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The external field effects including gravitational, magnetic,

and electric effects on diffusion-reaction systems are ubi-

quitous in a broad range of chemical and biological systems.

However, the theoretical approaches to study those effects

have been relatively rare because of their complexities. The

exact analytical results have been known only for simple

systems, especially in one dimension1-4 and three dimen-

sions.5-7 On the other hand, the computer simulations can be

applied to complicated systems more easily because of its

flexibility. If we want to mimic the conditions in theories

with simulations for external field effects, we first have to

verify the consistency between theories and simulations

rigorously. In this Note, we suggest the simulations methods

dealing with the external field effects to predict the exact

analytical results in one dimension. 

Consider a pair of molecules diffusing under the influence

of a potential field. Let p(r,t) be the probability density

function for observing the pair with a separation r at time t.

The diffusion-reaction equation for the probability density

function is given by 

, (1)

where d is the dimensionality of the system, D is a relative

diffusion constant, and U(r) is a unit-dimensionless potential.

For the linear external potential, U(x) = 2ax, Eq. (1)

simplifies to 

, (2)

in one dimension. Here a determines the magnitude of the

potential field and  with the reaction distance R.

Without loss of generality, we can assume that one molecule

is fixed at origin and the other is located at x (x > 0).1 Note

that for the positive value of a, the molecule tends to move

toward the origin. The diffusion equation Eq. (2) can be

reduced to the following field-free form, 

,  (3)

by the transformation of 8-10

. (4)

Then, we can solve Eq. (3) exactly for a variety of known

conditions. The probability density function for a free-diffu-

sion can be obtained as 

, (5)

where x0 is the initial position ( ). Then, the moments

are 

, (6)

. (7)

For the Collins-Kimball boundary condition,11 

, (8)

where k is the intrinsic rate constant. Eq. (2) can be exactly

solved to obtain

, (9)

where  with the comple-

mentary error function erfc(x). 

For the Smoluchowski boundary condition ( ),8 we

have

(10)

The survival probability for the initial separation x0 is 

 (11)

One can see that Eq. (11) reduce to the field-free solutions of

 when a = 0. In the long time limit, we

have

 (12)
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Note that when the external field is against reaction, the

ultimate escape probability has non-zero value even in one

dimension.

For the reflecting boundary condition (k = 0), we have 

,  (13)

 (14)

For a positive value of a, we have an equilibrium distribu-

tion that is independent of the initial position in the long time

limit.10

It is well known that the lattice-based Monte Carlo simu-

lation can reproduce field-free solutions for Smoluchowski

or absorbing boundary condition when the lattice constant or

the distance between two neighboring lattice points, Δx is
small enough.12-17 To study the field effects on diffusion-

reaction systems, one should make the simulation methods

produce consistent results with the known analytical ones of

diffusion-reaction equations. The relation between the mag-

nitude of the external field and the hopping probability can

be found to utilize the energy difference between lattice

points as in the conventional Metropolis method.18 For a

positive value of a, the hopping to the left is always accepted,

but the hopping to the right is only partially accepted. If the

trial is rejected, the molecule will stay on the old position

and will be retried in the next step. Therefore, in this case,

the hopping probability to the left PL is 0.5, the probability to

the right PR is exp(−2aΔx)/2, and the probability of the stay
PS is 0.5 − exp(−2aΔx)/2 with PL + PR + PS = 1. 

The alternative method is that we eliminate PS and rear-

range PL and PR as 1/[1 + exp(−2aΔx)] and 1−PL, respec-

tively. Then, we have the following simplified relation 

PL = 0.5 + tanh(aΔx)/2.  (15)

One can see that this relation goes to PL ≈ 0.5 + aΔx/2 for
small a, while PL ≈ 1 − exp(−2aΔx) for large a. This method
is consistent with the field-free simulations in that the stay

on the old position is not allowed. 

To test which method describes the analytical results

better, we compare simulation results adopting two methods

for a = 1 and a = 0.5 with exact results in a one-dimensional

reaction-free diffusion case in Figure 1. We perform the

latticed-based random walk simulations. A molecule is

initially implanted at x0 = 0 and it starts moving in random

directions. The hopping and stay probabilities are evaluated

by above two methods. The lattice constant Δx is reduced
until converged results are obtained. For these figures, we

set Δx = 0.1 and the reaction distance R = 1 for unit-

dimensionless parameters. In one dimensional lattice, D = 1/

2. The magnitude of the slopes of  and 

against Dt in Eqs. (6) and (7) is 2a. The method based on Eq.

(15) is found to predict the correct slope values of 2.0 and

1.0 for a = 1 and a = 0.5, respectively. On the other hand, the

Metropolis method18 is found to predict lower slopes of 1.8

and 0.9 and underestimates the field effects. Therefore, if

one wants to use the Metropolis method, one should readjust

the diffusion constants since the stay on the old position

makes the slower diffusive motions. 

With success in a free-diffusion case, we test whether our

simulation adopting Eq. (15) can describe the reaction-

diffusion systems rigorously or not. We implant a trap at

origin and a molecule at x0 = r0 − R = 1. If the molecule

encounters the trap within the reaction distance R = 1, the
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Figure 1. Comparison between two simulation methods: the
Metropolis method and the methods adopting Eq. (15) in a one-
dimensional free diffusion for two field strength parameters. 

Figure 2. The survival probabilities in one dimension for a = −1.0,
−0.3, 0, 0.3, and 1 (from top to bottom). 
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reaction occurs. In Figure 2, we plot survival probabilities to

compare our simulation results adopting Eq. (15) with the

exact analytical results of Eq. (11) for a = −1.0, −0.3, 0, 0.3,
and 1.0. A field-free result (a = 0) has been added as a

reference. We set Δx = 1/50 here. We have virtually perfect

agreement between simulation and theoretical results and we

can confirm that our simulation results can rigorously repro-

duce the theoretical results of Eq. (11). Since the non-zero

escape probability exists when a < 0, we plot the survival

probabilities in the long time limit in Figure 3. One can see

the long time simulation results also agree perfectly with the

theoretical predictions of Eq. (12). 

In summary, we have shown that the lattice-based Monte

Carlo simulation methods can exactly reproduce the predic-

tions of the diffusion-influenced reaction theories with ex-

ternal field effects in one dimension by finding the rigorous

relation between the field strength and the hopping prob-

ability. This method will be of great use since it can be easily

extended to more complicated systems where no exact

analytical results are known yet. 
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Figure 3. The survival probabilities in the long-time limit in one
dimension for various negative values of a. 


