the enable lines of registers related to those element and the result register are

activated.

If area is permitting, we could add more multipliers to perform parallel

multiplication. Additional multipliers will reduce the time to perform all

multiplications at the expense of more area. Careful timing consideration must

be done in order to avoid race condition is multiple multipliers are

implemented.

The results of multiplications are stored in temporary registers before they are

added to create the final results. Thus, there is a network of adders on the right

side.

Figure 9 Estimated timing diagram.

 Elliptic Curve Cryptography Implementation 75

Figure 10 below is the snippets of VHDL code LUT implementing GF(2
13

)

multiplier. A 13-bit multiplier requires 2
13

entries ≈ 8000 entries, for each table.

If we implement this in general purpose hardware then it should be

implemented in 16 bit (2 bytes). In our implementation, the log and alog table

occupies 2*8*2 bytes = 32 Kbytes .

Figure 10 Snippet ofGF(2
13

) LUT implementation in VHDL.

ECC Processor Architecture. Figure 11 shows the general architecture of

ECC processor. FFAU (Finite Field Arithmetic Unit) is an arithmetic unit

specifically used for calculating finite fields operations.

The processor will accept input data (plaintext) through data_in pin then will

process the command given according to the opcode. The processor will execute

the command after “start” command. Status of the processor (busy, done) can be

monitored through “status” line. After the process is done, the result (ciphertext)

will be send through “data_out” pin. “reset” pin is used to return the processor

to the initial state.

The ECC processor can process data in different length of bits. For long bits,

the transfer process has to be carefuly considered to fit in the data bus. General

process (clk) begin

if clk'event and clk = '1' then

case a is

when "0000000000000" => i <= "0000000000001";

when "0000000000001" => i <= "0000000000010";

when "0000000000010" => i <= "0000000000100";

when "0000000000011" => i <= "0000000001000";

when "0000000000100" => i <= "0000000010000";

when "0000000000101" => i <= "0000000100000";

…

76 Marisa W. Paryasto, et.al.

computers use 32-bits data bus. Meanwhile the data to be processed by ECC

processor is more than 100bits length.

Figure 11 ECC top level processor architecture.

Figure 12 FFAU (Finite Field Arithmetic Unit).

One method to solve this is to divide data into several blocks (for example each

blocks is 32-bit length) and load the data to the processor several times. Even

I/O

Control
Unit

Register

Finite Field
Arithmetic
Unit (FFAU)

clk

d
a
ta

 b
u
s

data bus data bus

data bus

reset

start

opcode

status

data in

data out

ECC processor

1.2

control bus

control bus

 Elliptic Curve Cryptography Implementation 77

for the most extreme cases, data can be loaded serially. This ECC processor has

several parameters stored in the register. The parameters are elliptic curve

equation used, private key and public key. The parameters can be stored

permanently (hardcoded) or can be loaded through the ”data_in” using a

specific opcode. ”reset” pin is used to set the parameter to the initial condition

(for example all zero). At the earlier stage of research, the parameters are stored

permanently to simplify the problem.

Figure 12 shows the block diagram of FFAU shown earlier in Figure 11.

GF((2
13

)
23

) requires 23 GF(2
13

) multipliers.Figure 13 shows the concept of

GF((2
13

)
23

) multiplier.

Figure 13 GF(2
13

)
23

) Classical Multiplier-LUT.

5 Analysis

We compare our composite field multiplier with standar non-composite

multipliers: classic multiplier, interleaved multiplier, Karatsuba-Offman

multiplier, Mastrovito multiplier Type-1 and Type-2 and Montgomery

multiplier.

The experiment is done by running each multiplier using Quartus II Version 9.1

Build 350 03/24/2020 SP 2 SJ Web Edition. All multipliers are implemented

using family device is Stratix II, device EP2S15F484C3.

As shown in Table 1, not all multipliers design fit in the standard device. Only

interleaved multiplier and Mastrovito 2 multiplier can handle up to 233 bits.

78 Marisa W. Paryasto, et.al.

Our design has been tested for lower bits and gives promising result that it can

also works for 233 bits or more. This is the subject of our further research since

the architecture should be customized to able to process longer bits.

Table 2 shows the result of all multipliers comparation based on logic

utilization, combinational ALUT(s), dedicated logic registers, total registers and

total pins. The performance of our multiplier is in general better than other

multipliers except it requires more pins.

Our multiplier number of register is 56% lower than interleaved and

Montgomery multiplier and 83% lower than Karatsuba multiplier. Karatsuba

multiplier requires more register due to its recursive process in multiplying

process.

The use of combinational ALUT is less than 1%, which makes our multiplier

use combinational ALUT less than Mastrovito, Mastrovito 2, Classic and

Karatsuba.

Our design uses more pins as a tradeoff of less registers and ALUT.

Figure 15shows gives multipliers compared with all variables. Figure 16 is the

brief version of Figure 15, focusing on variables not significantly observed in

Figure 15.

Figure 14 Multiplier Area Usage Comparison.

 Elliptic Curve Cryptography Implementation 79

Table 1 Multiplier Comparison.

Stratix II

Logic

utiliza-

tion (%)

Combina-

tional

ALUT(s)

Combina-

tional

ALUT(s)

(%)

Dedicated

logic

registers

Dedica-

ted logic

registers

(%)

Total

regis-

ters

Total

pins

Total

pins

(%)

Composite < 1 91/12480 < 1 24/12480 < 1 24 122/343 36
Mastrovito 2 169/12480 1 0/12480 0 0 48/343 14

Mastrovito 2 2 128/12480 1 0/12480 0 0 48/343 14

Interleaved < 1 31/12480 < 1 55/12480 < 1 55 52/343 15
Classic 2 128/12480 1 0/12480 0 0 48/343 14

Montgomery < 1 28/12480 1 55/12480 < 1 55 52/343 15

Karatsuba 2 187/12480 1 141/12480 1 141 44/343 13

Table 2 Multiplier Processing Limit.

Multiplier m

Classic 8, 16, 32, 64, 128, 163

Interleaved 8, 16, 32, 64, 128, 163, 233

Mastrovito 8, 16, 32, 64

Mastrovito 2 8, 16, 32, 64, 128, 163, 233

Montgomery 8, 16, 32, 64, 128

Karatsuba-Offman 8, 16, 32, 64

Composite *our experiments so far shows

a strong indication that it is

implementable for m >= 233

Figure 15 Multiplier Comparison.

80 Marisa W. Paryasto, et.al.

Figure 16 Brief Multiplier Comparison.

6 Conclusions

Our multiplier has been compared with other multipliers and the result

conforms our hypothesis that our multiplier gives better trade off for time and

space, like shown in Figure 15 and Figure 16. The number of total pins is

higher in order to lower the use of ALUT and registers.

The experiment results in Table 1.shows that composite field implementation

requires less combinational ALUT and registers (area) than most of multipliers.

This advantage achieved by gaining better trade off for time is space is the

flexibility of the architecture design that can be modified to fit devices

according to space of time available.

Acknowledgement

This research is supported by Hibah Kompetensi DIKTI based on SK Dekan

STEI No. 0930/I1.C07.1/DN/2011. We thank Muhammad Hafiz Khusyairi and

Nopendri Zulkifli for their inputs and discussions on the topic.

References
[1] Guajardo, Jorge, Efficient Algorithms for Elliptic Curve Cryptosystem,

Master’s thesis, Worcester Polytechnic Institute, 1997.

[2] Savas, E.& Koc, C.K., Efficient Methods for Composite Fields

Arithmetic, Technical report, Oregon State University, 1999.

 Elliptic Curve Cryptography Implementation 81

[3] Paar, Christof, Efficient VLSI Architectures for Bit-parallel Computation

in Galois Fields, PhD thesis, 1994.

[4] Deschamps, Jean-Pierre, Imana, Jose Luis& Sutter, Gustavo D.,

Hardware Implementation of Finite-Field Arithmetic, The McGraw Hill

Companies, Inc., 2009.

[5] Hoffstein, Jeffrey, Pipher, Jill & Silverman, Joseph H., An Introduction to

Mathematical Cryptography, Springer Science+Business Media, LLC,

2008.

[6] Edoardo, Mastrovito, VLSI Architecture for Computations in Galois

Fields, PhD thesis, Linkoping University, 1991.

[7] Paar, Christof, Fast Arithmetic Architectures for Public-Key Algorithms

over Galois Fields GF((2n)m), Number 1233 in Lecture Notes in

Computer Science, Springer-Verlag, pp. 363–378, 1997.

[8] Paar, Christof & Fleischmann, Peter, Fast Arithmetic for Public-Key

Algorithms in Galois Fields with Composite Exponents, IEEE

Transactions on Computers, 48(10), pp. 1025–1034, October 1999.

[9] Rosner, Martin Christopher, Elliptic Curve Cryptosystems on

Reconfigurable Hardware, Master’s thesis, Worcester Polytechnic

Institute, May 1998.

