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About Two Characteristic Points Concerning Two Nested
Circles and Their Use in Research of Bicentric Polygons

Mirko Radić

Abstract. This paper is a companion to [8], which primarily deals with two
characteristic points defined for two separated circles and their use in research
of bicentric polygons with excircle. This paper primarily deals with two charac-
teristic points defined for two nested circles and their use in research of bicentric
polygons with incircle. Some useful properties and relations are established and
some old and difficult problems are solved using these points.

1. The characteristic points of nested circles

We begin with the following definition.

Definition 1. Let C1 and C2 be two given circles such that C2 is complete inside
C1. Let R, r, d be lengths (positive numbers) such that R = radius of C1, r =
radius of C2, d = |OI|, where O is the center of C1 and I is the center of C2. Let
xOy be a co-ordinate system with origin O, and positive x-axis containing I . The
points Si(si, 0), i = 1, 2 where

s1,2 =
R2 + d2 − r2 ∓√

(R2 + d2 − r2)2 − 4R2d2

2d
, (1a)

will be called the characteristic points of the circles C1 and C2, or of the triple
(R, r, d).

It is easy to see that lengths s1 and s2 given by (1a) can be written as

s1 =
R2 + d2 − r2 − tM tm

2d
or s1 =

(tM − tm)2

4d
, (1b)

where

t2m = (R− d)2 − r2, t2M = (R+ d)2 − r2. (2)

See Figure 1a. As can be seen, tM is the length of the longest tangent that can
be drawn from C1 to C2, and tm is the length of the shortest. These lengths will be
often used in the following.
In this connection see also Figure 1b. Later it will be shown that the characteristic
point S1(s1, 0) is the intersection of the chords T1T̂1 and T2T̂2 of C1. From this it
will be clear that s1 > d if d �= 0, but s1 = 0 if I = O. Also it will be shown that
the point S2(s2, 0) is the intersection of the line through the points T1 and T2 with
the x-axis.

First we prove the following theorem.
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Figure 1a Figure 1b

Theorem 1. Let C1, C2 and R, r, d be as in Definition 1. Let PQ be any given
chord of the circle C1 containing the point S1(s1, 0), and PT1 and QT2 the tan-
gents from P and Q to C2 and let

t1 = |PT1|, t̂1 = |QT2|. (3)

See Figure 2. Finally, let the coordinates of P , Q, T1 and T2 with reference to xOy
be given by

P (u1, v1), Q(u2, v2), T1(x1, y1), T2(x2, y2). (4)

Then
t1t̂1 = tmtM , (5)

that is,(
(u1 − x1)

2 + (v1 − y1)
2
) (

(u2 − x2)
2 + (v2 − y2)

2
)− t2mt2M = 0. (6)
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Figure 2

Proof. First it is clear that, if v1 > 0, then v2 < 0 and

v1 =
√
R2 − u21, v2 = −

√
R2 − u22. (7)



Two characteristic points concerning two nested circles and bicentric polygons 131

The equation of the straight line through points P (u1, v1) and S1(s1, 0) is given
by

y =
v1

u1 − s1
(x− s1). (8)

It can be easily found that

u2 =
sv21 +

√
s21v

4
1 − ((u1 − s1)2 + v21)(s

2
1v

2
1 −R2(u1 − s1)2)

(u1 − s1)2 + v21
,

v2 =
v1

u1 − s1
(u2 − s1).

(9)

One solution of the system

(x− d)2 + y2 = r2, (u1 − d)(x− d) + v1y = r2 (10)

is given by

x1 = d+
r2(u1 − d) +

√
r4(u1 − d)2 − r2(r2 − v21)(v

2
1 + (u1 − d)2)

(u1 − d)2 + v21
,

y1 =
r2 − (u1 − d)(x1 − d)

v1
.

(11)

In the same way, it can be found that a solution of the system

(x− d)2 + y2 = r2, (u2 − d)(x− d) + v2y = r2 (12)

is given by

x2 = d+
r2(u2 − d) +

√
r4(u2 − d)2 − r2(r2 − v22)(v

2
2 + (u2 − d)2)

(u2 − d)2 + v22
,

y2 =
r2 − (u2 − d)(x2 − d)

v2
.

(13)

Starting from relation (6), using relations (7), (9), (11), (13) and with the help
of a computer algebra system, we get, after rationalization and factorization, the
following relation

− 4d(R− s1)
2(R+ s1)

2
(−dR2 + d2s1 − r2s1 +R2s1 − ds21

)
(R− u1)

3(s1 − u1)
4(R+ u1)

3(d2 +R2 − 2du1)
4(R2 + s21 − 2s1u1)

7(−dR2 + d2u1 − r2u1 +R2u1 − du21
)
= 0.

It can be easily seen that above relation is valid for every u1 if the fourth factor
(−dR2 + d2s1 − r2s1 +R2s1 − ds21) is equal to zero, that is, if s1 is given by (1).
This proves Theorem 1. �

This theorem will be proved later in an other way which may be interesting in
itself. See Theorem 13 below.

Example 1. Let R = 8, r = 3, d = 2. Then

tm = 5.196152423 . . . , tM = 9.539392014 . . . , s1 = 2.357966268 . . . .
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If u1 = −2.5, then v1 = 7.599342077 . . . ,
u2 = 5.847826086 . . . , v2 = −5.459205922 . . . ,
x1 = 3.908649086 . . . , y1 = 2.31453262 . . . ,
x2 = 0.585482934 . . . , y2 = −2.64558906 . . . ,
t1 = 8.306623863 . . . , t̂1 = 5.967302209 . . . .

t1t̂1 = tmtM = 49.56813493 . . . .

Theorem 2 (Converse of Theorem 1). Let R, r, d be as in Theorem 1 and let PQ
be any given chord of C1 such that

|PT1| · |QT2| = tmtM , (14)

where PT1 is tangent of C2 drawn from P and QT2 is tangent of C2 drawn from
Q. Then the chord PQ contains the point S1(s1, 0).
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t2

K

L

S
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Figure 3

Proof. Since |PT1|2 + |T1I|2 = |PI|2, we have

(u1 − d)2 + v21 − r2 = t21

from which follows

u1 =
R2 + d2 − r2 − t21

2d
. (15)

In the same way it can be seen that

u2 =
R2 + d2 − r2 − t̂21

2d
. (16)

Since

v1 =
√
R2 − u21, v2 = −

√
R2 − u22, (17)

the equation of the straight line through P and Q can be written as

y − v1 =
v1 − v2
u1 − u2

(x− u1),
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where u1 and u2 are given by (15) and (16). Putting y = 0 we get the following
equation in x

−v1 =
v1 − v2
u1 − u2

(x− u1). (18)

In this equation we put t̂1 =
tmtM
t1

from (5). After rationalization and factorization
we get

(d2 − r2 − 2dR+R2 − t21)(d
2 − r2 + 2dR+R2 − t21)

(d4 − 2d2r2 + r4 − 2d2R2 − 2R2r2 +R4 − t41)

(−dR2 + d2x− r2x+R2x− dx2) = 0. (19)

Only the fourth factor gives the point of intersection with x-axis and we have

x =
R2 + d2 − r2 −√

(R2 + d2 − r2)2 − 4R2d2

2d
. (20)

First it can be seen that

(R2 + d2 − r2)2 − 4R2d2 = t2mt2M . (21)

Concerning the first three factors in (19) it is easily seen that these, respectively,
can be written as

t2m − t21, t2M − t21, t2mt2M − t41.

The first and the second expressions occur when PQ = AB (see Figure 3); the
third when t1 = t̂1. Thus, the point of intersection with the x-axis in the general
case is given by (20), with x replaced by s1,2. This proves Theorem 2. �
Theorem 3. Let T1 and T2 be as in Theorem 1 (see Figure 2). The point S1 lies on
the segment T1T2.

Proof. It is easy to show that the equation of the line through points T1(x1, y1) and
T2(x2, y2) is satisfied by S1(s1, 0), that is −y1 =

y1−y2
x1−x2

(s1 − x1). �

Theorem 4. Let t2 and t̂2 be as in Figure 3. Then t2t̂2 = t1t̂1, that is,

t2t̂2 = tmtM .

Proof. The proof is in the same way as the proof of Theorem 1. �

2. Characteristic points associated with bicentric polygons

One corollary of this theorem, which will be stated (see [2,3]), refers to bicentric
polygons. Before stating it let us mention that a polygon which is both chordal and
tangential is simply called a bicentric polygon. The following question can be
raised: If C1 and C2 are circles such that C2 is completely inside C1, is there
an n-sided polygon inscribed in C1 and circumscribed around C2? The first who
considered this problem for n = 4 was the Swiss mathematician Nicolaus Fuss
(1755 – 1826). See [2]. He found that for n = 4 the following condition must be
fulfilled:

(R2 − d2)2 − 2r2(R2 + d2) = 0, (22)
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where R = radius of C1, r = radius of C2, and d = distance between centers of
C1 and C2.

Fuss also found conditions for n = 5, 6, 7, 8 (see [3]). Subsequently, such con-
ditions are also found for many integers n > 8. In honor of Fuss all such conditions
are called Fuss’ relations.

It seems that many problems concerning bicentric polygons can be proved using
properties of the characteristic points in Theorems 1, 2.

In establishing Fuss’ relations, Poncelet’s celebrated closure theorem [4] plays
an important role.

Theorem (Poncelet’s closure theorem). Let C and D be two nested conics such
that there is an n-sided polygon inscribed in D and circumscribed around C. Then
for every point x ∈ D, there is an n-sided polygon with x as a vertex, inscribed in
D and circumscribed around C.

Remark. (1) In the following we shall mostly deal with two circles C1 and C2,
where C2 is completely inside C1. For brevity in the expression in this dealing we
shall say that C1 and C2 are determined by triple (R, r, d) if and only if (R, r, d) ∈
R
3
+ and

R > d+ r, (23)

where R = radius of C1, r = radius of C2, d = distance between centers of C1

and C2.
In the following it will be shown that relations concerning the characteristic

points of these circles are closely connected with bicentric polygons.

Definition A below is a slight modification of Definition 1 in [7].

Definition A. Let S be a set given by

S =
{
(R, r, d) : (R, r, d) ∈ R3

+ and R > r + d
}
.

For a given (R0, r0, d0) ∈ S, we have

f1(R0, r0, d0) = (R1, r1, d1),

f2(R0, r0, d0) = (R2, r2, d2),

where R1, r1, d1 and R2, r2, d2 are given by

R2
1 = R0

(
R0 + r0 +

√
(R0 + r0)2 − d20

)
, (24a)

d21 = R0

(
R0 + r0 −

√
(R0 + r0)2 − d20

)
, (24b)

r21 = (R0 + r0)
2 − d20, (24c)



Two characteristic points concerning two nested circles and bicentric polygons 135

R2
2 = R0

(
R0 − r0 +

√
(R0 − r0)2 − d20

)
, (25a)

d22 = R0

(
R0 − r0 −

√
(R0 − r0)2 − d20

)
, (25b)

r22 = (R0 − r0)
2 − d20, (25c)

It can be proved that

R1 > r1 + d1, R2 > r2 + d2, (26a)

R1d1 = R2d2 = R0d0, (26b)

R2
1 + d21 − r21 = R2

2 + d22 − r22 = R2
0 + d20 − r20. (26c)

r1r2 = tM tm, (27a)

where
t2M = (R0 + d0)

2 − r20, t2m = (R0 − d0)
2 − r20. (27b)

Also,
(R1 + d1)

2 − r21 = t2M , (R1 − d1)
2 − r21 = t2m. (28a)

R2
1 − d21
2r1

=
R2

2 − d22
2r2

= R0,
2R1d1r1
R2

1 − d21
=

2R2d2r2
R2

2 − d22
= d0, (28b)

− (
R2

1 + d21 − r21
)
+

(
R2

1 − d21
2r1

)2

+

(
2R1d1r1
R2

1 − d21

)2

=− (
R2

2 + d22 − r22
)
+

(
R2

2 − d22
2r2

)2

+

(
2R2d2r2
R2

2 − d22

)2

= r20. (28c)

More about this and the functions f1 and f2 can be seen in [7, Theorem 1].

Theorem 5. Let R0, r0, d0 and Ri, ri, di, i = 1, 2, be as in Definition A. Then

disi = d0s0, i = 1, 2, (29)

where

s0 =
(tM − tm)2

4d0
, (30a)

si =
(tM − tm)2

4di
. (30b)

Proof. From (28a) and (30) it follows 4d0s0 = 4disi, i = 1, 2. �
Theorem 6. Let K1 and K2 be circles determined by triple (R1, d1, r1), where
R1, r1, d1 are given by (24). Then characteristic point of the triple (cR1, cd1, cr1),
where c = R0

R1
, is the same as that of the triple (R0, d0, r0), that is,

cs1 = s0, (31)

where s0 and s1 are given by (30).
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Proof. We can write

cs1 = c · (tM − tm)2

4d1
=

(tM − tm)2

41
cd1

=
(tM − tm)2

4d0
= s0,

since, by (26b),

1

c
d1 =

R1

R0
d1 =

R0d0
R0

= d0.

�

Relations (25) hold analogously if the triple (R1, d1, r1) is replaced by (R2, d2, r2).
In this case we have c = R0

R2
, and cs2 = s0.

Some important properties concerning bicentric n-gons will be now established.
Some of these are extension and completion of theorems proved earlier (see [7, 8]).

Theorem 7. Let n ≥ 4 be an even integer. Let (R1, r1, d1) ∈ R3
+ be any given

solution of Fuss’ relation Fn(R, r, d) = 0. Let C1 and C2 be circles (in the same
plane) such that
R1 = radius of C1,
r1 = radius of C2,
d1 = distance between points O and I , where O is the center of C1 and I is the
center of C2.

Further, let xOy denotes a coordinate system with origin O and positive x-axis
containing I . Finally, let P (u, v) be any given point of C1. Then there is a unique
point Q(û, v̂) of C1 such that

û =
−2R2

1d1 +
(
R2

1 + d21 − r21
)
u

2d1u− (
R2

1 + d21 − r21
) , (32a)

v̂ =
√
R2

1 − û2 or −
√
R2

1 − û2, (32b)

and the line determined by points PQ contains the characteristic point S1(s1, 0)
of the triple (R1, r1, d1).

Proof. From the equation of the line through P (u, v) and Q(û, v̂), that is,

y − v̂ =
v − v̂

u− û
(x− û), (33)

putting y = 0, we obtain
û− x

u− x
=

v̂

v
.

We have to prove that this has solution x = s1 if and only if û and v̂ are given
by (32) and s1 is given by

s1 =
(tM − tm)2

4d1
=

(√
(R1 + d1)2 − r21 −

√
(R1 − d1)2 − r21

)2

4d1
. (34)

See also Figure 4.
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Using computer algebra it can be easily shown that the relation

û− s1
u− s1

=
v̂

v

is satisfied if û and v̂ are given by (32) and s1 is given by (34). �
We remark that instead of the equation (33), the relation (34) can also be estab-

lished by using the equation of the line through P (u, v) and S1(s1, 0), that is

y =
v

u− s1
(x− s1), (35)

and replacing x and y by û and v̂ given by (32).

S
1

x

y

O

C
1 P(u,v)

û

^  ^Q( u, v )

v̂

u
v

Figure 4: (−û+ s1) : (u− s1) = −v̂ : v.

Corollary 8. The relation (32a) is equivalent to

u =
−2R2

1d1 +
(
R2

1 + d21 − r21
)
û

2d1û− (
R2

1 + d21 − r21
) . (36)

The proof is straightforward.

Theorem 9. Let u and û be as in Theorem 7. Then

tt̂ = tM tm, (37)

where

t2 = R2
1 + d21 − r21 − 2d1u, t̂2 = R2

1 + d21 − r21 − 2d1û, (38)

t2M = (R1 + d1)
2 − r21, t2m = (R1 − d1)

2 − r21. (39)

Proof. Replacing u in the relation (32a) by

R2
1 + d21 − r21 − t2

2d1

obtained from t2 given by (38) we easily get the relation(
R2

1 + d21 − r21 − 2d1û
)
t2 = t2M t2m

or
t̂2t2 = t2M t2m.
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This theorem can be also proved in the following way.
If in the relation (tt̂)2 =

(
R2

1 + d21 − r21 − 2d1u
) (

R2
1 + d21 − r21 − 2d1û

)
we

replace (tt̂)2 by (tM tm)2 =
(
R2

1 + d21 − r21
)2 − 4d21R

2
1, then we get

−4d21R
2
1 = −2d1û

(
R2

1 + d21 − r21
)− 2d1u

(
R2

1 + d21 − r21
)
+ 4d21uû,

which is equivalent to the relation (32a). �
Remark. (2) As can be seen, proving Theorem 9 we in fact prove Theorem 1 in an
another way which may be interesting in itself.

Theorem 10. Let P (u, v), Q(û, v̂) and S1(s1, 0) be as in Theorem 7. Then

|PS| |QS| = R2
1 − s21. (40)

Proof. First let us remark that R1 > s1 since

s1 =
(tM − tm)2

4d1
=

t2M − 2tM tm + t2m
4d1

=
R2

1 + d21 − r21 − tM tm
2d1

,

2R1d1 > R2
1 + d21 − r21 − 2tM tm

=⇒ 0 > (R1 − d1)
2 − r21 − tM tm or 0 > t2m − tmtM . (41)

Now,

|PS|2 · |QS|2 = (
(u− s1)

2 + v2
) (

(û− s1)
2 + v̂2

)
=

(
R2

1 − 2us1 + s21
) (

R2
1 − 2ûs1 + s21

)
.

This is equal to (R2
1 − s21)

2 if and only if

−2R2
1ûs1 − 2R2

1us1 + 4uûs21 − 2us31 − 2ûs31 = 4R2
1s

2
1. (42)

This can be rewritten as

û
(
R2

1s+ s31 − 2s21u
)
= 2R2

1s
2
1 −

(
R2

1s1 + s31
)
u.

From this,

û =
2R2

1s1 − (R2
1 + s21)u

−2s1u+R2
1 + s21

. (43)

Replacing s1 by
R2

1 + d21 − r21 − tM tm
2d1

(see (1b)) it is easy to find that the above

relation can be written as

û =
2R2

1d1 −
(
R2

1 + d21 − r21
)
u

−2d1u+
(
R2

1 + d21 − r21
) .

Thus, the relation (40) is valid if û is given by (32a). �
Theorem 11. Let P (u, v), Q(û, v̂) and S1(s1, 0) be as in Theorem 7. Then

|PQ|
t+ t̂

=
2R1√

(R1 + d1)2 − r21 +
√

(R1 − d1)2 − r21
, (44)

where t and t̂ are given by (38).
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Proof. We have to prove that

(u− û)2 + (v − v̂)2

(t+ t̂)2
=

(
2R1

tM + tm

)2

, (45)

where tM and tm are given by (39). The proof goes in the same way as the proofs
of the previous two theorems. Of course, in this theorem there is some more cal-
culations since there are some terms which need to be rationalized. If obtained
relation after rationalization is denoted by f(u, û) then f(u, û) = 0 for û given
by (32a). This proves Theorem 11. �

Remark. (3) In [6, Theorem1] it is proved that for n = 4 it holds

|PQ|
t+ t̂

=

√
2R2

1

R2
1 + d21

. (46)

In the following theorem some results in [5, pp. 52–53] will be used. It was
proved that for the lengths of tangents to a bicentric polygons,

(t2)1,2 =
(R2 − d2)t1 ± r

√
(t2M − t21)(t

2
1 − t2m)

r2 + t21
. (47)

If t1 is given tangent length, then one of (t2)1,2 is consecutive and other is proceed-
ing.

Theorem 12. Let A1 . . . An be any given bicentric n-gon whose circumcircle is C1

and incircle C2 as it is described in Theorem 7. Let xOy be a coordinate system as
in Figure 3 and let the vertices A1, . . . , An be given by Ai(ui, vi), i = 1, . . . , n.
Finally, let t1, . . . , tn be tangent lengths from the vertices Ai(ui, vi) of the n-gon
A1 . . . An, that is,

t2i = R2
1 + d21 − r21 − 2d1ui, i = 1, . . . , n. (48)

If t21 = R2
1 + d21 − r21 − 2d1u1 is given, then the consequent of u1 is (u2)1 or (u2)2

given by

(u2)1 =
1(

d21 +R2
1 − 2d1u1

)2 (−d41u1 + 2r21R
2
1u1 −R4

1u1 + 2d21
(
r21 − 3R2

1

)
u1

− 2

√
r21

(
R2

1 − d21
)2 (

d21 − r21 +R2
1 − 2d1u1

) (
R2

1 − u21
)

+2d31
(
R2

1 + u21
)
+ 2d1R

2
1

(
R2

1 + u21 − 2r21
))

(49a)

(u2)2 =
1(

d21 +R2
1 − 2d1u1

)2 (−d41u1 + 2r21R
2
1u1 −R4

1u1 + 2d21
(
r21 − 3R2

1

)
u1

+ 2

√
r21

(
R2

1 − d21
)2 (

d21 − r21 +R2
1 − 2d1u1

) (
R2

1 − u21
)

+2d31
(
R2

1 + u21
)
+ 2d1R

2
1

(
R2

1 + u21 − 2r21
))

. (49b)
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Proof. From relation (47) (rewriting t2 instead of (t2)2) it follows that(
t22 +

(R2
1 − d21)

2t21
(R2

1 + d21 − r21 − 2d1u1)2
− 4d21r

2
1(R

2
1 − u21)

(R2
1 + d21 − r21 − 2d1u1)2

)2

=

(
2(R2

1 − d21)t1t2
R2

1 + d21 − 2d1u1

)2

, (50)

where

t1 =
√
R2

1 + d21 − r21 − 2d1u1, t2 =
√
R2

1 + d21 − r21 − 2d1u2. (51)

Replacing t1 and t2 in the relation (50) by the right sides of the above two relations,
we get

au22 + bu2 + c = 0, (52a)

where

a = −4d21r
2
1R

2
1 + 4r41R

2
1 + 4d21R

4
1 − 4r21R

4
1 − 4d31R

2
1u1

+ 8d1r
2
1R

2
1u1 − 4d1R

4
1u1 + d41u

2
1 + 2d21R

2
1u

2
1,

b = 2
(
d21 − 2r21 +R2

1 − 2d1u1
) (−2d1R

2
1 + d21u1 +R2

1u1
)
,

c = d21 +R2
1 − 2d1u1.

(52b)

Using computer algebra it can be easily found that the solution of the equation
given by (52) are given by (49). �

Here is an example.

Example 2. Let n = 6 and (R1, r1, d1) be a solution of Fuss’ relation F6(R, r, d) =
0 such that

R1 = 8.340410321 . . . , r1 = 6.812488532 . . . , d1 = 1.198981793 . . . .

(For brevity in the following the points (sign) ... after calculated values will be
omitted.)

The values tM and tm are given by

tM =
√
(R1 + d1)2 − r21 = 6.7677574552,

tm =
√
(R1 − d1)2 − r21 = 2.14242886.

Let t1 be a length such that tM ≥ t1 ≥ tm, say t1 = 4. Then, as can be easily
concluded, there is a bicentric hexagon A1 . . . A6 such that its first tangent is t1 =
4. The other tangent lengths of this hexagon can be calculated using formula (47)
and find that

t2 = 2.3947586766, t3 = 2.2572852505, t4 = 3.5765564793,

t5 = 5.973973936, t6 = 6.3378015311.

These tangent lengths can also be calculated using u1 given by

u1 =
R2

1 + d21 − r21 − t21
2d1

= 3.58220619 (53)
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and formulas given by (49). For example, taking u1 given by (53) and using rela-
tion (49a) we get

(u2)1 = 7.862976314, (u2)2 = 6.49623254.

It can be verified that

(u2)1 =
R2

1 + d21 − r21 − t22
2d1

, (u2)2 =
R2

1 + d21 − r21 − t26
2d1

.

Thus,

(t2)
2 =

R2
1 + d21 − r21 − 2d1(u2)1

2d1
, (t6)

2 =
R2

1 + d21 − r21 − 2d1(u2)2
2d1

.

In the same way we can proceed and get t3, t4, t5.

Here, let us remark that the relations (49) may be very useful in some investiga-
tions concerning bicentric polygons.

Theorem 13. LetA1 . . . An be n-gon as in Theorem 12 with verticesAi = Ai(ui, vi),
i = 1, . . . , n. Let t1, . . . , tn be the tangent lengths of the n-gon from the vertices
Ai = Ai(ui, vi), i = 1, . . . , n, that is

t2i = R2
1 + d21 − r21 − 2d1ui, i = 1, . . . , n. (54)

Let n ≥ 4 be an even integer. Then

ui+n
2
=

2R2
1d1 −

(
R2

1 + d21 − r21
)
ui

−2d1ui +
(
R2

1 + d21 − r21
) , i = 1, . . . ,

n

2
. (55)

In other words, the chords AiAi+n
2
, i = 1, . . . , n2 , of the circle C1 contain the

points S1(s1, 0) such that the pointsAi(ui, vi) andAi+n
2
(ui+n

2
, vi+n

2
), i = 1, . . . , n2 ,

have the properties as the points P (u, v) and Q(û, v̂) in the previous theorems, that
is

titi+n
2
= tM tm, i = 1, . . . ,

n

2
, (56)

where tM and tm are given by (39).

Proof. First let us remark that the notation used in Theorems 7 and 9 will be used.
So, if u and û are as in Theorem 7 and t is given by t2 = R2

1 + d21 − r21 − 2d1u,
then t̂2 = R2

1 + d21 − r21 − 2d1û.
In the first way we prove that t̂1, t̂2 are consequent if t1 and t2 are consequent.

In other words, we prove that

t̂1 + t̂2 =

√
(û1 − û2)

2 + (v̂1 − v̂2)
2, (57)

where t1 and t2 are consecutive tangent lengths of the n-gon A1 . . . An, that is, the
relation (47) is valid and can be written as

t2 =
t1(R

2 − d2)− k

r2 + t21
, (58)
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where

k =

√
t21 (R

2 − d2)2 +
(
r2 + t21

) (
4R2d2 − r2t21 − (R2 + d2 − r2)2

)
.

Also let us remark that
v̂2i = R2

1 − û2i , i = 1, 2.

It can be easily shown (even by hand, without using computer algebra) that the
relation (57) implies the following relation(

8t̂1t̂2v̂1v̂2
)2

=
((

2R2
1 − 2û1û2 − t̂21 − t̂22

)2 − 4(t̂1t̂2)
2 − 4(v̂1v̂2)

2
)2

.

Replacing ûi, i = 1, 2, with

−2R2
1d1 +

(
R2

1 + d21 − r21
)
ui

2diui −
(
R2

1 + d21 − r21
) , i = 1, 2,

respectively, we get

(d1 − r1 −R1)
2(d1 + r1 −R1)

2(d1 − r1 +R1)
2(d1 + r1 +R1)

2(
d41u

2
1 + 2d41u1u2 + d41u

2
2 − 4d31R

2
1u1 − 4d31R

2
1u2 − 4d31u

2
1u2

− 4d31u1u
2
2 − 4d21r

2
1R

2
1 − 4d21r

2
1u1u2 + 4d21R

4
1 + 2d21R

2
1u

2
1

+ 12d21R
2
1u1u2 + 2d21R

2
1u

2
2 + 4d21u

2
1u

2
2 + 8d1r

2
1R

2
1u1

+ 8d1r
2
1R

2
1u2 − 4d1R

4
1u1 − 4d1R

4
1u2 − 4d1R

2
1u

2
1u2 − 4d1R

2
1u1u

2
2

+ 4r41R
2
1 − 4r21R

4
1 − 4r21R

2
1u1u2 +R4

1u
2
1 + 2R4

1u1u2 +R4
1u

2
2

)
= 0.

(59a)

Now, if in the fifth (last) factor of the above relation we put(
R2

1 + d21 − r21
)− t2i

2d1
, i = 1, 2,

instead of ui, i = 1, 2, respectively, then we get(
d41−2d21r

2
1−2d21R

2
1+2d21t1t2+r41−2r21R

2
1+r21t

2
1+r21t

2
2+R4

1−2R2
1t1t2+t21t

2
2

)
(
d41−2d21r

2
1−2d21R

2
1−2d21t1t2+r41−2r21R

2
1+r21t

2
1+r21t

2
2+R4

1+2R2
1t1t2+t21t

2
2

)
= 0.

(59b)

Finally, if t2 in the above relation be replaced by the right side of the relation (58),
then the second factor of the above relation vanishes.

This proves the validity of (57).
Now, using this result, the proof of Theorem 13 follows from Poncelet’s closure

theorem. Namely, by this theorem there is a bicentric n-gon whose first tangent
has length t̂1 and beginning point Â1(û1, v̂1). This n-gon is obtained such that we
proceed in the same way with t2, t3, then with t3, t4, . . . , finally with tn, t1. In this
way we get closure:

{Â1, . . . , Ân} = {A1 . . . , An},
where

Âi = Ai+n
2

and t̂i = ti+n
2
, i = 1, . . . ,

n

2
.
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Thus,
A1A2 · · ·An

2
Â1Â2 · · · Ân

2
= A1A2 · · ·An−1An.

This proves Theorem 13. �
Remark. (4) As it is seen, the proof of Theorem 13 is rather involved and we have
solved one of the old and difficult problems concerning bicentric polygons.

Here is an example. With the hexagon A1 . . . A6 from Example 2, we have

t1t4 = t2t5 = t3t6 = tM tm.

Theorem 14. Let the triple (R1, r1, d1) and the bicentric n-gon A1 . . . An be as in
Theorem 7. Let ti, i = 1, . . . , n, be the tangent lengths of the n-gon A1 . . . An and
let Ti, i = 1, . . . , n be the touching points of the segments AiAi+1, i = 1, . . . , n,
and the circle C2, respectively. In other words

ti = |AiTi| , i = 1, . . . , n. (60)

Let
(kiR1, k

ir1, k
id1), i = 1, 2, . . . (61)

be a set of triples such that

k =
r1
R1

. (62)

Then for each i = 1, 2, . . . there is a bicentric n-gon from the classC(kiR1, k
ir1, k

id1)
such that its tangent lengths are kit1, . . . , kitn.

Proof. The triples given by (61) also satisfy Fuss’ relation Fn(R, r, d) = 0 as the
triple (R1, r1, d1). �
Corollary 15. Let Si(si, 0) denote the characteristic point of the triple(
kiR1, k

ir1, k
id1

)
. Then

si = ki−1s1, (63)

where

s1 =
(tM − tm)2

4d1
, (64)

t2M = (R1 + d1)
2 − r21, t2m = (R1 − d1)

2 − r21. (65)

Proof. This follows from

si =

(
ki−1tM − ki−1tm

)2
4ki−1di

=
ki−1(tM − tm)2

4d1
.

�
Example 3. Let n = 6 and let the triple (R1, r1, d1), where

R1 = 8.340410321, r1 = 6.812488532, d1 = 1.198981793

be a solution of Fuss’ relation F6(R, r, d) = 0.
Now, using these values we get

tM = 6.67757441, tm = 2.142428529, k = 0.816804971,
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s1 = 4.288544723, s2 = 3.502904648, s3 = 2.86118993, and so on.

Let Ri+1, ri+1, di+1 be given by

Ri+1 = kiR1, ri+1 = kir1, di+1 = kid1, i = 1, 2, . . . .

Thus
R2 = 6.81248861, r2 = 5.564474498, d2 = 0.979334288,

R3 = 5.564474498, r3 = 4.545090431, d3 = 0.799925115, and so on.

Figure 5

The following properties may be interesting. In Figure 5,

δ = d1 + d2 + d3 + · · · = d1
1− k

= 6.544838032.

First, let us remark that the line determined by points A(0, R1) and B(d1, R2),
where R2 = r1, contains the point C(δ, 0) and the points whose coordinates are
(d2, R3), (d3, R4) and so on. Also, let us remark that there are points Si(si, 0), i =
1, 2, . . . , n, on the positive x-axis such that

s1 = |OS1| < r1, s2 = |I1S2| < r2, s3 = |I2S3| < r3, and so on.

Remark. (5) If instead of k = r1
R1

, we take K = R1
r1

then we have analogous
situation. Only in this case each of the values KiR1, Kir1, Kid1 → ∞ when
i → ∞.

Theorem 16. Let (R0, r0, d0) ∈ R
3
+ be a solution of Fuss’ relation Fn(R, r, d) =

0 and let (R1, r1, d1) ∈ R
3
+ be given by (24), that is,

(R1, r1, d1) =
(√

R0(R0 + r0 + r1), r1,
√
R0(R0 + r0 − r1)

)
where

r1 =
√

(R0 + r0)2 − d20.
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Let (R1, r1, d1) be a solution of Fuss’ relation F2n(R, r, d) = 0 and let C1, C2,
K1, K2 be circles in the same plane such that O is the center of C1 and K1 (see
Figure 6). The center of C2 is denoted by I0 and center of K2 is denoted by I1 and

R0 = radius of C1, r0 = radius of C2,

d0 = distance between centers of C1 and C2.

R1 = radius of K1, r1 = radius of K2,

d1 = distance between centers of K1 and K2.

Let xOy be a coordinate system with origin O and positive x-axis containing the
centers I0 and I1. Then there are bicentric n-gon A1 · · ·An inscribed in C1 and
circumscribed around C2 and bicentric 2n-gon inscribed in K1 and circumscribed
around K2 such that the following is valid:

If t1 . . . , tn are tangent lengths of the n-gonA1 · · ·An and u1, . . . , u2n
are tangent lengths of the 2n-gon B1 · · ·B2n then

u2i−1 = ti, i = 1, . . . , n. (66)

Figure 6: A1 and A2 are two consequent vertices of an n-gon A1 . . . An inscribed
in C1 and circumscribed around C2.

Proof. The point A1 is given by A1(u1, 0), where u1 = −R0, and the point A2 (as
a consequent of A1) is given by A2(u2, v2), where u2 (by Theorem 12) is given by

u2 =
R0

(R0 + d0)4
(
d40 − 2R2

0r
2
0 +R4

0 − 2r20d
2
0 + 6R2

0d
2
0 + 4R0d

3
0 + 4R3

0d0 − 4R0d0r
2
0

)
.

(67)

Of course, v22 = R2
0 − u22.

The point B1 and B3 are elements of K1 given by B1(û1, 0) and B3(û3, v̂3),
where

û1 = cu1 = −R1, û3 = cu2, where c =
R1

R0
. (68)
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First we prove that

|A1T1| =
∣∣∣B1T̂1

∣∣∣ , |A2T1| =
∣∣∣B3T̂3

∣∣∣ , (69)

where relations

R2
0 + d20 − r20 = R2

1 + d21 − r21, R0d0 = R1d1

given by (28b) and (28c) will be used. The proof is as follows:

|A1T1|2 = R2
0 + d20 − r20 − 2d0u1 = R2

0 + d20 − r20 + 2d0R0, (70a)∣∣∣B1T̂1

∣∣∣2 = R2
1 + d21 − r21 − 2d1û1 = R2

1 + d21 − r21 + 2d1R1, (70b)

since

R2
1 + d21 − r21 = R2

0 + d20 − r20, 2d1cu1 = 2d1R1
R1

R0
u1 = 2

d0R0

R0
u1 = 2d0u1.

In the same way it can be shown that the second relation given by (69) is also
valid. That the tangent length is given by t2 = R2 + d2 − r2 − 2du can be seen in
the proof of Theorem 2.

Now we prove that there is a point B2 ∈ K1 between B1 and B3 such that B2

is a consequent of B1 and B3 is a consequent of B2. The proof is as follows.
By Theorem 12 the consequent of B1 is given by B2(û2, v̂2), where

û2 =
R1

(R1 + d1)4
(
d41 − 2R2

1r
2
1 +R4

1 − 2r21d
2
1 + 6R2

1d
2
1 + 4R1d

3
1 + 4R3

1d1 − 4R1d1r
2
1

)
.

(71)

From this, using computer algebra, it is easy to show that B3 is consequent of B2.
Now, if we take A3 ∈ C1 which is consequent of A2, then for A2 and A3

analogously holds as for A1 and A2. So, in this way we can proceed and get
closure, that is, a bicentric 2n-gon inscribed in K1 and circumscribed around K2

whose tangent lengths are such that holds (66). �
For example, from (70) and Figure 6 it can be seen that

t1 = |A1T1| =
∣∣∣B1T̂1

∣∣∣ = u1,

t2 = |A2T1| =
∣∣∣B3T̂3

∣∣∣ = u3,

analogously for A3 and B5, and so on.

Remark. (6) If we take A1 on the x-axis we get (with less calculation) a bicentric
2n-gon inscribed in K1 and circumscribed around K2 symmetric about the x-axis.
By Poncelet’s closure theorem, it follows that for every point X ∈ K1 we get a
bicentric 2n-gon inscribed in K1 and circumscribed around K2.

Now we state the following corollaries of Theorem 16.

Corollary 17. uiui+n = tM tm for i = 1, . . . , n.
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See Theorem 13.

Corollary 18. A1A2 ‖ B1B3 and c |A1A2| = |B1B3| for c given by (68) (see
Figure 6).

Proof. Let f denote the homothety whose center is O and coefficient c is given
by (68). This homothety maps A1A2 onto B1B3. �
Corollary 19. Let B1 . . . B2n be a bicentric 2n-gon as described in Theorem 16.
Then B1B3 . . . B2n−1 and B2B4 . . . B2n are bicentric n-gons inscribed in K1 and
circumscribed around a circle K̂2 with center I2 and radius cr0 such that |OI2| =
c |OI0| = cd0.

Proof. First it is clear that Fn(R0, r0, d0) = 0 =⇒ Fn(cR0, cr0, cd0) = 0, that is,
Fn(R0, r0, d0) = 0 =⇒ Fn(R1, cr0, cd0) = 0 since cR0 = R1.

Also let us remark that from the Corollary 18 can be concluded that there are
two bicentric n-gons A1 . . . An and D1 . . . Dn inscribed in C1 and circumscribed
around C2 such that the first has sides parallel with the corresponding sides of the
n-gon B1B3 . . . B2n−1 and the second has sides parallel with the corresponding
sides of the n-gon B2B4 . . . B2n. �
Corollary 20. Let u1, . . . , u2n be tangent lengths of the 2n-gon B1 . . . B2n. Then,
cui, i = 1, 3, 5, . . . , 2n−1, are the tangent lengths of the n- gon B1B3 . . . B2n−1,
and
cui, i = 2, 4, 6, . . . , 2n, are the tangent lengths of the n- gon B2B4 . . . B2n .

Proof. It follows from the above corollaries. �
Here is an example where n = 3. See Figure 7.

Example 4. The incircle of the triangles B1B3B5 and B2B4B6 is denoted by K̂2.
There are two triangles A1A2A3 and D1D2D3 inscribed in C1 and circumscribed
around C2. The first is similar to the triangle B1B3B5 and the second is simi-
lar to the triangle B2B4B6. If u1 . . . , u6 are the tangent lengths of the hexagon
B1 . . . B6, then

u1, u3, u5 are the tangent lengths of the triangle A1A2A3,

u2, u4, u6 are the tangent lengths of the triangle D1D2D3,

where, for example, u1 = |A1T1|, u3 = |A2T1|, u5 = |A3T3|.
By Theorem 16, this holds analogously for each bicentric n-gon A1 . . . An and

the corresponding bicentric 2n-gon B1 . . . B2n.

Theorem 21. Let the triple (R0, r0, d0) be as in Theorem 16 and let the triple
(R2, r2, d2) be given by (25), that is,

(R2, r2, d2) =
(√

R0(R0 − r0 + r2), r2,
√
R0(R0 − r0 − r2)

)
, (72a)

where

r2 =
√

(R0 − r0)2 − d20. (72b)

Then F2n(R2, r2, d2) = 0.
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Figure 7: R0 = 5, r0 = 2.1, d0 = 2 refers to circle C1 and C2. The chords
B1B3, B3B5, B5B1 of the circle K1 are tangential segments of the circle K̂2.

The proof is analogous to that of Theorem 16, and we have analogous corollar-
ies.

3. The n-closure and related considerations

Let S denote the set of all ordered triples (R, r, d), where (R, r, d) ∈ R
3
+ and

R > r + d. Let f1 and f2 be functions defined on the set S as in Definition A. We
have

f1(R0, r0, d0) = (R1, r1, d1), (73)

f2(R0, r0, d0) = (R2, r2, d2), (74)

where (R1, r1, d1) and (R2, r2, d2) are given by (24) and (25) respectively.
Let f be any given composition of the function f1 and f2. For example, f =

f2
1 f2f1f

3
2 f1. Then it is appropriate to write this composition as

(R11212221, r11212221, d11212221),

since

f2
1 f2f1f

3
2 f1(R0, r0, d0) = f2

1 f2f1f
3
2 (R1, r1, d1)

= f2
1 f2f1f

2
2 (R12, r12, d12), and so on.

Concerning such indices let us remark that the situation is in some way con-
nected with fact that there are 2k integers with k digits from the set {1, 2}. So, if
k = 3, we have indices

111, 112, 121, 122, 211, 212, 221, 222.

See also Figure 8, where instead of (Ri, ri, di), i = 0, 1, 2, . . . , are (for brevity)
written only corresponding indices.

Before stating some examples, we define some terms which will be used.
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(a) (b)
Figure 8:

The Figure 8a geometrically represents functions f1 and
f2 and their compositions, and the Figure 8b
geometrically represents function g given by (80) and its
compositions.

Definition 2. Let (R0, r0, d0) be a triple such that Fn(R0, r0, d0) = 0. We say that
this triple has n-closure.

Now, let C1 and C2 be circles such that C2 is completely inside C1, and let R0

= radius of C1, r0 = radius of C2, d0 = distance between centers of C1 and C2. Let
A1 . . . An be an n-gon inscribed in C1 and circumscribed around C2. We say that
this n-gon has k-circumscription if

n∑
i=1

arctan
ti
r0

= kπ,

where t1, . . . , tn are the tangent lengths of the n-gon A1 . . . An. The number k in
this case is called the rotation number for n.

Let (R0, r0, d0) be as in Definition 2. Then f1(R0, r0, d0) has 2n-closure. Also,
the triple f2(R0, r0, d0) has 2n-closure for every n > 3. But for n = 3, we get a
bicentric hexagon which is a double triangle.

Here are some examples referred to Theorems 16 and 21 and composition of the
functions f1 and f2.

Let n = 3 and let (R0, r0, d0) = (5, 2.1, 2). Then

f1(5, 2.1, 2) = (R1, r1, d1),

f2
1 (5, 2.1, 2) = (R11, r11, d11),

where

R1 = 8.340410221, r1 = 6.812488532, d1 = 1.198981793,

R11 = 15.886048415, r11 = 15.105389214, d11 = 0.629483163.

Since tM =
√
(R0 + d0)2 − r20 = 6.67757441, tm =

√
(R0 − d0)2 − r20 =

2.142428529, we should take t1 such that tm < t1 < tM . Let’s say t1 = 4.
Now, let A1A2A3 be a triangle from the class C(R0, r0, d0), and let B1, . . . , B6

and C1 . . . C12 be bicentric hexagon and bicentric 12-gon, the first from the class
C(R1, r1, d1) and the second from the class C(R11, r11, d11), such that their first
tangent length is also t1 = 4. Then the following are valid.
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The tangent lengths of the triangle A1A2A3 are

t1 = 4, t2 = 2.257285251, t3 = 5.973973936. (75a)

The tangent lengths of the bicentric hexagon B1 . . . B6 are

u1 = 4, u2 = 2.394578677, u3 = 2.257285251,

u4 = 3.576556479, u5 = 5.973973936, u6 = 6.337801531,
(75b)

where u1 = t1, u3 = t2, u5 = t3.
The tangent lengths of the bicentric 12-gon C1 . . . C12 are

v1 = 4, v2 = 3.010399453, v3 = 2.394578677,

v4 = 2.148970243, v5 = 2.257285251, v6 = 2.727553891,

v7 = 3.576556479, v8 = 4.752268309, v9 = 5.973973936,

v10 = 6.657247101, v11 = 6.337801531, v12 = 5.245075438,

(75c)

where v1 = u1, v3 = u2, v5 = u3, v7 = u4, v9 = u5, v11 = u6.
Here is a partition of the tangent lengths of the bicentric hexagon

{{u1, u3, u5}, {u2, u4, u6}} . (76)

This partition has the property that there are two triangles from the class C(R0, r0, d0)
such that the first has tangent lengths u1, u3, u5 and the second has tangent lengths
u2, u4, u6.

Analogously for the tangent lengths v1, . . . , v12 of the bicentric 12-gon C1 . . . C12;
in this case we have the following partition

{{v1, v5, v9}, {v3, v7, v11}, {v2, v6, v10}, {v4, v8, v12}} . (77)

This partition has the property that there are four triangles from the class C(R0, r0, d0)
such that their tangent lengths are

v1, v5, v9, (78a)

v3, v7, v11, (78b)

v2, v6, v10, (78c)

v4, v8, v12, (78d)

respectively.
In the same way we can proceed and find that this holds analogously for the tan-

gent lengths of the corresponding bicentric 24-gon from the class C(f3
1 (R0, r0, d0)),

that is, from C(R111, r111, d111). More generally, for any integer m ≥ 1, there is a
partition of the tangent lengths of the corresponding bicentric 3 · 2m-gon from the
class C(fm

1 (R0, r0, d0)) such that this holds analogously as for m = 1, 2, 3.
Also from Theorem 16 and Theorem 21 analogous results can be concluded if

instead of n = 3 we take n > 3 and any given composition of the function f1 and
f2 given by Definition A.

In connection with Theorem 16 and Theorem 21 we state the following conjec-
ture which is a modification of Conjecture 2 given in [5, page 56].
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Conjecture 1. Let (R0, r0, d0) be as in Theorem 16 and letP1 . . . Pn andQ1 . . . Qn

be n-gons from the class C(R0, r0, d0) such that the sum of the tangent lengths of
the n-gon P1 . . . Pn is minimal and the sum of the tangent lengths of the n-gon
Q1 . . . Qn is maximal. Then both of those two n-gons are axial symmetric in the
x-axis. Let the sum of the tangent lengths of the n-gon P1 . . . Pn be denoted by a
and the sum of the tangent lengths of the n-gon Q1 . . . Qn be denoted by b. Then
the following is valid:

For every n-gon A1 . . . An from the class C(R0, r0, d0) there is an
n-gon B1 . . . Bn from the same class such that

(t1 + · · ·+ tn)(u1 + · · ·+ un) = ab, (79)

where t1, . . . , tn are the tangent lengths of the n-gon A1 . . . An

and u1, . . . , un are the tangent lengths f the n-gon B1 . . . Bn.

Let such two n-gons be called conjugate n-gons. Thus for every n-gon from the
class C(R0, r0, d0) there is an n-gon from the same class conjugate to it.

Here are some examples where n = 3 and (R0, r0, d0) = (5, 2.1, 2).
First, it can be easily found that for axial symmetric triangles from the class

C(5, 2.1, 2) we have ab = 150.5559966. Now using the tangent lengths u1, . . . , u6
given by (75b) and partition given by (76) it can be verified that triangle whose
tangent lengths are u1, u3, u5 is conjugate to triangle whose tangent lengths are
u2, u4, u6, that is, (u1 + u3 + u5)(u2 + u4 + u6) = 150.5559966. Also, using the
tangent lengths given by (75c) (see also (77)) it can be verified that triangle whose
tangent lengths are v1, v5, v9 is conjugate to triangle whose tangent lengths are v3,
v7, v11, and triangle whose tangent lengths are v2, v6, v10 is conjugate to triangle
whose tangent lengths are v4, v8, v12. In other words,

(v1 + v5 + v9)(v3 + v7 + v11) = (v2 + v6 + v10)(v4 + v8 + v12) = 150.5559966.

In order that the rule of obtaining conjugate bicentric polygons be more notice-
able here will be also in short about bicentric 24-gon D1 . . . D24 from the class
C(R111, r111, d111) obtained starting from the triple (5, 2.1, 2). Let w1, . . . , w24

denote tangent lengths of this 24-gon and let w1 be 4 as in the previous examples.
Then

(w1 + w9 + w17)(w5 + w13 + w21)

= (w3 + w11 + w19)(w7 + w15 + w23)

= (w2 + w10 + w18)(w6 + w14 + w22)

= (w4 + w12 + w20)(w8 + w16 + w24)

= 150.5559966.

Thus in this case there are 4 pairs of conjugate triangles from the class C(5, 2.1, 2)
which refer to the 24-gon D1 . . . D24.

More generally, for a given m > 1, there are 2m−1 pairs of conjugate triangles
from the class C(5, 2.1, 2) which refer to bicentric polygons with 3 · 2m vertices.
Analogously holds if instead n = 3 we take n > 3. Of course, this holds on the
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supposition that Conjecture 1 is true. We hope that the Conjecture will be validated
in the near future.

Figure 7 shows how conjugate bicentric polygons can be constructed. For ex-
ample, A1A2A3 and D1D2D3 are conjugate triangles from the class C(5, 2.1, 2).

Analogously can be concluded if instead of n = 3 we can take n > 3.
It is clear from Theorem 16 and Theorem 21 that the functions f1 and f2 play key

roles in this work. These functions are given in [7], where some of their important
properties are established. In the present article we have established some other of
their important properties given by Theorem 16 and Theorem 21. In this connection
let us mention that in [7] we have also defined a function g such that the following
is valid: If

f1(R0, r0, d0) = (R1, r1, d1), f2(R0, r0, d0) = (R2, r2, d2), (80a)

then
g(R1, r1, d1) = (R0, r0, d0), g(R2, r2, d2) = (R0, r0, d0). (80b)

This function is given by

g(R, r, d) =

⎛
⎝R2 − d2

2r
,

√
−(R2 + d2 − r2) +

(
R2 − d2

2r

)2

+

(
2Rrd

R2 − d2

)2

,
2Rrd

R2 − d2

⎞
⎠ .

(81)

We have subsequently found that

√
−(R2 + d2 − r2) +

(
R2−d2

2r

)2
+
(

2Rrd
R2−d2

)2

can be written rationally as d4−2d2r2−2d2R2−2r2R2+R4

2r(d2−R2)
.

See Figure 8b, for example. Starting from the triple (R112, r112, d112) we get

g3(R112, r112, d112) = (R0, r0, d0).

Thus, using sequences like these in Theorem 16 we can get some other relations
useful in research of bicentric polygons.

Also let us emphasize here that using the function g the following theorem can
be easily proved.

Theorem 22. The converses of Theorems 16 and 21 are also valid, that is, if the
triples (Ri, ri, di), i = 1, 2, are such that F2n(Ri, ri, di) = 0, i = 1, 2, then
there is a triple (R0, r0, d0) such that Fn(R0, r0, d0) = 0 and fi(R0, r0, d0) =
(Ri, ri, di), i = 1, 2.

Proof. If the triple (R, r, d) in the relation (81) is one of the triples (Ri, ri, di), i =
1, 2, then we have a relation which can be written as g(Ri, ri, di) = (R0, r0, d0), i =
1, 2, that is, F2n(Ri, ri, di) = 0 → Fn(g(Ri, ri, di)) = 0, i = 1, 2.

Also let us remark that the system

Rd = R0d0, R2 + d2 − r2 = R2
0 + d20 − r20, R2 − d2 = 2R0r

in R, r, d has two solutions given by (24) and (25), and that the solution of the
above system in R0, r0, d0 is given by (81), that is, g(R, r, d) = (R0, r0, d0).
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Corollary 23. Using relation (27a) and (28b) the triple c(R0, r0, d0), where c =
R1
R0

, can be written as (
R1,

2R1tM tm
R2

1 − d21
,
2R1r1d1
R2

1 − d21

)
,

where cr0 and cd0 are also expressed only using R1, r1, d1.

Of course, the triple c(R0, r0, d0) can be also expressed as

2R1r1
R2

1 − d21

⎛
⎝R2

1 − d21
2r1

,

√
− (R2

1 + d21 − r21) +

(
R2

1 − d21
2r1

)2

+

(
2R1r1d1
R2

1 − d21

)2

,
2R1r1d1
R2

1 − d21

⎞
⎠ .

4. Another type of characteristic points for two nested circles

About interesting geometrical properties of the triples (R0, r0, d0) and c(R0, r0, d0)
see Corollaries 17–20.

In the following we briefly consider one more characteristic point defined for
two nested circles. Definition 1 will be extended as follows. Instead of R, r, d, we
use R0, r0, d0, and let the points S1(s1, 0) and S2(s2, 0) be given by

s1,2 =
R2

0 + d20 − r20 ∓
√

(R2
0 + d20 − r20)

2 − 4R2
0d

2
0

2d0
(82a)

or

s1,2 =
R2

0 + d20 − r20 ∓ tM tm
2d0

, (82b)

since

(R2
0 + d20 − r20)

2 − 4R2
0d

2
0 =

(
(R0 + d0)

2 − r20

)(
(R0 − d0)

2 − r20

)
= t2M t2m.

Then both of the points S1(s1, 0) and S2(s2, 0) can be called characteristic points
determined by the triple (R0, r0, d0).

It is easy to show that

s1,2 =
(tM ∓ tm)2

4d0
. (82c)

The point S1(s1, 0) is the intersection of the x-axis and the line through the
points T1 and T̂1 drawn in Figure 1b given by

T1

(
d0 − r20

R0 + d0
,

r0tM
R0 + d0

)
, T̂1

(
d0 +

r20
R0 − d0

,− r0tm
R0 − d0

)
. (83)

The point S2(s2, 0) is the intersection of the x-axis and the line through the points
T1 given by (83) and

T2

(
d0 +

r20
R0 − d0

,
r0tm

R0 − d0

)
.
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Now we consider the relation (43) as an equation in s given by

û =
2R2

0s−
(
R2

0 + s2
)
u

−2su+R2
0 + s2

, (84a)

where we here use notation R0, r0 d0 instead of notation R1, r1, d1. As will be
shown, this relation plays a key role in using characteristic points. First it can be
easily shown that this relation is equivalent to

û =
−2R2

0d0 +
(
R2

0 + d20 − r20
)
u

2d0u− (
R2

0 + d20 − r20
) . (84b)

Namely, if s in the relation (84a) is replaced by right side of the any of the relations

s1 =
(tM − tm)2

4d0
, s2 =

(tM + tm)2

4d0
,

(see (82)) we get relation (84b).
Thus, the equation in s given by (84a) has the solutions s1 and s2. These solu-

tions can be also written as

s1,2 =
uû+R2

0

u+ û
∓
√(

uû+R2
0

u+ û

)2

−R2
0

and it is easily seen that s1s2 = R2
0.

Also, if u and û in (84b) are interchanged, then

u =
2R0si −

(
R2

0 + s2i
)
û

−2siû+R2
0 + s2i

=
−2R2

0d0 +
(
R2

0 + d20 − r20
)
û

2d0û− (
R2

0 + d20 − r20
) , i = 1, 2. (85)

The above relations in u, û, s1, s2 are very important since they open the way
to the use of both of the characteristic points S1 and S2. The relation (84a) is
connected with both of the characteristic points S1 and S2.

Theorem 24. Let C1 and C2 be two nested circles such that
R0 = radius of C1, r0 = radius of C2,
d0 = distance between centers of C1 and C2.

Let xOy be a coordinate system with origin O at the center of C1 and positive
x-axis containing the center of C2. Let P (u, v) be any given point of C1 and let
P̂ (û, v̂) be a point of C1 such that the chord PP̂ of C1 contains the characteristic
point S1(s1, 0), that is,

û =
−2R2

0d0 +
(
R2

0 + d20 − r20
)
u

2d0u− (
R2

0 + d20 − r20
) , v̂2 = R2

0 − û2.

Then the point Q(û,−v̂) of C1 has the property that the chord PQ of C1 contains
the characteristic point S2(s2, 0) (see Figure 9).

Proof. The condition that the line through the points P and Q contains character-
istic point S2 can be written as

−v =
v + v̂

u− û
(s2 − u)
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Figure 9. Geometrical interpretation of the points P , P̂ , S1 and the points P , Q
S2.

or

−v

v̂
=

u− s2
û− s2

. (86a)

The condition that the line through the points P and P̂ contains point S1 is given
by

v

v̂
=

u− s1
û− s1

. (86b)

Thus, the condition that the line through P and P̂ contains the characteristic point
S1 and the line through P and Q contains the characteristic point S2 is given by

(v
v̂

)2
=

(
u− s

û− s

)2

, (87)

where s = s1 in the first case and s = s2 in the second case. We make use of the
relations

v2 = R2
0 − u2, v̂2 = R2

0 − û2, û =
−2R2

0d0 +
(
R2

0 + d20 − r20
)
u

2d0u− (
R2

0 + d20 − r20
)

which hold for any u such that the point P (u, v) belongs to the circle C1. Using
computer algebra we get the following equation in s:

d40R
2
0su− d40su

3 − d30R
4
0s− d30R

4
0u− d30R

2
0s

2u+ d30R
2
0u

3 + d30s
2u3 + d30su

4

− 2d20r
2
0R

2
0su+ 2d20r

2
0su

3 + d20R
6
0 + d20R

4
0s

2 + 2d20R
4
0su− 2d20R

2
0su

3 − d20R
2
0u

4

− d20s
2u4 + d0r

2
0R

4
0s+ d0r

2
0R

4
0u+ d0r

2
0R

2
0s

2u− d0r
2
0R

2
0u

3 − d0r
2
0s

2u3 − d0r
2
0su

4

− d0R
6
0s− d0R

6
0u− d0R

4
0s

2u+ d0R
4
0u

3 + d0R
2
0s

2u3 + d0R
2
0su

4 + r40R
2
0su

− r40su
3 − 2r20R

4
0su+ 2r20R

2
0su

3 +R6
0su−R4

0su
3 = 0
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whose roots are

s1 =
R2

0 + d20 − r20 −
√
(R2

0 + d20 − r20)
2 − 4R2

0d
2
0

2d0
,

s2 =
R2

0 + d20 − r20 +
√
(R2

0 + d20 − r20)
2 − 4R2

0d
2
0

2d0
.

�

Corollary 25. The equation in s given by (84) is the same as the equation given
by (87). Each of them has only the solutions s1 and s2.

Corollary 26. Let n ≥ 4 be an even integer with Fuss’ relation Fn(R0, r0, d0) =
0. There are two bicentric n-gons A1 · · ·An and B1 · · ·Bn with the following
properties.
(i1) A1 = P (u, v), B1+n

2
= Q(û,−v̂).

(i2) For each Ai(ui, vi), i = 1, . . . , n2 , there is Bi+n
2

(
ui+n

2
,−vi+n

2

)
such that

the line through the points Ai and Bi+n
2

contains point S2.

(i3) For each Ai(ui, vi), i = 1, . . . , n2 , there is Ai+n
2

(
ui+n

2
, vi+n

2

)
such that

the chord AiAi+n
2

of C1 contains point S1.
(i4) The point Ai and Bi, i = 1, . . . , n2 , are symmetric about the x-axis.
(i5) For each i = 1, . . . , n2 ,

|AiS2|
∣∣∣Ai+n

2
S2

∣∣∣ = s22 −R2
) ,

|BiS2|
∣∣∣Bi+n

2
S2

∣∣∣ = s22 −R2
) .

Proof. (i2): The proof easily follows from the equation of the line through the
points Ai and Bi+n

2
.

(i4): From the Figure 9 can be easily seen that the chord QP̂ of C1, that is, the
chord B1+n

2
A1+n

2
, is perpendicular to the x-axes.

(i5): The proof is in the same way as the proof that holds the relation (40). �

Here is an example. Using Example 4, where n = 6, can be easily found that
the vertices of the hexagon A1 · · ·A6 (determined by given tangent lengths) are

A1(3.58220619, 7.531948163), A2(7.862976314, 2.781375164),

A3(8.129674451,−1.863018422), A4(4.920109639,−6.734609525),

A5(−4.628245672,−6.938428231), A6(−6.49623254, 5.230813236).

In this case is Â1 = A4, Â2 = A5, Â3 = A6, .
The vertices of the hexagon B1 · · ·B6 are such that if Ai(ui, vi), i = 1, . . . , 6,

then Bi(ui,−vi), i = 1, . . . , 6.
In Example 4 it is shown that tM = 6.7677574552, tm = 2.14242886. Thus

s1 = 4.288544701, s2 = 16.22052397. It is easy to verify the assertions (i1) –
(i5). Also, the relations like those given by (84) and (85) can be verified.
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Concluding Remark. The main result of the present paper refers to the given def-
inition of characteristic points for two nested circles and their properties useful
in research of bicentric polygons. Some old and difficult problems are solved. It
seems that there are many problems concerning bicentric polygons for which the
characteristic points can be very useful. In this connection we remark that the char-
acteristic points can be also useful in research of bicentric 2n-gons from the class
C2n(Ri, ri, di) which is obtained from the class Cn(R0, r0, d0) using function f1
and f2 given in Definition A. Some results from this area are given in Theorem 5, 6,
14. Also some results concerning functions f1 and f2 given in [7] are extended.
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