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We solve the Klein-Gordon equation with the Morse empirical potential energy model. The bound state energy
equation has been obtained in terms of the supersymmetric shape invariance approach. The relativistic
vibrational transition frequencies for the X'>" state of ScI molecule have been computed by using the Morse
potential model. The calculated relativistic vibrational transition frequencies are in good agreement with the

experimental RKR values.
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Introduction

There has been continuous interest in the analytical
solutions of the Klein-Gordon equation with some typical
diatomic molecule empirical potentials,''’ these potential
models include the Morse potential,'’ Rosen-Morse potential,
Manning-Rosen potential,’* Poschl-Teller potential,'* and
Deng-Fan potential,'® efc. Diatomic potential energy functions
have been applied in various issues, such as atom-atom
collisions, molecular spectroscopy, molecular dynamics
simulation, chemical reactivity, and transport properties for
more complex systems.'® Alhaidari et al.'” pointed out that
one can yield a nonrelativistic limit with a potential function
2¥(r) from the Klein-Gordon equation with the equal scalar
potential S() and vector potential ¥(r). In Ref.'® and,'® the
authors investigated relativistic energy equations of the
improved Manning-Rosen potential®® and improved Rosen-
Morse potential,”! and calculated relativistic vibrational
transition frequencies for the a’%," state of "Li, molecule and
the 3°%," state of Cs, molecule.

In 1929, Morse!" proposed the first three-parameter empirical
potential energy function for diatomic molecules,
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a(r re)) ’ ( 1)
where D, is the dissociation energy, r. is the equilibrium
bond length, and o denotes the range of the potential. The
well-known Morse potential has been widely used in many
fields, such as the diatomic vibrations,”> molecular simula-
tions,”>> etc. Based on the exact quantization rule for the
nonrelativistic Schrodinger equation, Sun' proposed an
exact quantization rule for the relativistic one-dimensional
Klein-Gordon equation, and obtained the exact relativistic
energies for the one-dimensional Morse potential. By using
the asymptotic iteration method,?® Bayrak er al.” investigated
the bound state solutions of the Klein-Gordon equation for
the equal scalar and vector Morse potentials. As far as we
known, one has not reported predicting quantitatively the
relativistic vibrational levels for real diatomic molecules in
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terms of the Morse potential model.

In this work, we attempt to study the bound state solutions
of the Klein-Gordon equation with the Morse potential
energy model. The bound state energy equation is investi-
gated by using the basic concept of the supersymmetric
shape invariance approach. We also calculate the relativistic
vibrational transition frequencies of the X'T* state of Scl
molecule and compare the present calculated values with the
RKR experimental data.

Bound State Solutions

The Klein-Gordon equation with a scalar potential S(r)
and a vector potential V() is given by

[— KAV + (M —S(r)), J\P(r, 6,0)
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where V7 is the Laplace operator, E is the relativistic energy
of the quantum system, M is the rest mass of the quantum
system, c is the speed of light, and 7 = h/2 z, h is the Planck
constant. The rest mass M can be taken as the reduced mass
w1 for a diatomic molecule. We write the wave function as
Y =(r,6,0)= (u,(r)/r)Y,,(6,0), where Y, (6,¢) is the
spherical harmonic function. Substituting this form of the
wave function into Eq. (2), we reduce the radial part of the
Klein-Gordon equation,

{hzczj—zz +2(uc’S(r)+ E, V(1) + S (r) = V(r)
r
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where v and J denotes the vibrational and rotational quantum
numbers, respectively. In the presence of the equal scalar
and vector potentials, S(r)=V(r), Eq. (3) turns to the
following form
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In the nonrelativistic limit, Eq. (4) produces the Schrodinger
equation with the potential 2V(r). In the case of the
nonrelativistic limit, we employ the scheme proposed by
Alhaidari ef al.'” to make the interaction potential as V(r),
not 2V(r) . We write Eq. (4) in the form
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Taking the scalar and vector potentials as the equal Morse
potential, S(») = V(r)= U,/(r), we produce the following
second-order Schrédinger-like equation,
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This equation is exactly solvable for the case of J=0.
However, Eq. (6) is only approximately solvable when the
centrifugal term is included (J#0). We take the Pekeris
approximation scheme to deal with the centrifugal term.*’
Taking the coordinate transformation of x = (r—r,)/r,, the
centrifugal potential is expanded in a series around x =0,
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where y= (J(J+ l)hzcz)/ri . The centrifugal potential U.p(r)
is replaced by the following form of

Uep(r) = Hdy+dye “ +dye >, (8)

where dy, di, and d» are the coefficients. Employing the
coordinate transformation x = (r—r,)/7,, we expand expre-
ssion (8) in a series around x =0,

Uen(r) = wdotdie ““+doe ™)~ yare ““(dy+2dre )
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Taking up to the second-order degrees in the series ex-
pressions (7) and (9), and comparing equal powers of Eq. (7)
and (9), we yield the following expressions for the coeffi-
cients do, di, and db,

dy= 1=+ (10)

d, = 2e‘”€(i—i2) , (11)
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Substituting expression (8) into Eq. (6) gives the following
equation
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where E,; is defined as
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We apply the supersymmetric shape invariance approach
to solve Eq. (13).** The ground-state wave function u,_(r)
is expressed as

o (r) = exp(= [W(r)dr), (15)

where W(r) is called a superpotential in supersymmetric
quantum mechanics.?® Substituting expression (15) into Eq.
(13) leads us to obtain the following relation satisfied by the
superpotential W(r),
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where Eo is the ground-state energy. Letting the super-
potential W(r) as

W(r)y=A4e “+B, (17)

where A and B are two constants. Substituting this expression
into expression (15) leads us to rewrite the ground-state
wave function u, ,(r) as
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‘We consider the bound state solutions, which demand the
wave function u,,(r) to satisfy the boundary conditions:
u,(0)=0 and u,,0) is limitary. These regularity conditions
demand 4>0 and B>0.

Using expression (17) of superpotential W(r), we can
construct a pair of supersymmetric partner potentials U (r)
and U, (r), B

Ur)= Wz(r)—‘%2 =B +Q4B+ad)e “+ A",
r
(19)
U+(I") = WZ(}/’)J’_%) — B2+(2AB_aA)efdr+A2672ar ]
r
(20)
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From expressions (19) and (20), we can have the follow-
ing relationship

Ui(r,ap) = U_(r,a))*R(a)), 2n

where a,= B, a; is a function of ay, i.e., a, = h(a,) = a—«,
and the reminder R(a,) is independent of r, R(a,) = ap—a, .
Relation (21) shows that the partner potentials U (r) and
U,(r) are the shape-invariant potentials. Their energy
spectra can be determined with the shape invariance ap-
proach.” The energy spectra of the potential U (r) are
given by R

Z?g:}:: O,
B = R(a) = R(a))+R(ay)+... + R(a,)
k=1
(22)
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where the quantum number v=0,1,2,....
By comparing Eq. (19) with Eq. (16), we obtain the
following three relationships
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From Egs. (13~), (16) and (19), we obtain the following
relationship for £,,,

Ey=E,-Eo,. (28)
With the help of Egs. (22) and (23), we arrive at the
following expression for £,

Eu=—(B-va) . (29)

Substituting expression (27) into expression (29) and
using expression (26), we find the relativistic rotation-
vibrational energy equation for the diatomic molecule in the
presence of equal scalar and vector Morse potential energy
models,

Esy—pict = (uc+E, D+ nd,

d —2(uc*+E. )D& ?
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When J=0, y=0s, we obtain the relativistic vibrational
energy equation for the diatomic molecule with equal scalar
and vector Morse potentials,

Eij—yzc4 = (2(v+%)hcaA/(ychrEvJ)De—(er97720203) .
€2y

Employing the superpotential W(r) given in expression
(17) and the ground-state wave function u, ,(r) given in
expression (18), we can calculate the excited state wave
functions by using the explicit recursion operator approach. 3'-*?

Discussions

The force constant 4. is defined as the second derivates of
the potential energy function U(r) for a diatomic molecule,
k,= (012 U(r))/a’r2 r=r, . From this definition and the relation
k,= 47 uc’ ., we have the expression satisfied by the
potential parameter « appearing in the Morse potential (1),

a= ﬂcwEP, (32)
D,

where @, is the equilibrium harmonic vibrational frequency.

We consider the X'S" state of Scl molecule. Taking the
experimental values of D,, r., and @, as inputs, we can
determine the value of the potential parameters ¢ in terms of
expression (32), a=1.28094315 x 108 cm™. The molecular
constants of the X'S" state of Scl molecule are taken from
the literature®: D, = 2.858 eV, r. = 2.6078 A, and @, =
277.18 ecm™'. A successful potential energy function should
reproduce the experimental potential curve as determined by
the Rydberg-Klein-Rees (RKR) method.**3® The experimental
RKR data points reported by Reddy et al.** for the X'T*
state of Scl molecule are depicted in Figure 1, which also
contains the potential energy curve reproduced by the
Morse potential model. The average absolute deviation of
the Morse potential for the X'S" state of ScI molecule from
the RKR potential reported by Reddy er al.** is 0.0344% of
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Figure 1. (Color online) RKR data points and the Morse potential
energy model for the X'Z" state of ScI molecule.
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Table 1. A comparison of the calculated relativistic vibrational
transition frequencies and experimental RKR values for the X'Z*
state of ScI molecule (in units of cm™)

v(—>v-1) RKR value Present calculation
1 275.6 275.513
2 273.8 273.847
3 272.2 272.181
4 270.5 270.514
5 268.9 268.848
6 267.2 267.181

D,. This average absolute deviation satisfies the Lippincott
criterion, i.e., an average absolute deviation of less than 1%
of the dissociation energy D,.*” The average deviation is
defined as

o, = 1OOZ(|Uexp(r)_ Ucalc(r)|) ,
N,D,

where N, is the number of experimental data points, Ue,(7)
and U, (r) are the experimentally determined potential and
the empirical potential, respectively. This accuracy indicator
has been used in a large body of literature on assessing the

accuracy of an empirical potential model.*%*°
By applying energy eigenvalue Eq. (31), we can calculate
relativistic vibrational transition frequencies for the X'Z"
state of Scl molecule. The present calculated values are
given in Table 1, in which we also list the RKR values taken
from the literature.*® It is clear that the relativistic vibrational
transition frequencies obtained by using the Morse potential

mode are good agreement with the RKR data.

(33)

Conclusions

In this work, we have studied the bound state solutions of
the Klein-Gordon equation with the Morse potential energy
model. The energy eigenvalue equation has been obtained in
terms of the supersymmetric shape invariance approach. We
calculate the relativistic vibrational transition frequencies for
the X'S" state of Scl molecule. The relativistic vibrational
transition frequencies predicted with the Morse potential
model are good agreement with the experimental RKR
values.
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