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When the Langer modification is applied to Coulomb potential, the standard WKB quantization yields an exact

energy spectrum for the potential. This Langer modification has been known to be related to the centrifugal term

appearing in Coulomb potential. But we find that a similar modification exists for all translationally shape

invariant potentials without referring to the centrifugal term. The characteristic shape of the potentials accounts

for the generalized version of Langer modification that makes the WKB quantization valid for all translationally

shape invariant potentials.
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Introduction

It is very important to understand the relation between

classical mechanics and quantum mechanics. Numerous

researches to search for the relation have been performed

and semiclassical theories or approaches are one of such

efforts. In the same year when Schrödinger’s wave equation

of quantum mechanics was published, Wentzel, Kramers,

and Brillouin developed a semiclassical approximation now

known as the WKB quantization or the WKB approxi-

mation.1-3 The WKB quantization has become a textbook

knowledge nowadays.4,5

The one-dimensional Schrödinger equation for a bound

state under potential V(x) is, in units of 2m = = 1,

(1)

where n is the quantum number or a number of nodes in the

wave function Ψn(x). Let  be the classical

momentum function for an energy En, then the well-known

standard WKB quantization (or the lowest order WKB

approximation) is 4-6 

. (2)

x1,n and x2,n are two classical turning points (x1,n < x2,n), i.e.

V(x1,n) = V(x2,n) = En.

Since the WKB quantization (2) is the lowest order (i.e.

the first order in  when Hamilton’s principal function

S(x) = −i lnΨ(x) is expanded in terms of ) approximation,

it is not exact in general. But the WKB quantization has been

found to be exact for two potentials, i.e. the harmonic

oscillator potential and Morse potential. It is because the

higher order WKB corrections to the energy quantization

condition are shown to be identically zero for the two

potentials. Also using the exact quantization rule which is

rather recently found,7-12 the exactness of WKB quantization

for the two potentials has been explained.

For Coulomb potential

, (3)

the WKB quantization (2) is, of course, not exact. However,

when the quantity l(l+1) in V(r) is replaced by (l+1/2)2, the

WKB quantization provides an exact energy spectrum of the

original potential V(r) in Eq. (3). It was first noted by

Uhlenbeck13 and later reconsidered by Langer.14 Nowadays

this replacement is known as “Langer modification”.15-17

Interestingly the Langer modification is no longer valid

when the higher order terms are included into the lowest

order WKB quantization (2). The various discussions related

to the Langer modification have been reported18-21 and also

applications to actual systems have been carried out.22-24

The validity of Langer modification was first explained by

Langer for Coulomb potential.14 He noticed that the radial

WKB wave function does not behave properly at the origin

r =0. The Langer modification (i.e. l(l + 1)→ (l + 1/2)2)

regularizes the WKB wave function at the origin and ensures

correct asymptotic behavior at large n quantum numbers.

Another potential for which Langer modification is valid is

the 3-D harmonic oscillator potential (also called isotonic

oscillator potential),25 i.e.

. (4)

Notice that Coulomb potential (3) and the 3-D harmonic

oscillator potential (4) both are actually the radial part of

the three dimensional (r, θ, φ) spherically symmetric poten-

tial. The l(l + 1)/r2 term corresponds to the so-called “centri-

fugal term” which originates from the angular momentum

operator . Sergeenko derived the lowest order

approximation of  as the lowest order WKB

quantization is derived and showed the existence of a new
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operator  in the quasiclassical region.26 The 

has eigenvalues of (l + 1/2)2 while  has l(l + 1). This

study more or less justifies the Langer modification. 

In short, the WKB quantization is exact for the harmonic

oscillator potential and Morse potential. For Coulomb

potential and the 3-D harmonic oscillator potential (having

the centrifugal term l(l + 1)/r2, the WKB quantization

becomes exact when Langer modification is introduced. It is

summarized in Table 1 with explicit expressions for the four

potentials. 

When a potential V(x;a2) (a2 is a parameter) and its

supersymmetric partner potential V susy(x;a1) (a parameter

a1 = a2 + constant) have a condition of V susy(x;a1) = V(x;a2)

+ R(a1) (the remainder R(a1) is independent of x), the two

partner potentials are said to be translationally shape

invariant. The two partner potentials have a common shape.

A potential that satisfies the above condition is called

“translationally shape invariant potential (TSIP)”.27 We

notice that all of the four potentials under discussion are

TSIP. We have examined other TSIP to see if there is a

similarly valid modification to the WKB quantization and

found that there, indeed, is a Langer-like modification for all

TSIP. This is because all other TSIP, though they do not

explicitly have a centrifugal term, have a formally similar

term like the centrifugal term of Coulomb potential.

In the next section the reason why the Langer modification

is valid for Coulomb and the 3-D harmonic oscillator

potentials is explained by using the exact quantization rule.

This section also suggests an interesting clue for finding a

similar modification for other TSIP. In the following two

sections the modifications for other TSIP are derived and the

relationship between the shape of TSIP and the modification

is discussed. Conclusion and discussions are provided in the

last section.

Langer Modification for Coulomb Potential

The Langer modification is

. (5)

The Langer modified Coulomb potential VMod(r) can be

obtained by inserting the modification (5) into the original

Coulomb potential (3), i.e.

. (6)

The modified WKB integral (i.e. half-action integral in

phase space) in Eq. (2) can be easily evaluated as

(7)

Using the WKB quantization (2), i.e. Eq. (7) = (n + 1/2)π,

one can evaluate the energy En,

. (8)

Indeed Eq. (8) is the exact energy expression for the original

Coulomb potential V(r) in Eq. (3). It shows that the exact

energy for Coulomb potential can be obtained from the

WKB quantization with Langer modification.

As mentioned in the previous section, the exact quanti-

zation rule for one-dimensional quantum systems has been

found. There is a class of potentials called translationally

shape invariant potentials which are exactly solvable. For

TSIP the exact quantization rule can be written as7-12,28,29

(9)

with

. (10)

The superpotential is the minus logarithmic derivative of the

ground state (n=0) wave function Ψ0(x), i.e.

(11)

and the ground state momentum function . x1,0
and x2,0 are two classical turning points (x1,0 < x2,0) for the ground

state, i.e. V(x1,0) = V(x2,0) = E0. The correction term γ is, in

general, energy (or n) dependent but it is a constant for TSIP.

Note that the exact quantization rule (9) is reduced to the

WKB quantization (2) when the correction term γ is zero,

which means the WKB quantization is exact when γ = 0. For

the harmonic oscillator and Morse potentials, γ turns out to

be zero so that the WKB quantization is exact for the two

potentials.7

Let us examine the Coulomb potential case by evaluating

the correction term γ. Since the ground state energy is (see

Table 1)  is 
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Table 1. Langer modification (LM). γ is the correction term (Eqs. 9
and 10). The eigenvalues (En) are given in units of 2m= =1. The
constants A, B, b, α, ω, l are all taken ≥ 0. The range of potentials is
−∞ ≤ x ≤ ∞, 0 ≤ r ≤ ∞.

Harmonic oscillator

γ = 0

En = (n+1/2)ω

LM: not required

Morse

V(x) = B2exp(−2αx)−2B(A+α/2)exp(−αx)
γ = 0

En = −(A−nα)2

LM: not required

Coulomb

LM: l(l+1)→(l+1/2)2

3-D harmonic oscillator

En = (2n+l+3/2)ω

LM: l(l+1)→(l+1/2)2
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(12)

with . 
The superpotential for Coulomb potential is known as27 

. (13)

Therefore the correction term γ, from Eq. (10), is

(14)

(In the present article, to avoid complexity, we do not

present the integration procedure in details. All of the

integrations under discussion are straight forward though

time consuming.) Since C = l(l + 1) for Coulomb potential,

one obtains

(15)

as listed in Table 1. Clearly γ is not zero so that the WKB

quantization is not valid for Coulomb potential. 

Now let us introduce the Langer modification, i.e.

C = (l + 1/2)2. Inserting it into Eqs. (12) and (13), one finds

that γ is zero (see Eq. (14)). It explains, if not proves, why

the WKB quantization with the Langer modification of

l(l + 1)→ (l + 1/2)2 is valid for Coulomb potential. The same

argument holds for the 3-D harmonic oscillator potential, too. 

At this point one may make an interesting observation. If

one wants to find a modification, the modification can be

easily guessed by examining solely γ of the original

potential, i.e. reevaluation of γ for the modified potential is

not necessary. In the current example of Coulomb potential,

evaluation of Eq. (14) with C = (l + 1/2)2 is not necessary.

Instead, the original γ (Eq. 15) is sufficient enough to find an

appropriate modification. To emphasize this observation, let

us examine the 3-D harmonic oscillator potential. For this

potential, the correction term is . By

simply looking at the form of γ, one can easily find the

modification of l(l + 1) → (l + 1/2)2, which yields γ = 0.

Indeed it is the Langer modification for the 3-D harmonic

oscillator potential. Using this observation as a clue, we will

find an appropriate modification for other TSIP in the

following section.

Langer Modification for TSIP

The Langer modification has been considered and found to

be valid only for Coulomb and the 3-D harmonic oscillator

potentials that have the centrifugal term l(l + 1)/r2. Now we

would like to search other TSIP for which the Langer

modification (or a similar modification) may be valid. From

the observation discussed in the previous section, one learns

that a modification (if there is any) can be found by simply

examining the correction term of a potential.

For example, generalized Pöschl-Teller potential is

 

  (16)

where A, B, and α are potential parameters. The super-

potential and the ground state energy are W(r) = Acothαr −

Bcosechαr and E0 = −A2. Then the correction term γ (Eq.

10) is

(17)

Examining Eq. (17), one easily finds that when (B + A) (B +

A + α) is replaced by (B + A + α/2)2 and (B−A)(B−A−α) is

replaced by (B−A−α/2)2 the correction term γ is zero, i.e.

. (18)

The WKB integral with the replacement is

(19)

Then the WKB quantization of

(20)

yields the energy En = −(A−nα)2 that is the exact energy

expression for generalized Pöschl-Teller potential. It verifies

that the replacement of (B+A)(B+A+α) → (B+A+α/2)2 and

(B−A)(B−A−α)→ (B−A−α/2)2 is an appropriate Langer-like

modification which we call “generalized Langer modification”.

We present Scarf II potential, as another example, because

the correction term (or a quantity similar to it) has never

been reported before. Scarf II potential is

V(x) = [B2
−A(A+α)sech2α x + B(2A+α) sechαxtanhαx, (21)

W(x) = Atanhαx + Bsechαx,

and E0 = −A2.

The correction term γ is, i.e.

.(22)
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When the replacement of

(−A+iB)(−A + iB−α) → (−A+iB−α/2)2

and

(−A−iB)(−A − iB−α) → (−A−iB−α/2)2 (23)

is made, the correction term becomes zero, i.e.

(24)

The WKB integral is evaluated to verify if this replace-

ment (Eq. 23) makes the WKB quantization exact. One finds

that

A(A+α)=B2+[(−A+iB)(−A+iB−α)+(−A−iB)(−A−iB−α)]/2.

(25)

When the replacement (Eq. 23) is made, the R.H.S. of Eq.

(25) becomes

B2+[(−A+iB)(−A+iB−α)+(−A−iB)(−A−iB−α)]/2

 → B2+[(−A+iB−α/2)2+(−A−iB−α/2)2]/2=(A+α/2)2. (26)

It means that the replacement (Eq. 23) is equivalent to the

replacement of

A(A+α) → (A+α/2)2. (27)

Instead of using the original replacement (Eq. 23), one can

use the equivalent replacement (Eq. 27), i.e.

(28)

The WKB quantization of

(29) 

yields the energy En = −(A−nα)2, that is exact energy

expression for Scarf II potential. It verifies that (−A+iB)

(−A+iB−α) → (−A+iB−α/2)2 and (−A−iB)(−A−iB−α) →

(−A−iB−α/2)2 is a generalized Langer modification or

simply it is A(A+α) → (A+α/2)2.

The “generalized Langer modification” can be summariz-

ed as follows. When there is a one-dimensional potential that

has P1(P1+P2) term in a potential function, the modification is

P1(P1+P2) → (P1+P2/2)
2 (30)

where P1 (or P2) is a constant or a parameter (or a

combination of parameters) appearing in a potential. For

Coulomb potential, one finds that P1 = l and P2 =1. One

clearly sees that the Langer modification is a special case of

the generalized Langer modification. There are two modi-

fications for generalized Pöschl-Teller potential, i.e. (P1

= B+A, P2 = α) and (P1 = B−A, P2 = −α). For Scarf II

potential, P1 = A and P2 = α. We have performed similar

analyses on all known translationally shape invariant

potentials27,28 and the results are summarized in Table 2.

Generalized Langer Modification and 

Shape of Potentials

For all TSIP examined in the present work the “Langer

modification” or “generalized Langer modification” is found

to be valid. Why is it so? An immediate answer may be that

Langer modification is valid because all TSIP are exactly

solvable. There are other exactly solvable potentials called

Natanzon potentials which are not shape invariant.30-32 The

simple WKB quantization (2) cannot be used for Natanzon

potentials because they in general have more than two

classical turning points. Without the WKB quantization

naturally Langer modification is meaningless. Consequently,

the solvability of TSIP has nothing to with the validity of

Langer modification.

The potentials in Tables 1 and 2 are all TSIP, i.e. they are

shape invariant. “Shape invariant” means that a potential

function and its supersymmetric partner potential function

have the same form. For details about TSIP, please consult

Ref. 27. Then, the shape of potential must be strongly related

to the Langer modification. It has been known that all TSIP

can be classified into some categories by their shape.33,34

According to Grandati and Bérard, there should exist a

change of variable x → y transforming the original TSIP

potential V(x) into V(y).10,35 Then the whole set of TSIP can

be shared in two categories, i.e. a harmonic one and an

isotonic one.

The harmonic one (Class I) has a general form of

V(y) = λ2y
2 + λ1y + λ0. (31)

Then the two partner potentials have a form of 

V+(y;a) = a(a−β)(y−y0)
2+ V0(a) (Class I-1)

with the Riccati equation of  and 

V
−
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where V0+(a) and V0−(a) are proper constants. The “Class” is

categorized by a “shape of potential”.

Grandati and Bérard evaluated the half-action variable for

a classical periodic orbit of energy En (which is called the

WKB integral in the present work) for various forms of

TSIP by using complex analysis.10,35 Following their com-

plex analysis methodology closely we evaluated the correc-

tion term γ and found an appropriate replacement that gives

γ = 0.

For Class I-1,

(33)

and γ =0 when a(a−β) → (a−β/2)2,

for Class I-2,

(34)

and γ =0 when a(a+β) → (a+β/2)2,

for Class II-1, 

(35)

and γ =0 when a(a−β) → (a−β/2)2 and b(b−β) → (b−β/2)2,

and for Class II-2,

(36)

and γ =0 when a(a+β) → (a+β/2)2 and b(b−β) → (b−β/2)2.

As an example, Rosen-Morse I potential is examined, i.e.

V(x) = A(A−α)cosec2αx + 2B cotαx. (37)

Let y = −cotαx, then one obtains V(y) = A(A−α)y2 −2By

+A(A−α) and . One immediately notices that it

belongs to Class I-1 with a = A and β =α. Then, from Eq.

(33), the correction term is  that is

identical with the one (which was obtained by examining the

form of γ) in Table 2. The generalized Langer modification,

from Eq. (33), is A(A−α) → (A−α/2)2.

Following the similar procedure above, we find that

Eckart potential belongs to Class I-1 with a = A and β = α.

Rosen-Morse II potential belongs to Class I-2 with a = A and

β = α. Scarf I potential belongs to Class II-1 with a = A+B,

b = A−B and β = α. Scarf II potential belongs to Class II-1

with a = −A+iB, b = −A−iB and β = α. Generalized Pöschl-

Teller potential belongs to Class II-2 with a = B+A, b = B−A,

and β = α. 

We have shown that all the shape invariant potentials in

Table 2 have a similar formal structure and a similar modi-

fication. Therefore, in conclusion, the “shape of potential” is

a critical factor to decide whether there exists “generalized

Langer modification” or not.

Using the current complex analysis method, now let us

examine Coulomb and the 3-D harmonic oscillator potentials

for which the Langer modification is valid. For Coulomb

potential of V(r) = −e2/r + l(l + 1)/r2, the change of variable

is y = 1/r so that V(y) = l(l + 1)y−e2y and dy/dr = −y2. This
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Table 2. Generalized Langer modification (GLM) for TSIP. γ is the
correction term (Eqs. 9 and 10). The eigenvalues (En) are given in
units of 2m= =1. The constants A, B, α are all taken ≥ 0. Unless
otherwise stated, the range of potentials is −∞ ≤ x ≤ ∞, 0 ≤ r ≤ ∞.
For the details of each potential, see Ref. 27.

Rosen-Morse I (trigonometric) 

V(x) = A(A−α)cosec2αx + 2Bcotαx (0 ≤ αx ≤ π)

En = (A+nα)2 −B2/(A+nα)2

GLM: A(A−α) → (A−α/2)2

Eckart

V(x) = A(A−α)cosech2αr−2Bcothαr (B>A2)

En = −(A+nα)2 −B2/(A+nα)2

GLM: A(A−α) → (A−α/2)2

Rosen-Morse II (hyperbolic) 

V(x) = A(A+α)sech2αx+2Btanhαx (B<A2)

En = −(A−nα)2 −B2/(A−nα)2

GLM: A(A+α) → (A+α/2)2

Scarf I (trigonometric) 

V(x) = (A2+B2−Αα)sec2αx −B(2A−α) tanαxsecαx

En = (A+nα)2

GLM: (A+Β)(A+B−α) → (A+B−α/2)2 & (A−B)(A−B−α)→(A−B−α/2)2

Scarf II (hyperbolic)

V(x) = [B2−Α(Α+α)]sech2αx +B(2A+α) sechαx tanhαx
En = −(A−nα)2

GLM: A(A+α) → (A+α/2)2  or
(−A+iB)(−A+iB−α) → (−A+iB−α/2)2 & (−A−iB)(−A−iB-α) → (−A−iB−α/2)2

Generalized Pöschl-Teller 

V(r) = 1/2[(B+A)(B+A+α)+(B−A)(B−A−α)cosech2αr−Β(2A+α) 
cothαr cosechαr (A < B)

En = −(A−nα)2

GLM: (B+Α)(B+A−α) → (B+A−α/2)2 & (B−A)(B−A−α)→(B−A−α/2)2
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potential belongs to Class I but neither to Class I-1 nor to

Class I-2. Direct complex analysis (whose methodology is

the same as that for Class I-1) results in the correction term

. For the 3-D harmonic oscillator

potential of V(x) = (ω2/4)r2 + l(l + 1)/r2, the change of vari-

able is not necessary, i.e. y = r. V(y) = (ω2/4)r2 +  l(l + 1)/r2

and dy/dr = 1. This potential belongs to Class II but neither

to Class II-1 nor to Class II-2. A similar direct complex

analysis (whose methodology is the same as that for Class

II-1) results in the correction term .

Therefore, for Coulomb and the harmonic oscillator

potentials, the well-known “Langer modification” of l(l+1)

→ (l+1/2)2 makes the WKB quantization exact.

Finally let us examine the harmonic oscillator and Morse

potentials for which Langer modification is not required, i.e.

the WKB quantization is exact for these potentials. Since the

harmonic oscillator potential is V(x) = (ω2/4)(x−2b/ω2), the

change of variable is not necessary, i.e. y = x. V(x) = (ω2/

4)(x−2b/ω2) = (ω2/4)y2 −bωy+b2 and dy/dx =1. For Morse

potential, the change of variable is y = exp(−αx) so that

V(y) = B2y2−2B(A+α/2)y and dy/dx =−αy. These potentials

belong to Class I but neither to Class I-1 nor to Class I-2.

Direct complex analysis results in the correction term γ = 0.

So that the Langer modification is not required, i.e. the

WKB quantization itself provides an exact energy spectrum.

Conclusion and Discussions

Though the WKB quantization is approximate, it is often,

due to its simplicity, used to calculate the energy spectrum of

quantum systems. For Coulomb potential system, when

Langer modification is introduced, the WKB quantization

becomes exact and consequently exact energy can be

obtained. So far Coulomb and the 3-D harmonic oscillator

potentials are only ones for which the Langer modification

of l(l+1)→ (l+1/2)2 is valid. We have found a more general

form of modification of P1(P1+P2)→ (P1+P2/2)
2 (named

“generalized Langer modification”) for all translationally

shape invariant potentials including Coulomb potential.

Naturally it is sure that the current finding broadens the

applicability of the WKB quantization.

When a potential, e.g. Coulomb potential, has a centrifugal

term l(l+1)/r2, certainly the Langer modification can be

explained by the notion that an approximate form of angular

momentum operator  whose eigenvalue is l(l + 1) is em-

bedded within the WKB quantization. But the current finding

dictates that the generalized Langer modification is still

valid for other translationally shape invariant potentials that

do not have a centrifugal term. We have explained (if not

proved) why the generalized Langer modification should be

valid for all translationally shape invariant potentials. The

reason is that the Langer modification is related to the

“shape” of potentials, i.e. all translationally shape invariant

potentials have a similar form which is suitable for Langer

modification.

Though we have not provided a concrete proof for more

fundamental question – “why do translationally shape

invariant potentials have a shape for which the Langer

modification can be defined?”, the current finding can be

utilized for answering other interesting questions in this

field. For example, the well-known supersymmetric WKB

quantization,27 i.e.

, (38)

is found to be exact for all translationally shape invariant

potentials. This mystery has never been algebraically proved

even though there were many attempts. Comparing Eq. (38)

with the exact quantization rule (9), one immediately notices

that if the correction term γ is −π/2 when the potential V(x)

is replaced by W2(x), the supersymmetric WKB quantization

must be exact.

For example, Rosen-Morse I potential (Eq. 37) has the

correction term γ (see Table 2), i.e.

. (39)

Note that γ is equal to −π/2 when A(A−α) is replaced with

A2 in Eq. (39). Therefore, one finds that the following

quantization should be exact, i.e.

(40)

where

VMod(x) = A2cosec2αx + 2Bcotαx which is obtained from

replacement of A(A−α) → A2 into the original V(x) of Eq.

(37). Since the superpotential for Rosen-Morse I potential is

W(x) = −Acotαx−B/A, then

 En−W
2(x) = E0−(−Acotαx−B/A)

2

                  = A2 cosec2αx+2Bcotαx = En− V
Mod(x). (41)

Consequently the exact quantization (40) is identical with

the supersymmetric WKB quantization (38). It shows that

the supersymmetric WKB quantization with modification of

A(A−α)→A2 becomes exact for Rosen-Morse I potential.

This example suggests that the supersymmetric WKB quanti-

zation can be derived from the exact WKB quantization with

a proper Langer modification. Full report on this subject will

appear elsewhere in the near future.
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