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Abstract-Bayesian mathematical model is the oldest
method for modelling subjective degree of belief. If we
have probabilistic measures with unknown values, then
we must choose a different and appropriate model. The
belief functions are a bridge between various models
handling different forms of uncertainty. The conjunctive
rule of Bayes builds a new set of a posteriori probability
when two independent and accepted sets of random
variable make inference. When two pieces of evidence are
accepted with unknown values, the Dempster-Shafer’s
rule suggests a model for fusion of different degree of
belief. In this paper we want to submit the use of MaxEnt
principle for modelling the belief. Dealing with non-
Bayesian sets, in which the piece of evidence represents
the belief instead of the knowledge, the MaxEnt principle
gives a tool to reduce the number of subsets representing
the frame of discernment. The fusion of a focal set with a
set of max entropy causes a Bayesian approximation
reducing mass function to a probabilistic distribution.
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I. INTRODUCTION

Let be the probability of A, the Bayes’ theory requires the
relation

( ) ( ) 1P A P A+ =

in which between lack of disbelief and disbelief there is no
distinction. Often in engineering design it is proper to do the
fundamental change of replacing the precise value that a
probability has with the concept that a probability has a
degree of variability in an interval that provides a lower and
upper bound. The idea of upper and lower probability, in
belief functions, was proposed for handling uncertainty
connected with subjectivity. The belief functions are a bridge
between various models handling different forms of
uncertainty. When there is not enough information on which
to evaluate a probability, or when the information is non-
specific, ambiguous, or in conflict, then the Bayesian model
cannot be used. A method for handling data in presence of
uncertainty with qualitative values is the theory of Dempster-
Shafer (DS). The DS model includes the Bayesian probability
as special case, and introduces the belief function as lower
probabilities and the plausibility function as upper
probabilities. The numerical measure, in presence of
uncertainty, may be assigned to set of elements as well as to a
single element. In DS model the probabilities, apportioned to
subsets and the mass can move over each element. Let be the
frame of discernment the next finite non-empty set

{ }1,..Θ = nx x
Θ is the set of all hypothesis. The basic probability is
assigned in the range [0,1] to the 2n subset of Θ consisting of
a singleton or conjunction of singleton of n basic elements xi.
The basic probability, a function which assigns the weight to
the subset of the frame of discernment, is the mass function
m(.). The mass m(θ) is where we assign the probability that
we are unable to assign otherwise. If the belief remain
apportioned in single elements, then the DS model
corresponds to the Bayesian model of probability. Formally
the description of basic probability assignments can be
represented with the next equations:
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The lower probability P*(Aj) is defined as

* ( ) ( )
ij

j jA A
P A m A

⊆
= ∑

And the upper probability P*(Aj) is defined as
* 1- ( )( )

j i
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The m(Ai) values are the independent basic values of
probability inferred on each subset Ai. The belief function of
set M is given by
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The evidential interval that provides a lower and upper bound
is

( ) ( )[ ],EI Bl M Pl M=
If m1 and m2 are basic probabilities from the independent
evidence, and { } { }ii AA 21 ,  the sets of focal points, then

Dempster’s model of combination gives the rule of fusion.
Given two basic probabilities from the independent evidence,
if it is

1 2
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then following Dempster’s rule
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many combines two or more probabilities.

The Dempster’s rule is easy to use and gives a quick
mathematical model for handling uncertainty including
Bayesian theory. The reliability of result depends on the
interpretation of the basic probability assignment. When the
conflict K, between the sources of independent basic
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probability, becomes important then the DS rules present
some limitations.

1 2
1 2( ) ( )

i j
i jA A

K m A m A
∩ =∅

= ∑
The DS rules present some weakness, more than once
reported by Zadeh and Dubois&Prade, because if the conflict
K is important, then the result of fusion is unacceptable. The
rules are mainly based on the extension of the domain of the
probability functions. In the applications there exists many
cases where DS rules assign low belief to elements of sets
with larger cardinality. Many algorithms have been
suggested, and many alternative rules have been proposed to
overcome the difficult of the computational complexity of
reasoning and to escape the limitations of Dempster’s rule. A
greater number of suggested algorithms can be represented
changing fusion’s rules
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choosing solutions in relation with the application and with
the needs of capturing epistemic uncertainty. The alternative
rules, proposed by Dubois&Prade Yager and Smets, are well-
known. Many rules are justified or criticized but all certainly
show that there exists a great number of possible rules of
combinations. The calculus of upper P*(Aj) and lower P*(Aj)
probabilities has the same dual interpretation as standard
Bayesian calculus. If we don’t accept that the DS rules assign
certainty to element of sets with lower cardinality, than it
means that we don’t accept the rules based on the extension
of the domain of the probabilistic functions.

The basic probability assignments [ ]1,02 →= Θm  assign a
numerical value to focal elements m(Aj). If we reduce focal
elements of the frame of discernment { }21, xx=Θ  in

singletons basic elements, then the fusion takes the same
structure of Bayesian rule.
In a fusion, if nA is the power of set ΘA and nB is the power of
set ΘB, then the power of the set resulting from a fusion is

( )A B A B A B A Bn Min n ,n∩ ∩Θ = Θ ⊕ Θ → =
.

A lot of limitations of fusion rule are imputable to the
evaluation of independence of the two distributions m1(A1j)
and m2(A2j).
The problem of the independence is a critical factor in
combining evidence. Given the events θ = {A,B,C}, the
elements 2Θ = 23 of the frame of discernment of all hypothesis
are:

{ }, , , , , , ,A B C A B A C B C A B C∪ ∪ ∪ ∪ ∪ ∅
The masses of probability of a distribution can be:
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The masses ( ) ( ) ( ){ }CmBmAm ,,  are uncoupled values of

probability whereas the masses

( ) ( ) ( ) ( ){ }, , ,m A B m A C m B C m A B C∪ ∪ ∪ ∪ ∪

are coupled values of distribution.
In the fusion system, the reduction of uncertainty and

complexity is the central problem because the resulting data
are the input design parameter for many applications,
especially the real time.

We need that probability is assigned to singleton basic
elements with uncoupled distribution. The goal of this paper
is the definition of a rule for decoupling distributions on
basic of MaxEnt Principle.

II. FUSION WITH MAXENT DISTRIBUTION

The basic probability assignment (bpa) is the primitive of
evidence theory. The bpa does not always refer to probability in
classical sense, in many applications it is useful to interpret bpa
as classic probability. The number of focal elements influences
the complexity of combining pieces of evidence. A way for
lowering the limitations of fusion rules is the reduction of the
number of focal elements decoupling probabilities.

Special importance is given to the Bayesian max entropy
distributions of probability with the same probability allotted
only in all singleton elements. Given the set θ = {A,B,C} with
3 basic elements, the Basic Max Entropy (BME) distribution
on the elements 23 is:

( ) ( ){ ( ) ( ) ( )
( ) ( ) ( ) }

BMEm . m A 1 / 3 , m B 1 / 3, m C 1 / 3,m A B 0,

m A C 0,m B C 0,m A B C 0

= = = = ∪ =

∪ = ∪ = ∪ ∪ =

The Basic-Max-Entropy distributions capture the epistemic
max uncertainty of the Bayesian probabilistic distribution.

1. Remarkable Features of Fusions
A. Let's consider the following two distributions:

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 1

2 2 2 2

m . m A 0.1 m B 0.4 m C 0.2 m A B 0.3

m . m A 0.5 m B 0.2 m C 0.3 __

= = = = ∪ =
= = = =

The distribution m1(.) has a coupled probability ( )BAm ∪1 ,

while the distribution m2(.) is Bayesian.

The set resulting from the fusion is:

( ) ( ) ( )3 1 2

0.1 0.4 0.2 0.3
m . m . m .

0.5 0.2 0.3 __

A B C

0.500 0.350 0.150

 
= ⊕ = =    

 
 
 
 

In the fusion of the non-Bayesian set m1(.) with the Bayesian
set m2(.), the mass ( )BAm ∪1  is allotted in the basic elements

of the set m3(.). The feature of the set m3(.) is the number of
masses equal to the number of basic elements of the Bayesian
set m2(.).

B. From the aggregation of a Bayesian set of max entropy
mMaxEnt(.) with a generic set m1(.) we get a fusion in which the
set of max entropy does not add new information to the set
m1(.):

( ) ( ) ( )MaxEnt
1 1m . m . m .⊕ =
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( ) ( ) ( )

[ ]

MaxEnt
1 1

0.500 0.350 0.150
m . m . m .

1 / 3 1 / 3 1 / 3

0,500 0.350 0.150

  = ⊕ = =    

The result remarks the well-known Bayesian fusion.

2. Maxent Principle Inference
If we have a distribution with coupled values of

probability, for obtaining the probability allotted in a set of
only basic elements, we must have a fusion with a proper
Bayesian set. If we don’t have a proper Bayesian set, then we
can employ the MaxEnt Principle. In absence of information
MaxEnt suggests us to select the distribution of max entropy.
Given a set { }nxx ,1Θ  of basic elements, on the basis of the

suggestion of MaxEnt principle, it is possible the definition of
the next Belief-MaxEnt theorem: The fusion of the MaxEnt set
mMaxEnt(.) with all generic sets of probability assignments m(.)
gives a Bayesian set mBME(.) with probability mass allotted
only in the basic elements.

( ) ( ) ( )
∪ ∪ 

  = ⊕ = =   
 − 

− 
 − 

BME MaxEnt

A B C A B C

m . m . m . 0.1 0.3 0.2 0.4

1/ 3 1/ 3 1/ 3

A B C

0,381 0,333 0,286

The fusion carries out a Bayesian approximation reducing
mass functions to a probabilistic distribution. The set
mMaxEnt(.) works as a distiller extracting, from generic belief
assignments, a set with mass of probability decoupled and
allotted only in the basic elements. The decoupled Bayesian
set is:

( ) ( ) ( ) ( ){ }BMEm . m A 0.381;m B 0.333; m C 0.286= = = =
The fusion of the mBME(.) with mMaxEnt(.) gives

() ()BME MaxEnt

A B C

m . m . 0.381 0.333 0.286

1/3 1/3 1/3

A B C

0,381 0,333 0,286

− 
  ⊕ = − =   
 − 
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( ) ( ) ( )BME MaxEnt BMEm . m . m .⊕ =
The result shows the special action of set mMaxEnt(.) of max
entropy in the fusion: The fusion of a mMaxEnt(.) distribution
with a Bayesian set does not change the Bayesian set.

III. BELIEF-MAXENT THEOREM AS RULE OF
COMBINATION

The MaxEnt Principle provides an alternative combination
rule to Dempster’s rule. In addition MaxEnt principle,
lowering of the number of focal elements removes some
limitations. We can utilize the MaxEnt Principle as distiller
for decoupling probability.

Now we can see some results provided by application of
Belief-MaxEnt theorem.

Given the two belief assignments
( ) ( ){ ( ) ( ) ( ) }
( ) ( ){ ( ) ( ) ( ) }

1 1 1 1 1

2 2 2 2 1

m . m A 0.1, m B 0.4, m C 0.2, m A B 0.3

m . m A 0.5, m B 0.1, m C 0.3, m A B 0.1

 = = = = ∪ =


= = = = ∪ =

If one applies the Belief-MaxEnt theorem for decoupling the
two distributions, m1(.) and m2(.), and successively gets the
final set with a Bayesian fusion, the other one gets the next
results.
Decoupling set m1(.) we have:

() () ()BME MaxEnt
I 2

A B C A B

m . m. m . 0.1 0.4 0.2 0.3

1/3 1/3 1/3

A B C

0,204 0,559 0.236

∪ 
  = ⊕ = =   
 − 

− 
 − 

Decoupling set m2(.) we have:

() () ()BME MaxEnt
II 2

A B C
m . m . m .

0,545 0,182 0.373

−  = ⊕ =   − 

Appling Bayesian fusion to the two sets, we have the final
aggregation:

() ()BME BME
I II

A B C
m . m .

0,414 0,379 0,207

−  ⊕ =   − 

The final result of fusion is a set with mass of belief allotted
only in the basic elements

( ) ( ) ( ) ( ){ }= = = =m . m A 0.414,m B 0,379,m C 0,207
.

This way of application can be used as new method for
decoupling and fusing two distributions of probabilities.

If one applies the DS rule of fusion, the other one gets:

( ) ( ) ( )1 2

A B C A B

m . m . m . 0.1 0.4 0.2 0.3

0.5 0.1 0.3 0.1

A B C A B

0,512 0,268 0.146 0.073

∪ 
 = ⊕ = =    
  

∪ 
 
 

The new aggregation contains the coupled mass
( ) 073.0=∪ BAm  having coupled the elements A and B. Now

if we use Belief-MaxEnt theorem as distiller of the set m(.),
we have the decoupled set:
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( ) ( ) ( )BME MaxEnt
2

A B C A B

m . m . m . 0.512 0.268 0.146 0.073

1/3 1/3 1/3

A B C

0,546 0,318 0.136

∪ 
  = ⊕ = =   
 − 

− 
 − 

The result of aggregation is a set with mass of belief allotted
only in the basic elements

( ) ( ) ( ) ( ){ }BMEm . m A 0.546 ,m B 0,318,m C 0,136= = = =
.

in which the mass ( ) 073.0=∪ BAm  is reassigned to the

basic elements. The second method is useful for lowering
uncertainty, decoupling probability, in sets obtained using DS
rules.

IV. CONCLUSIONS

The use of Belief-MaxEnt Theorem is a new method for
aggregation and modelling more distributions of masses of
probability.

Dealing with non-Bayesian sets, in which the pieces of
evidence represent the belief instead of the knowledge, the
Belief-MaxEnt theorem carries out a Bayesian approximation
and gives a tool for reducing the number if subsets represent
the frame of discernment, adding great simplification to the
process of aggregation.

The use of Belief-MaxEnt theorem in the fusion of basic
probabilities is synthesized in the next way of applications:
- First way of application: Belief-MaxEnt theorem as new

method for fusion and decoupling of two, or more,
distributions of probability. The results show that the new
method adds a great simplification to the process of
aggregation.

- Second way of application: Belief-MaxEnt theorem can be
used as distiller for reduction of uncertainty and
complexity. If we combine MaxEnt set with a combination
of basic probabilities, we get a Bayesian set with less
complexity and decoupled probability.

- Third way of application: Belief-MaxEnt theorem can be
used as distiller of the sets resulting from the fusion via
Dempster’s rule for reducing the uncertainty and
complexity and allotting the probability in a Bayesian set.
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