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Ladder π-conjugated polymers are promising materials for

broad applications in organic-based devices,1 including

light-emitting diodes,2 thin film transistors,3 and solar cells.4

Their rigid coplanar structures promise resistance to de-

formation and enhanced π-conjugation, which lead to a set

of desirable properties, such as intense luminescence, high

carrier mobility and environmental stability. Most of the

studies in this field have been focused on poly(p-phenylene)-

based polymers such as step ladder-type poly(phenylenes)5

and fully ladder-type poly(phenylenes).1a,6 There are, how-

ever, only limited reports of ladder poly(p-phenylenes) with

heteroatom bridges.7 This is mainly due to a lack of useful

synthetic routes in terms of efficacy as well as accessible

structural diversity. The exploration of conceptually new

methodology is thus a compelling subject in this chemistry.

We have recently developed a BBr3-promoted cyclization

to produce an ether and ester-bridged ladder-type poly(p-

phenylenes).8 This method constitutes significant improve-

ments over other routes to produce ladder polymers because

the cyclization is fast and quantitative. Versatility of the

reaction is another advantage of our method to prepare

ladder polymers.

As a new entry into this class of polymers, we introduce

herein a novel ladder poly(p-phenylene) with an acetal-

bridge. The strategy to construct an acetal-bridged ladder

system is based on our chemical cyclization method. Thus,

phenoxide, generated by BBr3-promoted demethylation, acts

as a nucleophile for nucleophilic addition with the neigh-

boring ketone, causing cyclization (Scheme 1).9 This con-

structs a hemiacetal-bridged triphenylene skeleton 2 in one

spot. The subsequent methylation using methanol in TFA

produces the desired acetal-bridged ladder structure 3,9 as a

model for the corresponding poly(p-phenylene) 6, also in a

quantitative yield. The photophysical and electrochemical

properties of the acetal-bridged poly(p-phenylene) 6 are

further described in this communication.

Scheme 1. Synthesis of the ladder-type compounds (2 and 3) and their extended polymeric structures (5 and 6) with heteroatom-bridges. 

Scheme 2. Synthesis of the precursor compound 1.
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The precursor of the cyclized compound, 1, was prepared

as depicted in Scheme 2. Starting from 2,5-dibromotere-

phthalic acid 7, 2,5-dibromo bis[(dodecylphenyl)metha-

none] 9 was prepared by first conversion of the acid 7 to acid

chloride 8, followed by AlCl3 promoted Friedel-Crafts

acylation with dodecyl benzene in 70% yield over two steps.

Subsequent Suzuki coupling of dibromide 9 with o-methoxy

phenyl boronic ester 10 gave the corresponding precursor

molecule 1 in 93% yield (Scheme 2). 

The BBr3 promoted cyclization was also applied to pre-

pare the extended hemiacetal-bridged ladder poly(p-phenyl-

ene) 5 by the same procedure as described above (Scheme 1)

using the precursor polymer 4. Further methylation gave the

desired ladder poly(p-phenylene) with an acetal-bridge 610 in

a same manner as that of 3. Both the cyclization and meth-

ylation were achieved in quantitative yields, rendering an

efficacy to our methodology to prepare this type of system.

The hemiacetal and acetal-bridged ladder polymers (5 and

6) were both readily soluble in organic solvents like THF

and dichloromethane, and any by-products formed during

the cyclization can thus be easily removed by a Soxhlet

method.

The precursor polymer 4 was obtained by Suzuki coupling

reaction of the dibromide 9 with the corresponding dimeth-

oxy diborate 11 (Scheme 3).

The structure determination of the acetal-bridged ladder

poly(p-phenylene) 6 was carried out by the 1H and 13C NMR

spectroscopic analyses, and was compared with its precursor

counterpart 4. It showed disappearance of the signal corre-

sponding to the carbonyl carbon (δc = 195) of the precursor

4, whilst shifting the methoxy signal (δH = 3.3 for 4 and 2.4

for 6). Similar results were obtained for the corresponding

model compounds 1 and 3.9 The IR spectrum of 6 also

showed disappearance of the ketone group at 1710 cm−1.

The electronic properties of the acetal-bridged ladder

poly(p-phenylene) 6 were investigated by UV-vis absorption

spectroscopies both in solution and on film, and compared to

its corresponding non-cyclized precursor 4 (Figure 1 and

Table 1). The absorption spectra of the cyclized poly(p-

phenylene) 6 showed new and strong peaks at 371 nm (for

solution) and 398 nm (for film).11 This is a clear result of the

acetal-bridge enforcing a planar conformation of the phenyl-

ene units.

The electrochemical redox behaviors of the acetal-bridged

ladder poly(p-phenyelene) 6 with its cast thin film were

characterized by cyclic voltammetry (CV). The oxidation

and reduction cyclic voltammograms of polymer 6 is shown

in Figure 2 and summarized in Table 1. 

The HOMO level (ionization potential) was calculated

from the oxidation onset via EHOMO = (Eox – onset(vs Ag/AgCl) –

Eox(Fc/Fc+ vs Ag/AgCl)).
12 The LUMO level (electron affinity) was

estimated by subtraction of the band gap energy Eg from the

HOMO level following ELUMO = EHOMO – Eg. The estimated

HOMO and LUMO energy levels of polymer 6 were −4.95

and −2.17 eV, respectively. The newly-prepared ladder

poly(p-phenylene) with an acetal-bridge 6 revealed much

smaller band gap (2.80 eV) than typical poly(p-phenylenes),

confirming its planar laddery structure.

Finally, the possibility to prepare thin films of the ladder-

type conjugated polymer associated with the above-men-

Scheme 3. Synthesis of the precursor polymer 4 using Pd-
catalyzed cross-coupling reaction.

Figure 1. UV-vis spectra of precursor polymer 4 and its cyclized
form 6 in THF solution (solid line) and on film (dotted line).

Table 1. Optical and electrochemical properties of polymer 6

Polymer

Uv-Vis absorption spectra CV

Solutiona

λmax (nm)

Film

λmax (nm)

b

(eV)

Homo

(eV)

Lumo

(eV)

6 261, 371 280, 398 2.80 -4.95 -2.17

aSolution: in tetrahydrofuran (THF); b : optical bandgap estimated
from the band edge (λonset) of the absorption spectra

Eg

opt

Eg

opt

Figure 2. Cyclic voltammograms of the polymer film 6 coated on
ITO electrodes measured in acetonitrile containing 0.1 M tetra-
butylammonium phosphate solution at a scan rate of 100 mV/s at
room temperature.
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tioned electronic properties and its planar conformation of 6

incites us to realize field-effect transistors as an active semi-

conductor layer. We expect that this novel acetal-bridged

ladder poly(p-phenylene), having a high electron density and

planarity, would be an ideal p-type semiconductor. Possibi-

lities of the prepared films for organic field effect transistors

are currently under investigation.

In summary, a ladder-type poly(p-phenylene) with an

acetal-bridge was introduced as a new entry into this class of

π-conjugated ladder polymers by our chemical cyclization

method.
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