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Selection of the most informative molecular descriptors from the original data set is a key step for development

of quantitative structure activity/property relationship models. Recently, mutual information (MI) has gained

increasing attention in feature selection problems. This paper presents an effective mutual information-based

feature selection approach, named mutual information maximization by replacing collinear variables (MIMRCV),

for nonlinear quantitative structure-property relationship models. The proposed variable selection method was

applied to three different QSPR datasets, soil degradation half-life of 47 organophosphorus pesticides, GC-MS

retention times of 85 volatile organic compounds, and water-to-micellar cetyltrimethylammonium bromide

partition coefficients of 62 organic compounds.The obtained results revealed that using MIMRCV as feature

selection method improves the predictive quality of the developed models compared to conventional MI based

variable selection algorithms.
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Introduction

Quantitative structure activity/property relationships (QSPR/

QSAR) are of the most important methods in chemometrics,

which attempts to correlate molecular descriptors with

functions (i.e. physicochemical properties, biological activities,

toxicity etc.) for a set of similar compounds, by means of

statistical methods.1-3

For building a quantitative structure activity/property-

relationship (QSAR/QSPR) model, molecular structural

descriptors must be calculated for the compounds involved.

Since, at the present time, thousands of molecular descriptors

(including topological, geometric, electronic and quantum-

chemical features) are available for QSAR/QSPR analyses

and only a particular subset of the mare statistically signi-

ficant in terms of correlation with activity/property for a

particular analysis, a variable selection method is necessary

for producing a useful predictive model.4,5 Meanwhile, using

techniques that allow the selection of a reduced set of

variables containing the most informative features enables a

better interpretation and comprehension of the model.4

Variable selection algorithms can be classified into filters,

wrappers and embedded methods. Filter methods select

subset of variables as a preprocessing step, independently of

the model that eventually makes use of them. Filter methods

use a given criterion like the value of correlation coefficient

between predictors and response in order to select some

variables and/or eliminate others.6 Wrapper methods choose

those features with high prediction performance estimated

by specified learning algorithms. In these methods the

optimum selection of variables is achieved by combining

stochastic search algorithms such as simulated annealing

and genetic algorithm with multivariate calibration methods

such as multiple linear regressions (MLR) and partial least

squares (PLS).7,8 In the embedded methods, feature selection

is integrated into the process of calibration for a given

modeling algorithm. The subset of selected variables can be

constructed by successive additions (forward), elimination

(backward) or a combination of both approaches. Stepwise

multiple linear regression9 is the most commonly employed

embedded variable selection method.

In QSPR studies, a linear regression model of the form y =

Xb+ e is usually used to describe a set of predictor variables

or descriptors (X) with a predicted variable or property (y)

by means of a regression vector (b). Multiple linear regre-

ssion (MLR) and partial least squares (PLS) are among

mostly used linear methods in QSPR studies.9-11 Because of

the complexity of the relationships existing between the

activity/property of the molecules and the structures, non-

linear modeling methods are often used to model the struc-

ture-activity/property relationships. Nonlinear multivariate

maps use a nonlinear transformation of the input variable

space to project inputs onto the designated attribute values in

output space.12 Artificial neural networks (ANN) and support

vector machines (SVM) are nonlinear modeling techniques

that have attracted increasing interest in recent years.12,13

The ANN and SVM can incorporate nonlinear relationships

between molecular descriptors and activity/property and

often produce superior QSPR/QSAR models compared to

models developed by the linear approaches MLR and

PLS.14,15

Mutual Information (MI) is an alternative for the selection
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of the most important variables.16-18 Basically, the mutual

information measures the amount of information contained

in a variable or a group of variables, in order to predict the

dependent one.19 Unlike other parametric estimators, such as

the correlation coefficient, the MI does not make any

assumption about what type of relation could exist between

the variables (linear or nonlinear) and estimation of MI is

carried out independently from a regression model.20

For the selection of the most important variables based on

the mutual information, two procedures have been proposed.

The first one, named ranking procedure, is the selection of

the variables that individually exhibit the largest MI with the

dependent one.20,21 However, this method may lead to the

selection of highly collinear variables.20,22 The second option

consists of a forward procedure in which variables are

sequentially added into the subset of selected variables. In

this procedure, the variables that maximize the mutual

information value between the set of selected variables and

dependent one are selected.20,21 The selected variables in the

forward procedure are strongly dependent on the previously

selected features, and thus, some important descriptors could

be lost during the variable selection process.20-22

This paper proposes a new mutual information-based

variable selection procedure, called mutual information

maximization by replacing collinear variables (MIMRCV),

for nonlinear quantitative structure-property relationship

models. The proposed method was applied to develop QSPR

models for three datasets by nonlinear approaches radial

basis function neural networks (RBFNN) and support vector

machines (SVM).

Theory

Mutual Information. In the information theory, the

mutual information (MI) can be applied for evaluating any

arbitrary dependency between random variables. In this

theory, the uncertainty of a random variable is measured by

entropy.23,24 The MI between two random variables X and Y

is a measure of the amount of knowledge on Y supplied by

X. The MI of two random variables X and Y is defined as:

MI(X, Y) = H(X) − H(X|Y) = H(Y) − H(Y|X) 

= H(X) + H(Y) − H(X,Y)  (1)

where H(X) and H(Y) are the entropy of variables X and Y, is

the conditional entropy of X in the case of Y is known, and

H(X,Y) is the joint entropy of X and Y, which are defined as:

 (2)

 (3)

 (4)

where p(x, y) is the joint probability density function and

p(x) and p(y) are marginal density functions of X and Y,

respectively. The marginal density functions are

 (5)

 (6)

By substituting Eqs. (2)-(4) into Eq. (1), the MI equation

will be

 (7)

The estimation of the mutual information is generally

carried out on histograms and kernel probability density

functions,25 which are derived from the available data sets.

However, these estimators suffer from the curse of dimen-

sionality26 and their use is usually restricted to one- or two-

dimensional variables. Kraskov et al.27 proposed to use k-

nearest neighbor statistics to estimate the entropies and com-

pute mutual information. They estimated the MI between

two random variables of any multi-dimensional space. The

basic idea is to estimate the entropy from based on an

average distance to the k-nearest neighbors.27 Usually a mid-

range value for number of neighbors (k), i.e., k = 6, is

selected for the estimation of MI.21,28

Proposed MI-Based Variable Selection Procedure. The

proposed mutual information-based variable selection pro-

cedure can be described as follows. Let N be the maximum

number of variables that can be included in the subset of

selected descriptors. The main purpose of MIMRCV is to

selectan optimal subset {X1, X2,…, XN} of descriptors with

maximum mutual information MI({X1, X2, X3,…., XN}, Y).

MIMRCV comprises two phases. The first phase consists of

the selection of the variables that individually exhibit the

largest MI value with the dependent variable and removing

collinear variables with the selected ones from the matrix of

descriptors, iteratively. The first variable to be chosen is the

one that maximizes the mutual information with Y,

MI(X1, Y). Then the correlation coefficient value (R) of the

selected variable and the remaining ones is calculated. The

variables that exhibit higher correlation coefficient value

than a defined threshold (C) are eliminated from the original

dataset. For the selection of the second variable among the

remaining ones, the variable that has the largest mutual

information with Y (MI(X2, Y)) is selected and all the

variables that have higher correlation coefficient value than

C with the selected one are removed from the remaining

descriptors and saved for the second phase. This procedure

is continued until the selection of variable XN. 

The second phase of MIMRCV consists of replacing each

one of selected variables (except variable X1) by correspond-

ing collinear one that maximizes the mutual information of

the selected subset with the dependent one (MI ({X1, X2,

X3….XN}, Y)). Firstly, the variable with the lowest mutual

information (XN) is replaced with itscollinear variables (the

variables that have higher correlation coefficient value than

C with variable XN) that removed from the data set in the

previous phase and keeping the best one. If the replacement

of the descriptor does not improve the value of MI, it

remains unchanged. In the next step, variable XN–1 is

H X( ) = −  
x∫ p x( )log p x( )( )dx

H Y( ) = −  
x∫ p y( )log p y( )( )dx

H X, Y( ) = − p
y∫x∫ x, y( )log p x, y( )( )dxdy

p x( ) = −  
y∫ p x, y( )dx

p y( ) = −  
x∫ p x, y( )dy

MI X, Y( ) = −− p
y∫x∫ x, y( )log p x, y( )

p x( )p y( )
--------------------dxdy
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replaced by the same method. All the remaining variables in

the initial set ({XN–2, XN–3,....,X2}) are replaced in the

same way except variable X1. When finishing, above pro-

cedure starts again with the variable XN and the whole

process is repeated. This process is repeated as many times

as necessary until the set of descriptors remains unchanged.

Radial Basis Function Neural Networks. Artificial

neural networks (ANN) are well known methods for solving

nonlinear problems.7,29,30 An ANN consists of a series of

interconnected nodes (neurons) that receive and/or send

number values to other nodes. The radial basis function-

neural network (RBFNN) is a particular type of ANN ap-

plied to problems such as modeling and classification.31

Recently, there is a growing interest in the use of RBFNN

for its short training time and being guaranteed to reach the

global minimum of error surface during training.32 In

RBFNN, the input layer does not process the information; it

only distributes the input vectors to the hidden layer. The

hidden layer consists of a number of RBF neurons and a bias

(bk). Each neuron in the hidden layer employs a radial basis

function as the nonlinear transfer function to operate on the

input data. A common RBF is the Gaussian function that is

characterized by the center (cj) and the width (rj):

 (8)

where H represents the radial basis function, and ||x−cj || is
the Euclidean distance between x input vector and cj. The

outputs from the radial functions are fully connected to the

neurons of the output layer by the strength of weight

coefficients wjk. The relation between the output value and

the input variable can be represented by:

(9)

Where yk is the kth output unit for the input vector x, wkj is

the weight connection between the kth output unit and the

jth hidden layer unit and bk is the bias. When the error of

network output reaches the pro-set error goal value in

RBFNN, the procedure of adding hidden neurons will stop.

Support Vector Machines. Support vector machine

(SVM) introduced by Vapnik33,8 is a valuable tool for solv-

ing pattern recognition and classification problem. SVM can

be applied to regression problems by the introduction of an

alternative loss function. Due to its advantages and remark-

able generalization performance over other methods, SVM

has attracted attention and gained extensive application.8 In

support vector machine, the input data is first mapped into

high dimensional feature space by the use of kernel function

and then linear regression is performed in the feature space.

The nonlinear feature mapping will allow the treatment of

nonlinear problems in a linear space. After training on set

data SVM can be used to predict the objects whose values

are unknown. The prediction or approximation function used

by SVM is:

 (10)

Where k (xi, x) is the kernel function, xi is the input vector, ai
is Lagrange multipliers called support value, b is bias term.

Training points with nonzero weight ai are called support

vectors. The elegance of using a kernel function lies in the

fact that one can deal with feature spaces of arbitrary

dimensionality without having to compute the map Φ(x)

explicitly, and it may be useful to think of the kernel, K(xi, x)

as comparing patterns or evaluating the proximity of objects

in their feature space. Thus, a test point is evaluated by

comparing it with all training points. Many functions can be

used as the kernel function. However, the kernel function

more used is the radial basis function (RBF), exp(–(||xi –

x||2)/2σ2), a simple Gaussian function, where σ2 is the width

of the Gaussian function, which should be optimized by the

user, to obtain the support vector.

Experimental

Datasets.

Degradation Half-life of Organophosphoruspesticides

in Soil: Organophosphorus pesticides (OPPs) are located

among the most commonly employed pesticides because of

their high activity, ease of use and rapid degradation under

natural conditions.34,35 They have been widely applied as

insecticides, herbicides, acaricides, fungicides, and plant

growth regulators for controlling disease and growth.36,37

Organophosphorus pesticides are generally depredated by

the reactions including oxidation, reduction, hydrolysis,

hydroxylation, dehydrochlorination, dealkylation, methyl-

ation, isomerization, and conjugate formation.38 Their ability

to degrade made them an attractive alternative to the

persistent organochlorines pesticides, such as DDT, aldrin

and dieldrin. Although the degradation process of pesticides

in soils is complicated, main factors may be soil constituents,

soil microflora, and chemical structures of pesticides.

Chemical structures are especially important for soil meta-

bolism of organophosphorus pesticides, because the priority

of the reactions mentioned above is decided.38 The soil

degradation half-life (DT50) is a measure of the persistence

of a pesticide in soil. Pesticides can be categorized on the

basis of their half life as non-persistent, degrading to half the

original concentration in less than 30 days; moderately

persistent, degrading to half the original concentration in 30

to 100 days; or persistent, taking longer than 100 days to

degrade to half the original concentration.39

The experimental values for the degradation half-life (DT50)

of 47 organophosphoruspesticides taken from the literature39

are presented in Tables 1. The dataset was split into a train-

ing set and a test set. The training set of 37 compounds was

used to adjust the parameters of the models, and the test set

of 10 compounds was used to evaluate their prediction

ability.

Gas Chromatography-Mass Spectrometry Retention

Times of Volatile Organic Compounds: Volatile organic

compounds (VOCs) are a large group of carbon-based

chemicals that have a highvapor pressure at ordinary, room-

temperature conditions. VOCs are introduced into the

Hj x( ) = exp
|| x cj ||–

rj
-----------------⎝ ⎠

⎛ ⎞
2

–

yk x( ) = Σj 1=

n
k

wkjhj x( ) + bk

y = Σi 1=

N
aik xi, x( ) + b
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atmosphere via a wide range of anthropogenic, biogenic and

photochemical sources. These compounds can pose a seri-

ous hazard to human health and the environment due to the

well-known toxicity of several compounds (e.g., benzene

and 1,3-butadiene).40 They also play an important role in

physico-chemical processes of the troposphere, as they

contribute significantly to the formation of ozone and other

photochemical oxidants.41 Gas chromatography-mass spectro-

metry retention times (tR) of 85 volatile organic compounds

were taken from theEPA Method 8260C.42 The dataset was

divided into two subsets: 65 in the training setand 20 in the

test set.

Water-To-Micellar CTAB Partition Coefficients of Some

of Organic Compounds: Surfactants are known to play a

vital role in many processes of interest in both fundamental

and applied science. One important property of surfactants is

the formation of colloidal-sized clusters in solutions, known

as micelles. Dissolved solutes in micellar solutions are di-

stributed between the micelles and the bulk aqueous solvent

medium. The enhanced solubility that results from solute

partitioning into the micellar aggregates has been used

successfully in practical applications such as tertiary oil

recovery, design of controlled drug delivery systems, re-

mediation of contaminated waste sites, removal of hazard-

ous materials from industrial waste effluents, and chemical

separations by micellarelectrokinetic chromatography.43 The

experimental data of the logarithm of water-to-micellar cetyl-

trimethylammonium bromide partition coefficients (Log

PCTAB/water) of 62 organic compoundswere taken from

Sprunger et al.43 The total 62 samples are split into a training

set with 50 samples and a test set with 12 samples.

Computer Hardware and Software. All calculations

were run on a Toshiba computer with Pentium IV as central

processing unit (4Gb RAM) with windows XP operating

system. The ChemDrawUltra version 11.01 (ChemOffice

2008, CambridgeSoft Corporation) software was used for

drawing the molecular structures. The optimizations of

molecular structures were done by the HyperChem version

8.05 using molecular mechanics and semi empirical AM1

tools. For the calculation of molecular descriptors, Dragon

(Milano Chemometrics group, version 3.0) software’s was

used. All data analyses were performed using MATLAB

software, version 7.7 (Mathworks, Inc.). SVM regression

(PLS Toolbox, version 6, Eigenvector Company) and RBFNN

analysis (Neural Network Toolbox) were performed in the

MATLAB. The mutual information was calculated with a

MATLAB/C implementation provided by Astakhov et al.44

Molecular Descriptors. The main step in every QSPR

study is calculating the structural descriptors as numerical

encoded parameters representing the chemical structures. In

the present work the molecular descriptors were generated

using Dragon software. Descriptors with constant or near

constant values inside each group were discarded. In addi-

tion, pairs of variables with a correlation coefficient greater

Table 1. Experimental and predicted values of DT50 of 47 organophosphorus pesticides for training and test sets

No. Pesticide
DT50

(Exp.)

DT50 (Pred.)
No. Pesticide

DT50 

(Exp.)

DT50 (Pred.)

SVM RBFNN SVM RBFNN

1 Acephate 3 5.3 6.9 25 Methyl parathion 5 7.8 7.3

2 Azinphos-methyl 10 13.9 13.7 26 Mevinphos 3 8.2 10.8

3a Bensulide 120 110 94.2 27 Monocrotophos 30 11.3 8.6

4a Carbophenothion 30 41.8 47.8 28 Naled 1 4.9 0.46

5 Chlorpyrifos 30 33.9 26.0 29 Oxydemeton methyl 10 13.4 5.9

6 Chlorpyrifos-methyl 7 9.1 10.9 30 Parathion 14 10.0 10.3

7 Demeton 15 16.97 18.98 31 Phenthoate 35 32.5 31.0

8 Diazinon 40 43.9 38.0 32a Phorate 60 45.0 75.0

9 Dichlorvos 0.5 3.49 4.48 33 Phosalone 21 24.6 25.1

10 Dicrotophos 20 16.0 15.9 34 Phosmet 19 16.7 15.0

11a Dimethoate 7 7.5 20.3 35 Phosphamidon 17 17.1 20.9

12 Disulfoton 30 33.9 33.7 36a Profenofos 8 32.6 6.5

13 Ethephon 10 13.7 13.9 37 Sulprofos 140 125.3 126.0

14 Ethion 150 164.0 146.0 38 Temephos 30 34.0 33.4

15a Ethoprop 25 17.8 21.3 39 Terbufos 5 8.9 28.1

16a Fenamiphos 50 56.9 30.3 40 Tetrachlorvinphos 2 5.9 4.6

17a Fenitrothion 4 10.8 1.6 41 Tribufos 10 11.9 13.9

18 Fensulfothion 30 33.9 43.4 42a Trichlorfon 10 3.9 9.3

19a Fenthion 34 29.9 48.1 43 Trichloronate 139 118.2 112.6

20 Fonofos 40 46.9 43.9 44 Glyphosate 16 18.1 12.0

21 Isazofos 34 32.7 30.0 45 Pirimiphos-methyl 10 13.9 22.5

22 Isofenphos 150 126.7 155.0 46 Pirimiphos-ethyl 45 55.9 48.9

23 Methamidophos 6 9.9 2.0 47 Tolclofos-methyl 30 26.0 27.3

24 Methidathion 7 10.9 10.9

a

Test set
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than 0.95 were classified as intercorrelated and only one of

them were considered in developing the models. The final

number of descriptors was 505, 497 and 477 for the DT50,

Log PCTAB/water and tR datasets, respectively.

Model Development and Validation. The quality of each

model was assessed by applying the k-fold cross-validation

procedure. In k-fold cross-validation, the data is first

partitioned into k equally (or nearly equally) sized segments

or folds. The regression model will then be trained and

tested k times. Each time the model is built using (k–1) folds

as the training sample and the remaining single fold is

retained for testing.

For the evaluation of the performance of multivariate

calibration models, the root mean square error (RMSE) can

be used:

 (11)

The square of the correlation coefficient (R2), which

indicates the quality of fit of all the data to a straight line is

calculated for the checking of each calibration, and is

calculated as:

 (12)

where  is the estimated value of the ith object and yi is the

corresponding reference value of this object, , is the mean

of reference values and n is the total number of objectsin the

corresponding set. 

Results and Discussion

Variable Selection with Mutual Information. A major

step in QSPR studies is the selection of minimum number of

variables which tightly describe dependencies between the

chemical structures of compounds and their property. In

most of reported QSPR studies, the selection of variables for

nonlinear models has been performed using linear models

such as MLR and PLS.4,5 However, these methods may not

be appropriate if there was some kind of nonlinearity in the

data. In this context, mutual information (MI), a measure

that captures linear and nonlinear relationships between

variables, is preferable.

In this work, MIMRCV as a nonlinear variable selection

method was applied in order to select the most suitable

molecular descriptors to describe the degradation half-life

of organophosphorus pesticides in soil, water-to-micellar

CTAB partition coefficients of organic compounds and GC-

MS retention times of volatile organic compounds. The

mutual information estimation is conducted with k = 6

nearest neighbors. For the selection of the most important

descriptors by the proposed algorithm, the parameter C

(threshold for correlation coefficient) needs to be optimized.

For this purpose, this value was varied from 0.1 to 0.8, and

after the selection of variables for the each dataset, the

mutual information of the variables X2, X3….XN with the

dependent one (MI ({X2, X3….XN},Y)) was measured.The

obtained results are exhibited in Fig. 1. As can be seen in

Figure 1, the maximum mutual information value of the

selected subsets was obtained at C = 0.65, 0.60 and 0.60 for

the DT50, Log PCTAB/water and tR datasets, respectively. At

lower C values there was a decrease in the MI value of the

selected variables, probably due to losing some informative

descriptors. The mutual information value decreases at

higher C values, probably due to the interrelations between

the selected descriptors. 

The optimal number of variables was determined by the

maximum value of mutual information of the variables X2,

X3….XN with the dependent one (MI ({X2, X3….XN}, Y)).

Figure 2 shows MI value as a function of the number of

selected variables. As can be seen, MI value increases with

the number of variables in the range of 3-10, 3-6 and 3-5 for

the DT50, Log PCTAB/water and tR datasets, respectively.

Subsequent addition of variables does not improve the MI

value. Hence 10, 6 and 5 were selected as the optimum

number of variables. Table 2 presents the notation and a

short description of the selected molecular descriptors. 

Figure 3 shows MI value as a function of the number of

steps in the second phase (replacement of the selected

variables with the collinear ones). The graph reveals that the

MI value increases with replacing variables until step 8, 4

RMSE = 
1

n
---  

i 1=

n

∑ yi ŷi–( )2
0.5

R
2
 = 1−

 
i 1=

n

∑ ŷi yi–( )2

 
i 1=

n

∑ yi y–( )2
---------------------------

ŷi
y

Figure 1. Influences of the parameter C on the MI value of the
selected descriptors.

Figure 2. MI as a function of the number of descriptors (C = 0.65,
0.60 and 0.60 for the DT50, Log PCTAB/water and tR datasets,
respectively).
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and 7 for the DT50, Log PCTAB/water and tR datasets,

respectively. Afterward, the replacement of descriptors does

not improve the value of MI and therefore set of descriptors

remains unchanged.

For comparison purposes, both ranking and forward

mutual information-based variable selection procedures

were also employed to select variables for modeling of

above datasets. In the ranking procedure, 10, 6 and 5

variables with the highest MIwere selectedfor the DT50, Log

PCTAB/water and tR datasets, respectively, while in forward

procedure, the optimal number of variables was determined

by the maximum value of MI. In addition, a comparison is

performed with genetic algorithm (GA), which is a

commonly used technique for the selection of variables in

the QSPR studies.14

SVM Modeling. In this work, SVM was performed with

radial basis function (RBF) as a kernel function. To deter-

mine the optimum values of the kernel width and penalty

constant a grid search was performed based on leave-one-

out cross-validation on the original training set. 

The quality of each model was assessed by applying the 5-

fold cross-validation procedure. The statistical parameters

for four different variable selection methods are presented in

Table 3 to compare the performance of the models. It can be

seen from this table that for the DT50 dataset, the statistical

parameters of MIMRCV-SVM model are superior to that of

other models. The best model is obtained with MIMRCV-

SVM with the highest R2 value of 0.891 for the test set and

the lowest RMSEP value (11.293). The value of the deter-

mination coefficient of the 5-fold cross-validation for the

model obtained with the MIMRCV-SVM method (R2
CV =

0.801) is higher than GA-SVM model (R2
CV = 0.729). Two

other mutual information based-variables election methods

(ranking and forward selection) do not have satisfactory

results for the prediction of soil half-life of OPPs. Ranking

yielded the worst model for the OPPs degradation half-life

data set with a very low R2 value of 0.313 and a very high

RMSEP value of 35.420 for the prediction set. Forward MI

based variable selection results are slightly better than

those of ranking variable selection. In the case of the Log

PCTAB/water dataset, GA gives better results than other vari-

ables selection methods. The coefficient of determination for

the test set by MIMRCV-SVM is 0.962 and the root mean

square error (RMSE) is 0.324. Ranking and forward pro-

cedures are also not very satisfactory with poor test results.

MIMRCV-SVM method yielded the best model for the GC-

Table 2.Variables selected by the MIMRCV procedure

Data set Name Description

DT50

BELm3 Lowest eigenvalue n. 3 of Burden matrix/weighted by atomic masses

MAXDP Maximal electrotopological positive variation

Mor31u 3D-MoRSE-signal 31/unweighted

GATS3e Geary autocorrelation-log 3/weighted by atomic Sanderson electronegativities

RDF075p Radial Distribution Function-7.5/weighted by atomic polarizabilities

GATS3v Geary autocorrelation-log 3/weighted by atomic van der waals volume

RDF055u Radial Distribution Function-5.5/unweighted

Mv Mean atomic van der waals volume (scaled on Carbon atom)

G3u 3st component symmetry directional WHIM index/unweighted

BEHv6 Highest eigenvalue n. 6 of Burden matrix/weighted by atomic van der waals volume

tR

X1sol Solvation connectivity index chi-1

Ss Sum of Kier-Hall electrotopological states

H4m H autocorrelation of lag 4/weighted by atomic masses

BEHm2 Highest eigenvalue n. 2 of Burden matrix/weighted by atomic masses

TI1 First Mohar index TI1

Log PCTAB/water

MLogP Moriguchioctanol-water partition coefficient

Mv Mean atomic van der waals volume (scaled on Carbon atom)

Mor18m 3D-MoRSE-signal 18/weighted by atomic masses

H2m H autocorrelation of lag 2/weighted by atomic masses

H5u H autocorrelation of lag 5/unweighted

CIC0 Complementary information content

Figure 3. MI vs. number of steps in the second phase.
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MS retention time data with R2 value of 0.972 and RMSE

value of 0.192 for the test set. The value of the determination

coefficient of the 5-fold cross-validation for the model

obtained with the MIMRCV-SVM method (R2
CV = 0.964) is

slightly higher than GA-SVM model (R2
CV = 0.943). The

forward and ranking methods give R2 values of 0.920 and

0.958 for the test set, respectively. In Figure 4, the plots of

the predicted DT50, Log PCTAB/water and tR by the regression

models versus experimental DT50, Log PCTAB/water and tR are

represented. The agreement between observed (experimental)

and predicted values, high correlation coefficient, low

RMSE confirms the good predictive ability of MIMRCV-

SVM modeling. 

RBFNN Modeling. In RBFNN, the number of neurons

on the hidden layer and the width of the radial basis function

(spread) are the two important parameters affecting the

performance of RBFNN. In order to find the optimum

values of these two parameters and prohibit the over fitting

of the model, leave-one-out cross-validation of the whole

training set was performed.

The comparative data for the statistical parameters of

ranking and forward MI based variable selection methods

and also genetic algorithm followed by radial basis function

neural network and those for the proposed method are

summarized in Table 4. For the DT50 dataset, a comparison

between the results obtained by the MIMRCV, GA, forward

and ranking variable selection methods clearly indicates the

superiority of MIMRCV-RBFNN over that of the other

models. As can be seen from Table 4 the statistical para-

meters of MIMRCV-RBFNN model are superior to GA-

RBFNN model. Two other mutual information based-vari-

able selection methods are also not very satisfactory with

poor results. Compared to ranking, forward method offers

Table 3. Statistical parameters for SVM models

Data set Parameter Forward Ranking GA MIMRCV

DT50

Number of descriptors 4 10 11 10

R2
Training set 0.681 0.782 0.903 0.964

R2
CV 0.401 0.313 0.729 0.801

RMSECV 29.731 35.420 22.122 20.051

R2
Test set 0.368 0.310 0.836 0.891

RMSEP 29.584 29.566 14.248 11.293

tR

Number of descriptors 5 5 7 5

R2
Training set 0.965 0.964 0.972 0.975

R2
CV 0.915 0.950 0.943 0.964

RMSECV 2.994 2.330 2.461 1.981

R2
Test set 0.920 0.958 0.965 0.972

RMSEP 3.365 2.755 2.308 2.090

Log PCTAB/water

Number of descriptors 3 6 10 6

R2
Training set 0.948 0.943 0.984 0.971

R2
CV 0.928 0.912 0.976 0.956

RMSECV 0.289 0.319 0.170 0.190

R2
Test set 0.922 0.938 0.979 0.962

RMSEP 0.482 0.416 0.238 0.324

Figure 4. Estimated versus experimental values of DT50, Log PCTAB/water

and tR using SVM modeling for the training and prediction sets. 
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better results. In the case of the Log PCTAB/water data set, the

coefficient of determination (R2) values of forward and

ranking methods for the test set and also 5-fold cross

validation were lower than those of MIMRCV method. The

coefficient of determination obtained by GA method was

higher than of other variable selection methods. For the GC-

MS retention time data, MIMRCV-RBFNN gives highest R2

and lowest RMSE values, so this model gives the most

satisfactory results, compared with there sults obtained from

forward, ranking and GA methods. In Figure 5, the plots of

the predicted values of the DT50, Log PCTAB/water and tR by the

MIMRCV-RBFNN models versus experimental DT50 Log

PCTAB/water and tR are represented.

Conclusion

In this paper, an effective feature selection based on

mutual information for nonlinear QSPR models is proposed.

In comparison with the parametric estimators such as

correlation coefficient, mutual information has the unique

advantage to be model independent and nonlinear at the

same time. The proposed MI based variable selection

algorithm was applied for modeling of degradation half-life

of organo phosphorus pesticides in soil, GC-MS retention

times of volatile organic compounds, and water-to-micellar

CTAB partition coefficient of organic compounds by using

SVM and RBFNN regression techniques. The QSPR models

obtained by MIMRCV showed the better statistical para-

meters than the other MI based variable selection methods

and also genetics algorithm. The results show the strong

potential of MIMRCV, as a nonlinear feature selection

method, to be applied to solve descriptor selection problem

in QSAR/QSPR studies.

Table 4. Statistical parameters for RBFNN models

Data set Parameter Forward Ranking GA MIMRCV

DT50

Number of descriptors 4 10 11 10

R2
Training set 0.857 0.815 0.934 0.956

R2
CV 0.561 0.490 0.701 0.763

RMSECV 28.937 31.552 23.916 20.59

R2
Test set 0.611 0.528 0.725 0.826

RMSEP 21.633 23.144 17.638 14.134

tR

Number of descriptors 5 5 7 5

R2
Training set 0.970 0.968 0.979 0.974

R2
CV 0.90 0.942 0.940 0.957

RMSECV 3.408 2.537 2.613 2.221

R2
Test set 0.901 0.915 0.952 0.960

RMSEP 3.844 3.571 2.657 2.384

Log PCTAB/water

Number of descriptors 3 6 10 6

R2
Training set 0.902 0.912 0.986 0.985

R2
CV 0.877 0.862 0.942 0.936

RMSECV 0.391 0.401 0.257 0.264

R2
Test set 0.883 0.881 0.975 0.967

RMSEP 0.604 0.638 0.273 0.349

Figure 5. Estimated versus experimental values of DT50, Log PCTAB/water

and tR using RBFNN modeling for the training and prediction sets. 
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