
Jayanta Basak, Kiran Kate, Vivek Tyagi & Nalini Ratha 

International Journal of Biometrics and Bioinformatics (IJBB), Volume (6) : Issue (5) : 2012 123 

QPLC: A Novel Multimodal Biometric Score Fusion Method 
 
 

Jayanta Basak                      basakjayanta@yahoo.com 
NetApp Advanced Technology Group 
Bangalore, India 

 
Kiran Kate                 kiran.kate@gmail.com 
IBM Research, Singapore 
 

Vivek Tyagi                             vivetyag@in.ibm.com 
IBM Research, New Delhi, India 

 
Nalini Ratha                     ratha@us.ibm.com 
IBM T J Watson Research Center 
Hawthorne, USA 

 
Abstract 

 
In biometrics authentication systems, it has been shown that fusion of more than one modality 

(e.g., face and finger) and fusion of more than one classifier (two different algorithms) can 
improve the system performance. Often a score level fusion is adopted as this approach doesn’t 
require the vendors to reveal much about their algorithms and features. Many score level 
transformations have been proposed in the literature to normalize the scores which enable fusion 
of more than one classifier. In this paper, we propose a novel score level transformation 
technique that helps in fusion of multiple classifiers. The method is based on two components: 
quantile transform of the genuine and impostor score distributions and a power transform which 
further changes the score distribution to help linear classification. After the scores are normalized 
using the novel quantile power transform, several linear classifiers are proposed to fuse the 
scores of multiple classifiers. Using the NIST BSSR-1 dataset, we have shown that the results 
obtained by the proposed method far exceed the results published so far in the literature.  
 

 
 
1. INTRODUCTION 
 
Biometrics-based authentication systems have been shown to be extremely useful in many 
security applications because of the non-repudiation functionality. However, these systems suffer 
from many shortcomings: the errors associated with the biometrics such as the false accept rate 
and false reject rate can impact the performance of the system; the failure to acquire and failure 
to enroll error rates can also impact the coverage of the population; fake biometrics e.g., latex 
fingers, face masks etc. can be used to fool biometrics systems. In order to overcome these 
problems, multi-biometrics systems have been proposed which is also known as biometric fusion. 
The fusion can be at various levels: signal (data), features, and classifiers.  Several examples of 
biometric fusion methods have been reported in the literature. Fusion could involve more than 
one biometrics modality such as finger and face; involve more than one classifier e.g., face with 
two different matchers; involve more than one sample of a biometrics e.g., two samples of the 
same finger; involve more than one sensing modality in a particular mode e.g., face acquisition 
using infra red imaging and regular color cameras. Each method of fusion described above would 
have some advantage over a unimodal system.  
 
The biometrics fusion problem is very interesting problem from a research and practical use 
perspective. The general area of fusion in the computer vision community has been studied 
extensively while its application to biometrics has been a relatively recent phenomenon. Early 
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research in this area dealt with decision level fusion using majority, and, or rules. While only few 
papers have appeared in the area of feature level fusion, the score-level fusion has received 
considerable attention in the literature. In order for feature-level fusion to work, the description of 
the features used in the underlying unimodal biometrics system needs to be reported. Many 
commercial vendor-based systems aren’t comfortable with this. While the impact of a pure 
decision is limited, the feature level fusion looks hard because of non-standard features used in 
commercial systems. The score level fusion has been proposed as the optimal level as most 
vendors produce a score from a biometrics template pair matching. The score is available for 
making a final decision. The only challenge in a score level fusion has been score normalization. 
Even within the same mode (e.g., face), every matcher provides a score within its own range and 
interpretation. Many score normalization methods have been proposed before the standard sum 
rule or other simple fusion rules can be applied [11, 15].  
 
In this paper, we propose a novel method of score transformation before the classifiers can fuse 
them. Many score normalization methods depend on the range of the scores produced by the 
classifiers. Even small change in the scores, can cause the normalization methods to vary 
significantly. Often the quantile transform has been used in many statistical data analysis to 
suppress the impact of outliers. In a biometrics system, there are two score distributions: genuine 
and impostor as shown in Fig. 1.  
 
The quantile transform is applied to both the distributions. In order to improve the separability 
between the two distributions, we apply a non-linear transform. After the scores are normalized, 
we apply many special linear classifiers e.g., model-based, SVM etc. We learn the needed 
parameters from a training set and use the models on test data. The proposed method has been 
tested using a publicly available multi-modal score set from NIST. Our results outperform the 
published results in the literature.  
 

                                    
               FIGURE 1:  Genuine and impostor score distribution and their cumulative distributions.  
 
The rest of the paper is organized as follows. Section 2 discusses recent work in the area of 
biometric fusion. Section 3 describes the basic QPLC transform technique. Results of the 
proposed method are described in Section 4. Finally in section 5, we analyze the performance of 
the system and provide conclusions. 
 
 

2. RELATED WORK 
 
There have been several interesting tutorial like articles in the broad area of biometrics fusion [8]. 
Several decision level fusion methods have been described in [10].  Kittler et al. [9] wrote one of 
the most influential papers involving general classifier fusion techniques. The methods described 
in this classic paper can be applied to biometrics classifiers. However, before the various rules 
can be applied for fusion of biometrics engines, one has to go through a set of score 
normalization methods. Several score normalization techniques such as min-max, Z-
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normalization, Median, Median Absolute Deviation, double sigmoid, tanh have been described in 
[11, 15]. It is quite well known that min-max, Z-normalization and similar score transformation 
methods are sensitive to outliers while tanh and sigmoid based transforms are robust to outliers. 
Ulery et al. [12] have studied several score level fusion methods for a large public score set and 
concluded that product of log likelihood ratios and logistic regression outperformed other 
techniques. Rank level fusion techniques like Borda count [13] have been applied to the biometric 
fusion problem in the recent past [14]. Poh, Kittler, and Bourlai [15] have proposed a quality 
based score normalization and subsequently applied it to multimodal fusion. In this quality-based 
score normalization, Poh et al. incorporated the qualitative device information. In case the device 
information is not available, the technique can still be used, but with the qualitative device 
information, the technique outperforms the other competitive methods. Vatsa et al. [16] also 
separately computed quality scores from fingerprint images and augmented these scores with the 
classifier scores and finally fused them using DSm theory to improve the performance of the 
resultant verification engine. Vatsa et al. [17] incorporated the likelihood-ratio test statistic in an 
SVM framework to fuse various face classifiers towards improved verification scores. Singh et al. 
[18] also used SVM for multimodal biometric information fusion. Vatsa et al. fused textural level 
matching scores and topological level matching scores to produce an improved iris recognition 
system in [19]. 
 
 

3. METHOD 
 
In this section, we describe the data transformation and the modeling that we used for the multi-
modal biometric authentication.   
 
 
3.1 Data Transformations 

 
We transform the data such that the outliers do not affect the distribution. In the literature [5, 11, 
15], three different kinds of data transformation have been used. These are min-max 
transformation, Bayesian approach, and non-linear transformation using sigmoid (tanh(.)) 
function. We perform non-linear transformation of the data using quantile transformation. For 
each modality, we compute q quantiles (where q is an input variable) and then represent these q 
quantiles as q+1 bins. For example, i-th bin is the range of values between quantile i-1 and i. In 
this process, if there is an outlier far from the distribution then also it is mapped to either 1

st
 or the 

last bin. 
 
In our multimodal biometric dataset, the samples are highly imbalanced. For example, if there are 
M individuals then we have only M genuine scores and M (M-1) imposter scores. Therefore, we 
have only 100/M % genuine scores and the rest are the imposter scores. For a large value of M, 
most of the distribution appears from the imposter data. Therefore if we compute the quantiles 
over the entire dataset including genuine and imposter then almost all the bins will be occupied 
by the imposter samples, and only one bin or only part of one bin will be occupied by the genuine 
samples which results in poor classification. 
 
In order to suitably transform both genuine and imposter samples, we compute the quantiles of 
the imposter distribution and the genuine distribution separately. We use equal number of 
quantiles for both the imposter and the genuine distribution. Note that, it may not be necessary to 
have equal number of quantiles for both imposter and genuine distributions, however, we use the 
same number of quantiles in our data transformation. 
 
Let x be any score for a modality i. Let the quantile values computed from the genuine scores be 

],,,[ 21 qyyy K

 where q is the number of quantiles. Similarly let the quantile values computed 

from the imposter distribution be 
],,,[ 21 qzzz K

. We transform x using the quantile values of the 
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genuine distribution to 
)(xk gen  where

1)()( +
<≤ xkxk gengen

yxy
. If qyx ≥

then 
1)( += qxk gen . 

Similarly we obtain the transformation of x to 
)(xk imp  using the imposter quantile values ([z]).  

We then obtain the resultant transformed score as 
 

)()()( xkxkxk impgen +=
           (1)              

 
Once we obtain the transformed values, we normalize k by 2q+2, i.e., k(x) = k(x)/(2q+2), since k 
can attain a maximum value of 2q+2. We first compute the transformed scores for the training 
data. We preserve the quantile information for all modalities derived from the training data. We 
then perform the model fitting on the transformed training data. For a test sample, we use the 
quantile information as derived from the training data and transform the test sample in the same 
way as in Equation (1) using the quantile information from the training data.  
 
   Ideally, if the genuine samples are separated from the imposter samples for a specific modality 
then after transformation, the transformed imposters will take values in the range [0,0.5] and the 
genuine samples will take values in the range [0.5,1]. This is illustrated in Fig. 3. Fig. 2 is the 
original score distribution of the two of the modalities of the NIST-BSSR1 dataset and Fig. 3 
shows the effect of quantile transform on these scores. In the multi-modal score distribution, we 
can view the transformed scores to be bounded in a four-dimensional hypercube. The imposter 
samples will be roughly confined in the box defined by [(0, 0, 0, 0), (0.5, 0.5, 0.5, 0.5)] and the 
genuine samples will occupy rest of the volume. Once we compute the normalized transformed 
scores, we raise the scores to a certain positive power p i.e. 
 

)()( xkxK p
=

 where p > 1       (2) 
 
With the increase in p, the volume occupied by the imposter samples in the hypercube decreases 
and the volume occupied by the genuine samples increases. In other words, the imposter sample 
distribution gets squeezed and the genuine sample distribution expands. This is evident in Fig. 4 
which shows the score distribution of the transformed NIST-BSSR1 scores for two of the 
modalities (the original score distribution is as shown in Fig. 2). We perform the quantile power 
transformation (QPT) as in Equation (2) and subsequently use linear classifier to classify the 
multi-modal scores. We denote QPT along with the linear classifier explained in section 3.2 as 
QPLC. 
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3.2 QPLC Model Fitting 
We first transform the scores of the training data using the quantile mapping and then normalize 

the scores. We then raise the normalized transformed scores to certain positive power and then 

perform linear classification. In order to find out the linear classification boundary, it is possible to 

perform various techniques which include logistic regression and linear SVM. However, the cost 

of misclassification for the genuine samples and imposter samples are not the same in our 

classification task. The objective here is to attain the maximum possible TAR with minimum 

possible FAR. We restrict the FAR to certain low value and find the optimum classification 

boundary to increase TAR as much as possible. 

 
As we mentioned before, we have four different modalities namely the left index, right index, and 
scores produced by two different matchers. Let us represent the separating hyperplane by 

],,,,[ 4321 θwwww
 where first four parameters define the orientation of the hyperplane in the 

four-dimensional space and the last parameter defines the intercept. We constrain the orientation 

FIGURE 2:  Score distribution of two of the modalities of the NIST-BSSR1 dataset. 

FIGURE 3: Quantile transformed score distribution of two of the modalities of the NIST-BSSR1 
dataset (before the power transform) 
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parameters as 
1

2
=w

 such that we have four free variables including the intercept. We then 
perform search over a four-dimensional hypersphere to obtain the orientation parameters. We 

search over the hypershpere in steps of certain w∆ , and compute the ROC (FAR vs. TAR) for 
each such model. 
 
We then obtain the set of models which produces the maximum TAR for a certain low FAR (FAR 
= 0.01%). Once we obtain the set of such models, we compute the AUC (area under the ROC 
curve) for each such model in the subset. We select one model from the subset which produces 
the maximum AUC. It is possible that more than one model in the subset produces the maximum 
AUC, and we randomly select one of such models. The overall approach is shown in Fig. 5. Once 
we obtain a model computed from the training data, we apply the same model on the test data. 
We vary the intercept to obtain the ROC on the test data. 
 

 
 
3.3 Quantile Transformation Applied To SVM 
 
Vector Machine (SVM) classifier has been quite successfully applied to a diverse set of 
classification problems. To further validate the effectiveness of the proposed QP transformation, 
we have used the transformed dataset to train a linear kernel SVM [3].   Libsvm [2] library has 
been used to train the following two linear SVMs. 
 

1. SVM trained on original dataset 
2. SVM trained on QP transformed dataset with p = 7 
 

In our experiments we have found that QP transformed SVM performs better than the SVM 
trained on the original data. This may be attributed to the better suitability of QP transformed data 
for linear classification. The detailed results are presented in the following section.   
 
==================================== 

for 
,1::01 ww ∆=
 

    
2

11 1 wR −=
; 

    for 
,::0 12 Rww ∆=
 

FIGURE 4:  QPT transformed score distribution of two of the modalities of the NIST-BSSR1 
dataset (p = 7) 
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,1
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2

2

12 wwR −−=
 

           for 23 ::0 Rww ∆=
, 

                  

2

3

2

2

2

14 1 wwww −−−=
; 

            compute the 
),,,( 4321 wwwwROC

; 
            end 
    end 
end 
 
Obtain the subset W of models from ROC which produces maximum TAR for FAR 0.01%; 

for each 
Wwwww ∈),,,( 4321 ,  

compute the 
),,,( 4321 wwwwAUC

 

Select a model vector Ww ∈
*

  

where 
)(maxarg

*
wAUCw Ww∈

=
; 

 ================================== 
 
 
 

4. RESULTS 
 
The performance of the QPLC method was evaluated on a public-domain dataset NIST-
BSSR1[1]. This dataset contains multimodal (two fingerprint and two face) scores for 517 users 
(NIST-517). It also contains two fingerprint matchers’ scores for 6000 persons (NIST-Fingerprint) 
and two face matchers’ scores for 3000 persons (NIST-Face). The first set of experiments was 
performed on the multimodal 517 users dataset using 20-fold cross validation. The results 
reported are the average values over these 20 folds.  
 
For the second set of experiments, a larger training dataset was generated for the four modalities 
by combining the 3000 NIST-Face scores with the first 3000 NIST-Fingerprint scores (We refer to 
this dataset as NIST-3000). The test dataset used was the 517 sample NIST-Multimodal dataset. 
We first show that the quantile transformation improves the Receiver Operating Characteristic 
(ROC) curves even on single modality. For example Fig. 6 displays the ROC on the right index 
fingerprint distribution for both the original data and the transformed data. We transformed the 
distribution using a quantile bin of size 4. 
 
After transformation, the scores take an approximate uniform distribution. The imposter samples 
get concentrated in [0, 0.5] and the genuine samples get concentrated in [0.5, 1] (as illustrated in 
Fig. 3).   
 
As discussed in section 3.1, raising the normalized transformed scores to a positive integer power 
changes the genuine and imposter distributions and we show that this helps the classification. 
The ROC plots in Fig. 7 and Fig. 8 compare the performance of QPLC with different values of 
powers for the NIST-multimodal and NIST-3000 datasets respectively. It can be seen that the 
classification performance improves with the higher values of power for lower values of FAR and 
then the curves coincide for the higher values of FAR as expected.  
 
In Fig. 9 we compare the ROC of the linear SVM, QPT based SVM and Logistic Regression on 
the NIST-517 dataset. The results indicate that the QPLC achieves significant improvement in the 
TAR values for low values of FAR as compared to the other techniques.  Further, we note that the 
QPT based SVM performs better than the SVM trained on the original dataset. Fig. 10 shows the 

FIGURE 5:  Linear classifier of QPLC 
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results of these classifiers on the larger NIST-3000 dataset. These results also show a similar 
trend as in Fig. 9. The QPLC outperforms other techniques and the QPT based SVM significantly 
outperforms the SVM trained on the original dataset. The improvement in the SVM performance 
as a result of the QPT is important since SVM is a widely used scalable classifier. 
 
 
 

                                   
     
 
 
 

 
 
 
Table.1 summarizes the TAR values for the FAR of 0.01 percent for all these fusion techniques. 
In [5] the authors have proposed a likelihood ratio test (LRT) based biometric score fusion.  As 
their results are also based on the 517 sample dataset, we directly compare their LRT based 
result with the proposed technique in the Table 1.  We also directly report the results of a linear 
classifier based fusion technique [4] on the same dataset. We also compare our transformation to 
the well known tanh score normalization [11, 15]. We use SVM to classify the tanh transformed 
scores and the result is reported in Table.1. This result and the results reported in [15] for tanh 
normalization in combination with different fusion methods on NIST-517 dataset indicate that QPT 

FIGURE 7:  Comparison of ROC performance on quantile transformed data raised to different 
values of powers for NIST-517 dataset. 

 
FIGURE 6:  Comparison of ROC performance on original data and transformed data for right index 

finger print recognition. 
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performs better than tanh normalization. From all the results, we can observe that the 
performance of QPLC is better than all the other techniques compared. 

 

   

 
 
 

FIGURE 9:  Comparison of ROC performance of QPLC with SVM, SVM + QPT p = 7, and Logistic 
Regression on the NIST-517 dataset. 

FIGURE 8:  Comparison of ROC performance on quantile transformed data raised to different 
values of powers for NIST-3000 dataset. 
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5. CONCLUSIONS 
 
In a multimodal score fusion problem, often one has to deal with the scores from the various 
modalities whose dynamic ranges and probability distributions vary a lot.  As a solution to this 
problem, we have proposed a quantile transformation which is independent of the dynamic 
ranges of each modality and is not highly susceptible to the outliers. Further we show that raising 
the normalized quantile values to a power greater than one results in a lower FAR and a higher 
TAR.    
 
Finally, a linear classifier (QPLC) and a SVM trained on the QPT scores significantly 
outperformed the other classifiers (LRT [5], linear classifier [4] and SVM) that were trained on the 
original scores confirming the utility of the QPT. We also compared it with other score 
normalization methods like tanh [11, 15] and found that QPT performs better. 
 
QPLC is also designed to particularly handle imbalanced data. We observe that for NIST-3000 
dataset, QPLC outperforms other linear classifiers. Since we consider the maximization of AUC 
explicitly under the constraint of achieving a certain minimum TAR, it is not affected by the 
imbalance in the samples. The linear classifier of QPLC is constrained by the dimensionality. We 

Technique NIST-
Multimodal 

NIST-3000 

LC [4] 99.00 - 

GMM [5] 99.10 - 

Logistic 
Regression 

98.26 - 

SVM + tanh 90.56 - 

SVM 98.84 94.19 

SVM + QPT 99.03 98.65 

QPLC 99.42 99.42 

FIGURE 10: Comparison of ROC performance of QPLC with SVM and SVM + QPT p = 7 on the 
NIST-3000 dataset. 

TABLE 1:  TAR (%) values for different methods at 0.01% FAR
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have four modalities and it was possible to design an explicit search mechanism. However, if the 
dimensionality increases, it may not be possible to perform the explicit search. Overall for 
relatively low-dimensional dataset and highly imbalanced class samples, QPLC has the potential 
to outperform the existing classifiers. In this paper, we tested with NIST-BSSR1 dataset, and as a 
future study we expand the experiments with other multi-modal biometric datasets as well. 
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