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On a Flawed, 16th-Century Derivation of Brahmagupta’s
Formula for the Area of a Cyclic Quadrilateral

Eisso J. Atzema

Abstract. Around 1545, the Indian commentator Gan. eśa suggested an interest-
ing, but ultimately flawed, derivation of Brahmagupta’s formula for the area of a
cyclic quadrilateral in terms of its sides. In this paper we show that Gan. eśa’s ap-
proach is actually valid and that his proof is easily fixed. We will also investigate
to what extent his idea can be generalized to arbitrary (convex) quadrilaterals.

1. Introduction

In the early 6th century, the Indian mathematician Brahmagupta suggested that
the area ABCD of a cyclic quadrilateral with vertices A, B, C, D and a, b, c, d
the lengths of the sides AB, BC, CD, DA is given by the formula

ABCD =
√

(s− a)(s− b)(s− c)(s− d).

where s = (a + b + c + d)/2. Proofs for Brahmagupta’s claim were given by
al-Shannı̄ (10th century), Jyes.t.hadeva (16th century) and others.1 Although rather
different in the details, all of these proofs follow a similar approach. A different
type of proof was suggested by Jyes.t.hadeva’s contemporary Gan. eśa.2

Gan. eśa’s “proof” can be found in his commentary on the Līlāvatī of Bhāskara II.
According to Gan. eśa himself, this commentary was composed in 1545 CE. In this
note, we will pursue Gan. eśa’s line of reasoning and show how it can be modified
to lead to the desired result.3 Along the way, we will see that some of his ideas
apply to any (convex) quadrilateral, albeit in a less elegant form than for the cyclic
case. We start with the big idea.
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2. Preliminaries

Before we proceed, we will quickly review (mostly without proof) a number of
major results regarding quadrilaterals. We need a definition first.

Definition 1. Let l be a line in the real projective plane. Then an involution on l is
a projective transformation on l that is its own inverse.

Any two distinct points that are images of one another under an involution are
said to be conjugate points (under the involution). In addition, any involution has
exactly two fixed points. i.e. points that are mapped onto themselves. Any invo-
lution is fully determined by the images of any two points on the line, i.e. by two
pairs of conjugate points, its two fixed points, or one fixed point and one pair of
conjugate points. One example of an involution on a line was first formulated by
Girard Desargues in the 1630s.

Theorem 1 (Desargues). Let ABCD be a quadrilateral in the projective plane
and let l be an arbitrary line in the same plane not passing through either A, B,
C, or D. Then the three pairs of points of intersection of l with the opposite sides
AB and CD, with AD and BC, as well as with the diagonals AC and BD are
such that each pair is a pair of conjugate points under the involution determined
by the other two pairs of points.

By the principle of duality, involution is well-defined for a pencil of lines as
well. Obviously, the dual version of Theorem 1 provides an example of such an
involution. Another example follows from the same theorem by choosing �∞, the
line at infinity, for our line �. In that case, one could say that the directions of
the sides and diagonals of ABCD form conjugate pairs under one and the same
involution. If we think of the vectors

−−→
AB and so on as all having their tail at a point

O, this can be expressed by saying that the lines these vectors lie on are conjugate
lines under one and the same involution on the pencil of lines through O.

Involutions on lines and pencils can also be defined by means of a conic section.
We need a definition first.

Definition 2. Let A1 and A2 be two points in the projective plane with a1 and a2
their polar lines with respect to a conic C in the same plane. Then A1 and A2

are said to be conjugate points with respect to C if and only if a1 lies on A2 (and
therefore a2 lies on A1).

From this definition, it follows immediately that for any point P on a line � not
tangent to C, there is exactly one point P ′ on � that P is conjugate with. Therefore,
conjugation with respect to a given conic of the points of a line in the plane of the
conic defines an involution. In fact, any involution can be defined as a conjugation
of the points of a line with respect to a conic. A conic that is pertinent in the case
of the involution on �∞ defined by a quadrilateral ABCD per Theorem 1 is given
by the following theorem.

Theorem 2 (Nine-point Conic). Let ABCD be a quadrilateral in the affine plane
with no parallel sides. Let E = AC ∩ BD, F = AD ∩ BC, G = AB ∩ DC,
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while MAB denotes the mid-point of the line segment AB and so on. Then, the
nine-point conic of ABCD is the unique conic passing through the nine points E,
F , G, MAB ,...,MCD. In case ABCD is convex or self-intersecting, its associated
nine-point conic is a hyperbola. In case ABCD is concave, its nine-point conic is
an ellipse.

It is now easy to verify that the involution on �∞ defined by a quadrilateral
ABCD per Theorem 1 coincides with conjugation of the points of �∞ with respect
to H of ABCD. Alternatively, we could define the involution of the directions of
the sides as the conjugation with respect to H of the lines of the pencil centered at
the center of H. Consequently, we have the following result.

Theorem 3. Let ABCD be a convex quadrilateral in the affine plane with no
parallel sides. Then, the fixed lines of the involution of directions of ABCD are
real and parallel to the asymptotes of H.

In other words, the directions of the asymptotes of H harmonically separate
each of the pairs of directions of AB, CD and AC, BD and AD, BC. This
immediately leads to the following observation.

Corollary 4. Let ABCD be a convex quadrilateral with the hyperbola H for its
nine-point conic. Then, for each of the pairs of lines AB, CD and AC, BD and
AD, BC, there is a parallelogram that has its sides parallel to the asymptotes of
H and its diagonals parallel to the pair of lines.

Proof. This follows immediately from the fact that the directions of the sides of a
parallelogram separate the directions of the diagonals harmonically... �

We can make the preceding more specific for the case of the diagonals AC and
BD, with E = AC ∩ BD. Let X , X ′ and Y , Y ′ be points on AC and BD,
respectively, such that XY and X ′Y ′ are conjugate under the aforesaid involu-
tion. Furthermore, let x, y, x′, y′ be the signed lengths of EX , EY , EX ′, EY ′.
Then, the ratios x : y and x′ : y′ can be associated with two points with coor-
dinates [x : y] and [x′ : y′] on the canonical projective line. By construction,
these points are conjugate under an involution on the projective line. Specifically,
[1 : 0] (representing AC) is paired with [0 : 1] (representing BD). Furthermore,
let eA, eC , fB , and fD be the lengths of EA, EC, FB, FD, respectively. Then,
[eA : fB] and [eA : fD] are paired with [eC : fD] and [eC : fB], respectively. As
any involution mapping [x : y] to [x′ : y′] is described by a relation of the form
Axx′+B(xy′+ yx′)+Cyy′ = 0, it follows that the involution above is described
by the relation eAeCyy

′ = fBfDxx
′. We can use this observation to prove the

following theorem.

Theorem 5. Let ABCD be a convex quadrilateral with no parallel sides, with
E and eA, eC , fb, fD defined as above, while e and f are the lengths of AC
and BD, respectively. Furthermore, let A∗ be on the ray from E through A, B∗
on the ray from E through B, C∗ on the ray from E through C and D∗ on the
ray from E through D be such that A∗E/AC = C∗E/AC =

√
eAeC/e and

B∗E/BD = D∗E/BD =
√
fBfD/f . Then, the two pairs of parallel sides of
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parallelogram A∗B∗C∗D∗ are parallel to the asymptotes of the nine-point conic
H of ABCD.

Proof. Since the sides of A∗B∗C∗D∗ are in the directions of the fixed lines of the
involution defined by the pairs of opposite sides of ABCD it immediately follows
that they are parallel to the asymptotes of H. �

This concludes our preliminary section. We are now ready to prove our main
result.

3. Constructing a pair of inscribed parallelograms

Let ABCD be a convex quadrilateral with no parallel sides. Let the asymptotes
of the nine-point conic H of ABCD be the axes of an oblique coordinate system
and denote the center of H by O. Furthermore, let ā, b̄, c̄, d̄, ē, f̄ denote the vectors−−→
AB,

−−→
BC,

−−→
CD,

−−→
DA,

−→
AC,

−−→
BD (with a, b, c, d, e, f their lengths). Finally, let p̄ and

q̄ denote the vectors
−−−→
A∗B∗ and

−−−→
B∗C∗ (with p and q their lengths). The following

result now applies (See Figure 1).

Theorem 6. For a quadrilateral ABCD in the affine plane with no parallel sides,

let A′ be the unique point on AB such that 2
−−→
AA′ is the sum of ā and the oblique

projection of c̄ onto ā in the direction of p̄ and let B′, C ′, D′ be defined analo-

gously. Similarly, let B′′ be the unique point on AB such that 2
−−→
AA′ is the sum

of ā and the oblique projection of c̄ onto ā in the direction of q̄ with A′′, C ′′, D′′
analogously. Then, A′B′C ′D′ is a parallelogram inscribed in ABCD such that−−→
A′B′ is the oblique projection of ē onto p̄ in the direction of q̄, while

−−→
B′C ′ is the

oblique projection of f̄ onto q̄ in the direction of p̄. Similarly, A′′B′′C ′′D′′ is a

parallelogram inscribed in ABCD such that
−−−→
A′′B′′ is the oblique projection of f̄

onto p̄ in the direction of q̄, while
−−→
B′C ′ is the oblique projection of ē onto q̄ in the

direction of p̄. Finally, the oriented areas of A′B′C ′D′ and A′′B′′C ′′D′′ are each
equal to the oriented area of ABCD.

Proof. Let ā = a1p̄ + a2q̄, c̄ = c1p̄ + c2q̄ and so on. By Corollary 4, a1c2 =
−a2c1. Therefore, the projection of c̄ onto ā in the direction of p̄ is given by

−c1p̄ + c2q̄. In other words,
−−→
AA′ = 1

2((a1 + c1)p̄ + (a2 − c2)q̄) while
−−→
BA′ =

1
2((−a1 + c1)p̄+−(a2 + c2)q̄) with analogous expressions for

−−→
BB′ and

−−→
CB′ and

so on. Now, note that ā + b̄ + c̄ + d̄ = 0̄ by construction. Therefore,
−−→
A′B′ =−−→

A′B +
−−→
BB′ equals 1

2((a1 + b1 − c1 − d1)p̄ + (a2 + b2 + c2 + d2)q̄) = e1p̄.

Similarly,
−−→
B′C ′ = f2q̄, while

−−−→
C ′D′ = −−−→

A′B′ and
−−−→
D′A′ = −−−→

B′C ′. We conclude
that A′B′C ′D′ is a parallelogram which by construction is inscribed in ABCD
with its sides parallel to the asymptotes of H. Finally, let ā× b̄ denote the oriented
area of the parallelogram spanned by ā and b̄ and so on. Then, the oriented area of
ABCD equals 1

2(ē× f̄) = 1
2(e1p̄+ e2q̄)× (f1p̄+ f2q̄) =

1
2(e1f2 − e2f1)(p̄× q̄).

As e1f2 = −e2f1, the latter expression equals e1f2(p̄ × q̄) = (e1p̄) × (f2q̄)
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Figure 1. The two parallelograms inscribed in ABCD with equal area to ABCD

or
−−→
A′B′ × −−→

B′C ′. This proves that the oriented area of A′B′C ′D′ equals that of
ABCD. The properties of A′′B′′C ′′D′′ now follow similarly. �

If ABCD does have parallel sides, i.e. if ABCD is a trapezoid, the proof above
does not apply. In this case, however, a slightly modified version can be fairly
easily found and A′B′C ′D′ and A′′B′′C ′′D′′ end up being parallelograms with a
pair of opposite sides on the parallel sides of ABCD.

The two parallelograms A′B′C ′D′ and A′′B′′C ′′D′′ are connected in various
ways. Most notably, the centers O′ and O′′ of the two parallelograms are reflections
of one another in the center O of the nine-point conic H of ABCD. Also, the line
through the midpoints of A′ and A′′ and of C ′ and C ′′ is parallel to ē and passes
through O. Likewise, the line through the midpoints of B′ and B′′ and of D′ and
D′′ is parallel to f̄ and passes through O as well. Finally, the points of intersection
A′D′ ∩D′′C ′′ and C ′B′ ∩ B′′A′′ both lie on BD, while the points of intersection
D′′A′′ ∩ A′B′ and B′′C ′′ ∩ C ′D′ both lie on AC. For the purposes of this paper,
however, there is no need to investigate these properties any further.
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4. Finding angles and sides

Our next task is to find expressions for the angles between the sides of A′B′C ′D′
and A′′B′′C ′′D′′ as well as for their lengths.

Theorem 7. For ABCD and A∗B∗C∗D∗ as defined above, let ε denote the signed
angle from ē to f̄ . Furthermore, let ζ be the signed angle from p̄ to q̄. Then

sin(ε)

tan(ζ)
=

(fBfD − eAeC)

2
√
eAeCfBfD

.

Proof. We have pq sin(ζ) = p̄× q̄, which equals

(

√
eAeC
e

ē−
√
fBfD
f

f̄)× (

√
eAeC
e

ē+

√
fBfD
f

f̄) =
2
√
eAeCfBfD

ef
sin(ε).

Similarly pq cos(ζ) = eAeC−fBfD
ef . The desired formula now immediately follows

from these two equalities. �

As for the lengths of the sides of A′B′C ′D′ and A′′B′′C ′′D′′, let the lengths of
the sides A′B′ and B′C ′ be denoted by p′ and q′, while the lengths of the sides
A′′B′′, B′′C ′′ are denoted by p′′ and q′′. We now have the following relations.

Theorem 8. Let ABCD be a convex quadrilateral, with p, p′, p′′ and q, q′, q′′
defined as above. Then

p′ =
ep

2
√
eAeC

, q′ =
fq

2
√
fBfD

and p′′ =
fp

2
√
fBfD

, q′′ =
eq

2
√
eAeC

.

Proof. Both
−−−→
A∗B∗ and

−−→
A′B′ are oblique projections onto q̄ in the direction of q̄

of parallel vectors. Therefore, the first relation follows from similarity. The other
three relations are derived similarly. �

Corollary 9. Let ABCD be a convex quadrilateral, with p, p′, p′′ and q, q′, q′′
defined as above. Then

p′ =
e

2
√
eAeC

√
eAeC + fBfD − 2

√
eAeCfBfD cos(ε),

q′ =
f

2
√
fBfD

√
eAeC + fBfD + 2

√
eAeCfBfD cos(ε),

p′′ =
f

2
√
fBfD

√
eAeC + fBfD − 2

√
eAeCfBfD cos(ε),

q′′ =
e

2
√
eAeC

√
eAeC + fBfD + 2

√
eAeCfBfD cos(ε),

where, as before, ε is the signed angle between ē and f̄ .

Proof. This is a straightforward application of the Law of Cosines and Theorem 8.
�
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5. The case of the cyclic quadrilateral

For the general quadrilateral, the expressions above probably cannot be simpli-
fied. For the cyclic case, however, we have the following result.

Theorem 10. Let ABCD be a (convex) cyclic quadrilateral with no parallel sides,
with p′, q′, p′′, q′′ defined as above. Then A′B′C ′D′ and A′′B′′C ′′D′′ are rectan-
gles and

p′ =
√

e

f
(s− b)(s− d), q′ =

√
f

e
(s− a)(s− c)

and

p′′ =

√
f

e
(s− b)(s− d), q′′ =

√
e

f
(s− a)(s− c),

where s = 1
2(a+ b+ c+ d).

Proof. If ABCD can be inscribed in a circle, then obviously eAeC = fBfD.
Therefore, 1/ tan ζ = 0, by Corollary 7. In other words, the sides of A′B′C ′D′
and A′′B′′C ′′D′′ are at right angles. It also follows from Corollary 9 that p′ =
e
2

√
1− cos ε, while q′ = e

2

√
1 + cos ε. Next, note that for every quadrilateral

ABCD, 2ef cos ε = b2+d2−a2−c2 (Bretschneider’s Formula, see [1]), while for
any (convex) cyclic quadrilateral ef = ac+ bd (Ptolemy’s Theorem). Elimination
of ef and cos ε and some straightforward algebraic manipulation now gives the
desired result. �
Corollary 11. Let ABCD be a cyclic quadrilateral with no parallel sides. Then,
its area ABCD is given by the formula

ABCD =
√

(s− a)(s− b)(s− c)(s− d).

Proof. The statement immediately follows by combining Theorem 6 and Theo-
rem 10. �

Again, the proof above does not apply to the only type of cyclic quadrilateral
with parallel sides, i.e. the isosceles trapezoid. It is easily verified, however, that
the statement of the theorem is true for this case as well. This concludes our deriva-
tion of the area formula for the cyclic quadrilateral as inspired by Gan. eśa’s flawed
attempt to derive the same formula.

6. Conclusion

At this point, one might ask how all of this relates to Gan. eśa’s derivation. In light
of the proofs of the results contained in this paper, it might seem highly unlikely
that any 16th-century mathematical practitioner (regardless of the mathematical
culture in which he was operating) would have been able to come up with a line
of reasoning like ours. The answer is that Gan. eśa did not either. It is true that
essentially he gave the statement of Theorem 10 and used the argument of Corol-
lary 11, implicitly assuming Theorem 6. But then, he only did so for the case of
the cyclic quadrilaterals. Even for this more simple situation, however, Gan. eśa’s
reasoning is hardly satisfactory. Thus, the construction of the points of the two
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parallelograms A′B′C ′D′ and A′′B′′C ′′D′′ is a lot easier, as the asymptotes of the
nine-point conic for a cyclic quadrilateral ABCD are parallel to the angle bisec-
tors of AEB. Therefore A′ simply is the point on AB such that AA′ has length
(a + c)/2 and so on. This is exactly how Gan. eśa constructs one of the two in-
scribed parallelograms A′B′C ′D′ and A′′B′′C ′′D′′, to then compute the area of
the cyclic quadrilateral from the area of the inscribed parallelogram (which only
requires tools and properties that were reasonably well-known to the mathematical
culture in which Gan. eśa operated). Of course, he still would have had to prove that
his inscribed parallelogram is a rectangle and that the area of this rectangle equals
that of ABCD. As it is, there is no proof of either in his work. At best, we could
say that Gan. eśa had the right intuition, but perhaps not the tools to fully back up
his claims.
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