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We solve the Klein-Gordon equation with the modified Rosen-Morse potential energy model. The bound state
energy equation has been obtained by using the supersymmetric shape invariance approach. The relativistic
vibrational transition frequencies for the 6'I1, state of the "Li, molecule have been computed by using the
modified Rosen-Morse potential model. The calculated relativistic vibrational transition frequencies are in

good agreement with the experimental RKR values.
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Introduction

There has been the continuous interest in investigating
solutions of the Klein-Gordon equation with some diatomic
molecule potential energy models, such as the Morse
potential,’? Rosen-Morse potential,”*> Manning-Rosen poten-
tial,® Poschl-Teller potential,”® and Deng-Fan potential.'®!!
As far as we known, the authors in these works did not
quantitatively investigated relativistic rotation-vibrational
energies for actual diatomic molecules. In recent years, one
of present authors and co-workers'*'® studied solutions of
the Klein-Gordon equation with the improved Manning-
Rosen potential, improved Rosen-Morse potential, improved
Tietz potential, and Morse potential, and calculated relati-
vistic vibrational transition frequencies for the a’%," state of
the "Li» molecule, the 3°Z," state of the Cs, molecule, the
C'T1, state of the Na, molecule, and the X' state of the Scl
molecule.

In 2012, Zhang et al.'® introduced the effect of inner-shell
radii of two atoms for diatomic molecules into the original
Rosen-Morse potential,'” and proposed a modified Rosen-
Morse potential energy model,
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where r; = r,—JKD,/k,, D. denotes the dissociation energy,
re denotes the equilibrium bond length, and K. presents the
equilibrium harmonic vibrational force constant. The para-
meter K is a dimensionless constant, K = 4.00.'® The ability
of a potential energy model to reproduce the potential energy
curve is judged by agreement with the known potential
energy curve determined by the Rydberg-Klein-Rees (RKR)
approach.'?! The modified Rosen-Morse potential is superior
to the Morse potential and original Rosen-Morse potential in
reproducing potential energy curves for six molecule states
examined in Ref..!® Recently, with the use of the standard

function analysis method, Tang et al.** solved the Schrédinger

equation with the modified Rosen-Morse potential model to
obtain rotation-vibrational energy spectra for a diatomic
molecule, and calculated the vibrational energy levels cal-
culated for the 6'T1, state of the "Li» molecule. In terms of
the RKR method and the multireference configuration inter-
action approach, many authors have carried out on investi-
gation on the vibrational levels and the interaction potential
curves for the lithium dimer.”*

In this work, we employ the basic concept of the super-
symmetric shape invariance approach to study the bound
state solutions of the Klein-Gordon equation with the modi-
fied Rosen-Morse potential energy model. We also attempt
to calculate the relativistic vibrational transition frequencies
of the 6'TI, state of the ’Li molecule and compare the
present calculated values with the RKR data.

Bound State Solutions

The Klein-Gordon equation with a scalar potential S(r)
and a vector potential V(r) for the nuclear motion of a
diatomic molecule with reduced mass s given by'?

[V + (M +S(r) T¥(r, 6, 9) = [E- V(R ¥ (r, 6, 9),
@)

where V° is the Laplace operator, £ denotes the relativistic
energy of the quantum system, c is the speed of light, and 7
= h/2 7, h is the Planck constant. We express the wave function
as Y(r, 6, p) = (u,,(r)/r)Y,,(6,p), where Y, (6, p) is the
spherical harmonic function. Substituting this expression
into Eq. (2), we obtain the radial part of the Klein-Gordon
equation,
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where v and J are the vibrational and rotational quantum
numbers, respectively. Taking the equal scalar and vector
potentials, S(r) = V(r), Eq. (3) turns to the form

JU+ DR
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Under the nonrelativistic limit, Eq. (4) becomes a
Schrodinger equation with the interaction potential 2 /(7). In
order to make the interaction potential as ¥(r), not 2/(r) in
nonrelativistic limit, we take the scheme proposed by
Alhaidari et al.*® to rescale the scalar potential S(r) and
vector potential V(r), and write Eq. (4) in the form of
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Considering the scalar and vector potentials as the modified

Rosen-Morse potential, S(r) = V(r) = Umrm(r), we obtain the
following second-order Schrédinger-like equation,
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where 2=¢"" . In the case of J= 0, we can exactly solve the
above equation. When J#0, one can only approximately
solve it. We apply the Pekeris approximation scheme to deal
with the centrifugal term.?” The Pekeris approximation ap-
proach has been widely used to investigate the analytical
solutions of the Klein-Gordon equation with various mole-
cular potential models.""*> We replace the centrifugal
potential energy term by the following form*
JUJ+ DR
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where y= (J(J+ 1)h2c2)/r§ , and the coefficients ¢y, c¢1, and
c; are given by
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Substituting approximation expression (7) into Eq. (6), we
rewrite it in the following form
2
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where the parameters 4, B, &, are defined as
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With the use of the supersymmetric shape invariance ap-
proach,”>" we solve Eq. (11). The ground-state wave func-
tion uo (7) is written as

o /(r) = exp(= [W(r)dr), (15)

where W(r) is called a superpotential in supersymmetric
quantum mechanics.?® Substituting expression (15) into Eq. (11)
yields the following relation satisfied by the superpotential
mr),
Wz(r)_dW(r) __4 4 2ear_80J’ (16)
dr "+ (e“+ 1) ’

where &, ; presents the ground-state energy. We take the
superpotential #(r) in the form

&
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where C; and C; are two constants. Substituting the above

expression into expression (15), we obtain the following
expression for the ground-state wave function u, ,(r),

w(r)=C+
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For the bound state solutions, the wave function u,,(r)
should satisfy the boundary conditions: u,,()=0 and
us(0) is limitary. These regularity conditions leads us to
have C; <0 and C, <0.

In terms of expression (17), we can construct a pair of
supersymmetric partner potentials U_(7) and U.(r),
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Making a comparison of Eq. (19) with Eq. (16), we have the
following three relationships
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Solving Egs. (22) and (23), we obtain
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Substituting expression C, = % ;1 into expressions (19)

and (20) and using Eq. (22), we can rewrite the two
supersymmetric partner potentials U_(r) and U,(r) as
follows
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With the use of expressions (26) and (27), we can yield the
following relationship

U.(r,ap) = U(r,a,)+R(a,) (28)

where ap = C, a) is a function of ay, i.e., a1 = h(ap) =ap + al,

2
and the reminder R(a) is independent of , R(a1) = (2 ; ;
a

2
(% - ;— . Eq. (28) implies that the supersymmetric partner
1

potentials U_(r) and U.(r) possess the shape invariance.
Using the shape invariance approach,” one can exactly
determine their energy spectra. The energy spectra of the
potential U_(r) are given by

£)=0, (29)
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where the quantum number v = 0, 1, 2, ---. From Egs. (11),
(16) and (26), we obtain the following relationship for &,

Eu= 6+ 6. 31
Substituting expressions (30) and (21) into Egs. (31) and
considering Ci = A/2C, — C»/24, we obtain the following
expression for ¢,
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Substituting expression (25) into expression (32), we have
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Substituting expressions (12) and (13) into expression (33)
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obtain the relativistic rotation-vibrational energy eigenvalue

equation for the diatomic molecule in the presence of equal

scalar and vector modified Rosen-Morse potential energy

models,
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where v = 0, 1, 2, 3,..., A = ", and we have made a

2 5
replacement for y= JUT 12)h <

e

When J=0, we obtain the relativistic vibrational energy
eigenvalue equation for the diatomic molecule with equal
scalar and vector modified Rosen-Morse potentials,
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With the use of the superpotential given in expression (17)
and the ground-state wave function given in expression (18),
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one can determine the excited state wave functions by
employing the explicit recursion operator approach.*!*

Discussion

The force constant £, is defined as the second derivative of
the potential energy function U(r) for a diatomic molecule,

namely k, = dZJUZQ
d

r

. Using this definition and the relation

k,= 47 uc’ ., we deduce the following expression for the
potential parameter « appearing in the modified Rosen-
Morse potential,

2 1 2 ~7cw, %D'L—[(re—r,/)
a= o, Ly —w o, —’u(r(,—rij)e ‘ ,
D, Fe=Ti D,

(36)

where @, denotes the equilibrium harmonic vibrational
reciprocal wavelength, and W is the Lambert W function,
which satisfies z = W(z)e"® .

We consider the 6'Tl, state of the ’Li, molecule. The
experimental values of D,, r., and @, for the "Li, 6'I1, state
are taken from the literature”: cm™', A, and cm™. Taking
these experimental data as inputs and applying expression
(36), we can determine the value of the parameter « in the
modified Rosen-Morse potential. The experimental RKR
data points for the 6'I1, state of "Li, are shown in Figure 1,
which also contains the curves reproduced by employing the
four three-parameter potential models: modified Rosen-
Morse potential, Rosen-Morse potential,'”** Morse potential,*
and Frost-Musulin potential.>>**> The Rosen-Morse, Morse,
and Frost-Musulin potential functions are given by, respec-
tively,

ar, 2
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Figure 1. (Color online) RKR data points and four empirical
potential energy models for the 6'T1, state of the "Li» molecule.
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Table 1. A comparison of the calculated relativistic vibrational
transition frequencies and experimental RKR values for the 6'Tl,
state of the "Li» molecule (in units of cm™)

v(—v-1) RKR value Present calculation
1 249.946 250.271
2 246.378 246.943
3 242.873 243.592
4 239.428 240.218
5 236.045 236.821
6 232.723 233.400
7 229.462 229.955
8 226.262 226.486
9 223.124 222.992
10 220.047 219.473
11 217.030 215.928

An outlook for the range covered by the experimental RKR
data points tells us that the modified Rosen-Morse potential
is superior to the Rosen-Morse, Morse, and Frost-Musulin
potential functions for the 6'T1, state of the "Li, molecule.

An available potential function should well model the
experimental RKR potential curve, and satisfy the Lip-
pincott criterion, i.e., an average absolute deviation of less
than 1% of the dissociation energy D,.>® The average absolute
deviation is defined as o,, = 100Z(|Uy,(r)— Ueac(r)))/N,D, ,
where is the number of experimental data points, Uexy(7) and
UL.alc(r) are the experimentally determined potential and the
empirical potential, respectively. The average absolute
deviations of the modified Rosen-Morse potential, Rosen-
Morse potential, Morse potential, and Frost-Musulin potential
for the 6'TI, state of the ’Li molecule from the RKR
potential reported by Grochola et al.*® are 0.648% of D.,
1.053% of D., 1.901% of D,, and 2.64% of D., respectively.
These deviation values show that the modified Rosen-Morse
potential is best for the examined four potential models in
reproducing the potential energy curve for the 6'Tl, state of
the "Li» molecule.

By employing energy eigenvalue Eq. (35), we calculate
relativistic vibrational transition frequencies for the 6'T1,
state of the "Li, molecule. The present calculated values are
given in Table 1, in which we also present the RKR values
taken from the literature.”> From Table 1, we observe that the
relativistic vibrational transition frequencies obtained by
using the modified Rosen-Morse potential model are in good
agreement with the RKR data.

Conclusions

In this work, we have investigated the bound state solu-
tions of the Klein-Gordon equation with the Morse potential
energy model. The energy eigenvalue equation has been
obtained using the supersymmetric shape invariance method.
We calculate the relativistic vibrational transition frequencies
for the 6'I1, state of the "Li, molecule. The relativistic vibra-
tional transition frequencies predicted with the modified
Rosen-Morse potential model are in good agreement with
the experimental RKR data.



Molecular Spinless Energies of the Modified Rosen-Morse Potential

Acknowledgments. Publication cost of this paper was

supported by the Korean Chemical Society.

—_——
— O O 00

12.
13.
14.
15.

References

. Sun, H. Bull. Korean Chem. Soc. 2011, 32, 4233.

. Bayrak, O.; Soylu, A.; Boztosun, 1. J. Math. Phys. 2010, 51,
112301.

. Yi, L. Z,; Diao, Y. F,; Liu, J. Y.; Jia, C. S. Phys. Lett. 42004, 333,
212.

. Ibrahim, T. T.; Oyewumi, K. J.; Wyngaardt, S. M. Eur. Phys. J.
Plus 2012, 127, 100.

. Qiang, W. C.; Sun, G. H.; Dong, S. H. Ann. Phys. (Berlin) 2012,
524, 360.

. Wei, G F.; Zhen, Z. Z.; Dong, S. H. Cent. Eur. J. Phys. 2009, 7,
175.

. Qiang, W. C.; Dong, S. H. Phys. Lett. A 2008, 372, 4789.

. Kogak, G;; Taskin, F. Ann. Phys. (Berlin) 2010, 522, 802.

. Xu, Y;; He, S.; Jia, C. S. Phys. Scr: 2010, 81, 045001.

. Dong, S. H. Commun. Theor. Phys. 2011, 55, 969.

. Oluwadare, O. J.; Oyewumi, K. J.; Akoshile, C. O.; Babalola, O.

A. Phys. Scr: 2012, 86, 035002.

Jia, C. S.; Cao, S. Y. Bull. Korean Chem. Soc. 2013, 34, 3425.

Liu, J. Y.; Du, J. F; Jia, C. S. Eur. Phys. J. Plus 2013, 128, 139.

Chen, T.; Lin, S. R.; Jia, C. S. Eur. Phys. J. Plus 2013, 128, 69.

Jia, C. S.; Chen, T.; He, S. Phys. Lett. A 2013, 377, 682.

16. Zhang, G. D.; Liu, J. Y.; Zhang, L. H.; Zhou, W.,; Jia, C. S. Phys.

Rev. 42012, 86, 062510.

32.
33.
34.
35.

36.

Bull. Korean Chem. Soc. 2014, Vol. 35,No.9 2703

. Rosen, N.; Morse, P. M. Phys. Rev. 1932, 42,210.

. Frost, A. A.; Musulin, B. J. Am. Chem. Soc. 1954, 76, 2045.

. Rydberg, R. Z. Phys. 1933, 80, 514.

. Klein, O. Z. Phys. 1932, 76, 226.

. Rees, A. L. G. Proc. Phys. Soc. 1947, 59, 998.

. Tang, H. M.; Liang, G. C.; Zhang, L. H.; Zhao, F.; Jia, C. S. Can.

J. Chem. 2014, 92, 341.

. Grochola, A.; Jastrzebski, W.; Kowalczyk, P. Mol. Phys. 2008,

106, 1375.

. Jedrzejewski-Szmek, Z.; Grochola, A.; Jastrzebski, W.; Kowalczyk,

P. Chem. Phys. Lett. 2007, 444, 229.

. Li, D.; Xie, F.; Li, L.; Lazoudis, A.; Lyyra, A. M. J. Mol.

Spectrosc. 2007, 246, 180.

. Alhaidari, A. D.; Bahlouli, H.; Al-Hasan, A. Phys. Lett. A 2006,

349, 87.

. Pekeris, C. L. Phys. Rev. 1934, 45, 98.

. Witten, E. Nucl. Phys. B1981, 185, 513.

. Gendenshtein, L. E. Sov. Phys.-JETP Lett. 1983, 38, 356.

. Cooper, F.; Khare, A.; Sukhatme, U. Phys. Rep. 1995, 251,267.

. Dabrowska, J. W.; Khare, A.; Sukhatme, U. P. J. Phys. A: Math.

Gen. 1988, 21, L195.

Jia, C. S.; Wang, X. G; Yao, X. K.; Chen, P. C.; Xiao, W. J. Phys.
A: Math. Gen. 1998, 31,4763.

Morse, M. Phys. Rev. 1929, 34, 57.

Frost, A. A.; Musulin, B. J. Chem. Phys. 1954, 22, 1017.

Jia, C. S.; Diao, Y. F;; Liu, X. J.; Wang, P. Q.; Liu, J. Y.; Zhang, G.
D. J. Chem. Phys. 2012, 137, 014101.

Steele, D.; Lippincott, E. R.; Vanderslice, J. T. Rev. Mod. Phys.
1962, 34, 239.




