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A quantitative structure-property relationship (QSPR) study was performed for the prediction of the absorption

maxima of azobenzene dyes. The entire set of 191 azobenzenes was divided into a training set of 150

azobenzenes and a test set of 41 azobenzenes according to Kennard and Stones algorithm. A seven-descriptor

model, with squared correlation coefficient (R2) of 0.8755 and standard error of estimation (s) of 14.476, was

developed by applying stepwise multiple linear regression (MLR) analysis on the training set. The reliability

of the proposed model was further illustrated using various evaluation techniques: leave-many-out cross-

validation procedure, randomization tests, and validation through the test set.
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Introduction

Azobenzenes are of great importance in many branches of
chemistry.1 The π-π* excitation in azobenzenes determines
the absorption spectrum, and for many azobenzenes it
appears in the visible region. Azobenzenes have been widely
used as synthetic dyes with colors ranging from red to
blue.2,3 In addition to dyeing feature, azobenzenes possess
some interesting properties such as the reversible cis-trans
photoisomerization about the azo bond when irradiated,4-6

and nonlinear optical (NLO) effect7,8 related to the donor-
acceptor azobenzenes. Thus, azobenzenes have attracted
much attention as materials in the development of nonlinear
optical and storage data devices.9-14

The absorption maxima (λmax), one of the most important
spectroscopic properties, is related to the color property and
determined mainly by the structure of the dyes. Application
of experimental methods to obtain the λmax of dyes is the
most obvious and effective method; however there are some
drawbacks such as the need for laboratory facilities and the
huge workload. Also, the methods cannot be easily applied
for toxic, volatile, explosive or radioactive substances; and
they cannot be used if the material has not been synthesized
yet. For instance, several classes of dyes are considered as
possible carcinogens or mutagens; the high coloring power
of dyes gives rise to esthetic damage: dye concentrations
lower than 1 mg/L may induce visible coloration and hence
public complaint.15 Therefore, it is necessary to develop
theoretical methods to compensate the shortage of experi-
mental methods. Methods for quantitatively predicting the
λmax of dyes from their molecular structures alone would be
of significant utility not only in the use of dyes, but also in
the molecular design of new dye exploration.
So far, the computational efforts to predict the λmax were

based mainly on quantum-chemistry calculations, such as
density functional theory (DFT) and ab initio methods.

However, these calculations of the absorption profiles are
relatively time-consuming and complex, thus precluding the
use of such methods to predict dozens of dyes in a fast and
accurate manner. In addition, it has been found that the λmax

values of some dyes calculated by DFT gave rise to poor
results.16-20

Alternatively, the quantitative structure-property relation-
ship (QSPR) provides a promising method for the prediction
of λmax using descriptors derived solely from the molecular
structure to fit experimental data. The QSPR method is
based on the assumption that the variation of the behavior of
the compounds, as expressed by any measured physico-
chemical properties, can be correlated with numerical
changes in structural features of all compounds, termed
“molecular descriptors”.21-26 The advantage of this method
lies in the fact that it requires only the knowledge of the
chemical structure and is not dependent on any experimental
properties. Once a correlation is established, it can be
applicable for the prediction of the property of new
compounds that have not been synthesized or found. Thus,
the QSPR method can expedite the process of development
of new molecules and materials with desired properties.
The QSPR method has been successfully used to

investigate the relationship between the λmax and the
structure of various compounds. For example, Buttingsrud et
al.1 developed empirical models relating bond lengths and
critical points in the electron density distribution to the λmax

of azobenzene dyes. Liu et al.27 studied the λmax of flavones
using heuristic method (HM) and radial basis function
neural network (RBFNN). Recently, Fayet et al.28 proposed
satisfactory QSPR models for the prediction of the λmax of a
small set of 22 azobenzenes and 24 anthraquinones using
quantum chemical descriptors. In our previous work, QSPR
models were built to predict the λmax of second-order NLO
chromophores29 and organic dyes for dye-sensitized solar
cells,30,31 respectively.
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The aim of this work is to develop a robust QSPR model
that could predict the λmax values for a diverse set of
azobenzene dyes using the general molecular descriptors
and to seek the important structural features related to the
λmax values.

Materials and Methods

Dataset. The experimental λmax values for 191 azoben-
zene dyes were taken from the article published by
Buttingsrud et al.1 The general structure of the azobenzenes
is sketched in Figure 1. The detailed structures of all the
studied compounds are depicted in Figure SI of Supporting
Information. The experimental values span between 318 and
562 nm (Table 1).
Descriptor Generation. The chemical structure of each

compound was sketched on a PC using the HYPERCHEM
program32 and preoptimized using MM+ molecular mechanics
method (Polak-Ribiere algorithm). The final geometries of
the minimum energy conformation were obtained by the
semi-empirical AM1 method at a restricted Hartree-Fock
level with no configuration interaction, applying a gradient
norm limit of 0.01 kcal·Å−1·mol−1 as a stopping criterion.
Then the geometries were used as input for the generation of
1664 descriptors using the Dragon software (Version 5.4).33

These descriptors include (a) 0D-constitutional (atom and
group counts); (b) 1D-functional groups and atom centered
fragments; (c) 2D-topological, BCUTs, walk and path counts,
autocorrelations, connectivity indices, information indices,
topological charge indices, and eigenvalue-based indices;
and (d) 3D-Randic molecular profiles from the geometry
matrix, geometrical, WHIM, and GETAWAY descriptors.
In order to reduce redundant and non-useful information,

constant or near constant values and descriptors found to be
highly correlated pairwise (one of any two descriptors with a
correlation greater than 0.99 34) were excluded in a pre-
reduction step. Thus 840 descriptors were remained to
undergo subsequent descriptor selection.
Kennard and Stones Algorithm. Kennard and Stones

algorithm35 has been widely used for splitting datasets into
two subsets. This algorithm starts by finding two samples,
based on the input variables that are the farthest apart from
each other. These two samples are removed from the original
dataset and put into the calibration set. This procedure is
repeated until the desired number of samples has been
selected in the calibration set. The advantages of this
algorithm are that the calibration samples always map the
measured region of the input variable space completely with
respect to the induced metric and that the no validation
samples fall outside the measured region. Kennard and
Stones algorithm has been considered as one of the best
ways to build training and test sets.36,37 Using Kennard and

Figure 1. General structure of the studied azobenzene dyes.

Table 1. Experimental and calculated λmax for the studied azo-
benzenes

No.
Expt. 

λmax

Calc. 

λmax

Residual No.
Expt. 

λmax

Calc. 

λmax

Residual

1 318 319.9 -1.9 97 380 357.8 22.2

2 415 432.4 -17.4 98 388 384.1 3.9

3a 411 421.7 -10.7 99 386 378.0 8.0

4 407 406.5 0.5 100 387 368.2 18.8

5 407 456.5 -49.5 101 390 376.1 13.9

6 397 398.7 -1.7 102 375 372.9 2.1

7 397 398.9 -1.9 103 362 370.1 -8.1

8 399 403.8 -4.8 104 381 386.5 -5.5

9 382 393.1 -11.1 105 370 387.6 -17.6

10 405 394.8 10.2 106 409 406.7 2.3

11 402 375.9 26.1 107 460 413.5 46.5

12 390 380.0 10.0 108* 452 442.0 10.0

13 389 358.1 30.9 109 424 407.7 16.3

14 348 380.1 -32.1 110 420 428.1 -8.1

15 345 366.7 -21.7 111 457 462.8 -5.8

16 348 348.2 -0.2 112 415 408.5 6.5

17 333 348.7 -15.7 113a 414 417.2 -3.2

18 457 438.8 18.2 114 424 408.0 16.0

19 431 423.2 7.8 115 416 418.7 -2.7

20 435 413.3 21.7 116a 418 413.9 4.1

21 407 418.7 -11.7 117a 417 414.1 2.9

22 407 418.8 -11.8 118 424 421.6 2.4

23 407 409.3 -2.3 119 425 427.8 -2.8

24 419 418.3 0.7 120 434 441.7 -7.7

25 427 436.9 -9.9 121 434 429.0 5.0

26 451 451.8 -0.8 122 447 428.2 18.8

27 447 435.4 11.6 123 454 447.8 6.2

28 454 443.0 11.0 124a 450 449.4 0.6

29 462 444.3 17.7 125a 403 397.5 5.5

30 466 466.7 -0.7 126 407 409.6 -2.6

31 407 412.2 -5.2 127 409 398.2 10.8

32 405 409.0 -4.0 128 402 407.0 -5.0

33 405 402.6 2.4 129 402 407.5 -5.5

34 435 423.5 11.5 130 405 405.7 -0.7

35 409 419.8 -10.8 131 415 403.3 11.7

36 416 432.5 -16.5 132 417 405.9 11.1

37 433 453.8 -20.8 133 413 407.5 5.5

38 357 374.0 -17.0 134a 410 407.7 2.3

39 353 355.3 -2.3 135 412 418.7 -6.7

40 368 391.7 -23.7 136a 414 402.7 11.3

41 385 365.4 19.6 137a 417 423.7 -6.7

42 356 358.8 -2.8 138a 421 425.5 -4.5

43 354 385.4 -31.4 139 418 417.8 0.2

44 417 415.4 1.6 140a 419 415.8 3.2

45 326 347.3 -21.3 141 437 443.1 -6.1

46 322 339.8 -17.8 142 438 446.4 -8.4

47 412 409.8 2.2 143a 396 387.0 9.0

48 413 401.4 11.6 144 403 419.6 -16.6

49 407 411.8 -4.8 145a 395 405.4 -10.4

50 407 411.6 -4.6 146 394 389.0 5.0

51 418 413.0 5.0 147a 394 387.4 6.6

52a 418 414.7 3.3 148 395 400.6 -5.6

53 420 422.1 -2.1 149a 400 394.5 5.5
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Stones algorithm, the entire set was divided into two subsets:
a training set of 150 compounds, and a test set including the
remaining 41 compounds.
Model Development and Validation. Stepwise multiple

linear regression (MLR) analysis with Leave-Many-Out (LMO)
cross-validation was used to select descriptors for the QSPR
models on the training set. Five samples of the original
training set were removed, and the model was recalculated

using the remaining n-5 samples as training set. The
response was then predicted for the excluded samples. This
process was repeated for all samples of the training set,
obtaining a prediction for every one and thus the cross-
validated R2 (RCV

2). F-to-enter and F-to-remove were 4 and
3, respectively. The models were justified by the R2, the
adjusted R2, the cross-validated R2, the F ratio values, the
standard error s and the significance level value p. The
adjusted R2 is calculated using the following formula:

(1)

where n is the number of samples of the training set and m is
the number of descriptors involved in the correlation. The
adjusted R2 is a better measure of the proportion of variance
in the data explained by the correlation than R2 (especially
for correlations developed using small datasets) because R2

is somewhat sensitive to changes in n and m. The adjusted R2

corrects for the artificiality introduced when m approaches n
through the use of a penalty function which scales the result.
F ratio is defined as the ratio between the model sum of
squares and the residual sum of squares, which is a com-
parison between the model-explained variance and the
residual variance: high values of the F ratio indicate reliable
models. A variance inflation factor (VIF) was calculated to
test if multicollinearities existed among the descriptors,
which is defined as

  (2)

where  is the squared correlation coefficient between the
jth coefficient regressed against all the other descriptors in
the model. Models would not be accepted if they contain
descriptors with VIFs above a value of five.38

Randomization tests were also carried out to prove the
possible existence of chance correlation. To do this, the
dependent variable was randomly scrambled and used in the
experiment. Models were then investigated with all members
in the descriptor pool to find the most predictive models.
The resulting models obtained on the training set with the
randomized λmax values should have significantly lower R2

values than the proposed one because the relationship
between the structure and property is broken. This is a proof
of the proposed model’s validity as it can be reasonably
excluded that the originally proposed model was obtained by
chance correlation.
Validation of the models was further performed by using

the test set. The external  for the test set is determined
with Eq. (3):

(3)

where yi and  are the observed and the calculated response
values, respectively; and  is the averaged value for the
response variable of the training set; and the summation runs
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Table 1. Continued

No.
Expt. 

λmax

Calc. 

λmax

Residual No.
Expt. 

λmax

Calc. 

λmax

Residual

54 424 420.5 3.5 150 400 388.6 11.4

55 421 428.4 -7.4 151 398 389.0 9.0

56 425 424.4 0.6 152a 406 393.4 12.6

57 423 424.6 -1.6 153 404 397.8 6.2

58a 429 419.9 9.1 154a 404 399.2 4.8

59 435 451.1 -16.1 155a 408 397.4 10.6

60 449 446.2 2.9 156 408 405.3 2.7

61a 420 421.6 -1.6 157a 411 413.7 -2.7

62 442 424.2 17.8 158a 428 434.1 -6.1

63 450 447.7 2.3 159 429 431.7 -2.7

64a 426 432.0 -6.0 160 418 404.3 13.7

65a 446 466.8 -20.8 161a 434 415.8 18.2

66 462 460.1 1.9 162a 410 412.9 -2.9

67 500 503.9 -3.9 163a 406 427.6 -21.6

68 514 494.1 19.9 164 410 429.1 -19.1

69 490 501.3 -11.3 165a 420 424.1 -4.1

70 495 492.3 2.7 166 420 425.9 -5.9

71 478 487.0 -9.0 167 428 437.3 -9.3

72 503 492.1 10.9 168 448 441.1 6.9

73 562 526.0 36.0 169a 448 446.3 1.7

74 405 396.2 8.8 170 450 455.9 -5.9

75 395 406.8 -11.8 171a 450 436.1 13.9

76a 395 403.6 -8.6 172a 425 437.6 -12.6

77 406 398.8 7.2 173 414 434.6 -20.6

78a 412 413.3 -1.3 174 417 439.0 -22.0

79 416 413.4 2.6 175 422 451.2 -29.2

80 434 438.0 -4.0 176 426 431.3 -5.3

81 396 422.1 -26.1 177 444 448.3 -4.3

82 349 356.9 -7.9 178a 448 444.6 3.4

83 351 356.9 -5.9 179a 461 453.7 7.3

84 349 353.5 -4.5 180 482 460.4 21.6

85 350 360.3 -10.3 181 487 472.6 14.4

86 357 342.1 14.9 182a 442 442.7 -0.7

87 360 358.3 1.7 183a 449 438.5 10.5

88 366 366.3 -0.3 184 452 439.6 12.4

89 370 361.4 8.6 185 446 454.6 -8.6

90 368 374.0 -6.0 186a 450 435.7 14.3

91 370 361.8 8.2 187 461 453.6 7.4

92 378 406.9 -28.9 188 464 450.2 13.8

93 372 398.0 -26.0 189 471 456.4 14.6

94 354 361.5 -7.5 190a 360 361.9 -1.9

95 354 367.5 -13.5 191 411 378.9 32.1

96 372 355.5 16.5

a

Members for the test set
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over all samples in the test set. According to Golbraikh and
Tropsha,39 a QSPR model is successful if it satisfies several
criteria as follows:

(4a)

(4b)

(4c)

(4d)

Here: (5a)

  (5b)

  (5c)

  (5d)

  (5e)
  

where r is the correlation coefficient between the calculated
and experimental values in the test set;  (calculated versus
observed values) and  (observed versus calculated values)
are the coefficients of determination; k and k' are slopes of
regression lines through the origin of calculated versus
observed and observed versus calculated, respectively; 
and  are defined as  and , respectively;
and the summations are over all samples in the test set.
Applicability Domain Analysis. The applicability

domain of a QSPR model36,40 must be defined if the model is
to be used for screening new compounds. The applicability
domain (AD) is a theoretical region in the space defined by
the descriptors of the model and the modeled response, for
which a given QSPR should make reliable predictions. This
region is defined by the nature of the compounds in the
training set, and can be characterized in various ways. In this
work, the structural AD was verified by the leverage ap-
proach. The leverage hi 41 is defined as follows:

(6)

where xi is the descriptor row-vector the i-th compound, 
is the transpose of xi, X is the descriptor matrix, XT is the
transpose of X. The warning leverage h* is, generally, fixed
at 3(m+1)/n, where n is the total number of samples in the
training set and m is the number of descriptors involved in
the correlation. In fact, leverage can be used as a quantitative
measure of the model AD suitable for evaluating the degree
of extrapolation. It represents a sort of compound distance
from the model experimental space.
The Williams plot, the plot of leverage values versus

standardized residuals, was used to give a graphical detec-

tion of both the response outliers (Y outliers) and the
structurally influential compounds (X outliers). In this plot,
the two horizontal lines indicate the limit of normal values
for Y outliers (i.e. samples with standardized residuals greater
than 2.5 standard deviation units, ± 2.5 s); the vertical
straight lines indicate the limits of normal values for X out-
liers (i.e. samples with leverage values greater than the
threshold value, h > h*). For a sample in the external test set
whose leverage value is greater than h*, its prediction is
considered unreliable, because the prediction is the result of
a substantial extrapolation of the model. Conversely, when
the leverage value of a compound is lower than the critical
value, the probability of accordance between predicted and
experimental values is as high as that for the compounds in
the training set. It is noteworthy that the response outliers
can be highlighted only for compounds with known responses
and the possibility of a compound to be out of the structural
AD of a model can be verified for every new compound, the
only knowledge needed being the molecular structure infor-
mation represented by the molecular descriptors selected in
the model.

Results and Discussion

Results of the MLR Model. The experimental λmax

values in Table 1 were divided into the training and test sets
on the basis of Kennard and Stones algorithm. Stepwise
MLR analysis with LMO cross-validation was applied on
the training set to select the descriptors for the best model
and the number of descriptors in the final QSPR model was
determined on the basis of the dataset size and on the basis
of the correlation coefficient R, the adjusted R, the
significance test F and the standard error s. The R2 results
during the stepwise MLR analysis are shown in Figure 2.
Obviously, λmax is not linearly correlated with any of the
molecular descriptors since univariant correlations between
λmax and the different descriptors have poor R2 values. The
R2 increases gradually with the increased number of descrip-
tors. When adding another descriptor did not significantly
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Figure 2. R2 vs. number of latent descriptors in the best MLR
equation.
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improve the statistics of a model, it was determined that the
optimum subset size had been achieved. To avoid over-
parameterization of the models, such as those which contain
an excess of descriptors and are difficult to interpret in terms
of physical interactions, an increase of the R2 value of less
than 0.01 was chosen as the breakpoint criterion. Thus, a
best seven-parameter equation with R2 = 0.8755, R2

CV =
0.8584 and R2

adj = 0.8694 was obtained, which is as the
following:

λmax = −72.191 − 734.508[PW5] + 64.847[piPC07] 

+ 22.399[DISPv] + 2.621[GATS2v] 

+ 2.833[Mor02v] + 47.546[R4u] + 17.051[nArCN]

(7)

n = 150, R2 = 0.8755, Radj
2 = 0.8694, RCV

2 = 0.8584, s =
14.476, F = 142.7, p < 0.00001

Here, PW5 is path/walk 5 – Randic shape index; piPC07 is
molecular multiple path count of order 07; GATS2v is Geary
autocorrelation – lag 2/weighted by atomic van der Waals
volumes; DISPv is d COMMA2 value/weighted by atomic
van der Waals volumes; Mor02v is 3D-MoRSE – signal 02/
weighted by atomic van der Waals volumes; R4u is R auto-
correlation of lag 4/unweighted; nArCN is number of nitriles
(aromatic). More information about these descriptors can be
found in Dragon software user’s guide33 and the references
therein.
In general, the larger the magnitude of the F ratio, the

better the model predicts the property values in the training
set. The large F ratio of 142.7 indicates that Eq. (7) does an
excellent job of predicting the λmax values. Eq. (7) has an
adjusted R2 value of 0.8694, which indicates very good

agreement between the correlation and the variation in the
data. The cross-validated correlation coefficient RCV

2 =
0.8584 illustrates the reliability of the model by focusing on
the sensitivity of the model to the elimination of any five
data point. The model was further validated by applying the
randomization tests and the obtained R2 vs. the correlation
coefficient between the original and permuted response data
are plotted in Figure 3. The lower R2 values indicate that the
good results of the original model are not due to chance
correlation or structural dependency of the training set.
Some important statistical parameters (as given in Table 2)
were used to valuate the involved descriptors. The t-value of
a descriptor measures the statistical significance of the
regression coefficients. The high absolute t-values shown in
Table 2 express that the regression coefficients of the

Figure 3. R2 vs. the correlation coefficient between the original and
permuted response data.

Table 2. Characteristics of the selected descriptors in the best MLR model

Descriptor Descriptor type X DX t-value t-probability VIF

Constant -72.191 27.018 -2.635 0.010

PW5 Topological descriptors -734.508 223.024 -3.293 0.001 2.229

piPC07 Walk and path counts 64.847 9.743 6.656 0.000 4.895

GATS2v 2D autocorrelations 22.399 5.419 4.133 0.000 1.209

DISPv Geometrical descriptors 2.621 0.350 7.487 0.000 1.688

Mor02v 3D-MoRSE descriptors 2.833 0.658 4.308 0.000 2.595

R4u GETAWAY descriptors 47.546 8.540 5.567 0.000 1.490

nArCN Functional group counts 17.051 3.223 5.291 0.000 2.052

Table 3. Correlation matrix between the selected descriptors and λmax

PW5 piPC07 GATS2v DISPv Mor02v R4u nArCN λmax

PW5 1.0000

piPC07 0.5620 1.0000

GATS2v 0.2628 0.1074 1.0000

DISPv -0.0674 0.3520 -0.0797 1.0000

Mor02v 0.2960 0.7019 0.2379 0.2084 1.0000

R4u -0.0321 0.3679 -0.0830 0.0744 0.4215 1.0000

nArCN 0.0071 0.4034 -0.0086 0.5932 0.1029 -0.0468 1.0000

λmax 0.1714 0.7788 0.1504 0.6315 0.6684 0.4527 0.5807 1.0000
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descriptors involved in the MLR model are significantly
larger than the standard deviation. The t-probability of a
descriptor can describe the statistical significance when
combined together within an overall collective QSPR model
(i.e., descriptors’ interactions). Descriptors with t-probability
values below 0.05 (95% confidence) are usually considered
statistically significant in a particular model, which means
that their influence on the response variable is not merely by
chance.42 The smaller t-probability suggests the more signi-
ficant descriptor. The t-probability values of the seven
descriptors are very small, indicating that all of them are
highly significant descriptors. The VIF values and the corre-
lation matrix as shown in Table 3 suggest that these descrip-
tors are weakly correlated with each other. Thus, the model
can be regarded as an optimal regression equation.
The calculated λmax values from Eq. (7) for the training

and test set are shown in Table 1 and Figure 4. The distri-
butions of errors for the entire dataset are given in Figure 5.
As the errors are distributed on both sides of the zero line,
one may conclude that there is no systematic error in the
model development. The following statistical parameters
were obtained for the test set, which obviously satisfy the
generally accepted condition and thus demonstrate the

predictive power of the present model:

Descriptor Contribution Analysis and Interpretation.

Based on a previously described procedure,43,44 the relative
contributions of the seven descriptors to the model were
determined and are plotted in Figure 6. Seven descriptors
were needed in the QSPR model, showing that the analyzed
dataset is quite ‘noisy’ within the data range (318-562 nm),
although it is not against the rule of thumb for building a
linear model, that is, at least five data point (samples) per
descriptor must exist in the model. The significance of the
descriptors involved in the model decreases in the following
order: DISPv (15.8%) > piPC07 (15.5%) > PW5 (13.9%)
GATSs2v (13.9%) > R4u (13.8%) > nArCN (13.6%) >
Mor02v (13.5%). It should be noted that the difference in the
descriptor contribution between any two descriptors used in
the model is not significant, indicating that all of the
descriptors are indispensable in generating the predictive
models.
The importance of atomic van der Waals volumes on the

λmax values is apparent, since the descriptors weighted by
atomic van der Waals volumes explain 43.2% of the contri-
butions (15.8% of DISPv, 13.9% of GATS2v and 13.5% of
Mor02v). The first important descriptor is DISPv, which has
a relatively high correlation coefficient with the experi-
mental λmax values (R = 0.6315). The positive coefficient of
DISPv indicates that the azobenzenes with larger values for
this descriptor would have larger λmax values, since the azo-
benzenes with larger atomic volumes usually have longer
conjugated structures. Thus, this descriptor could be an
indicator for the azobenzenes that have a large λmax value.
The second important descriptor is piPC07, which belongs

RCV,ext

2
 = 0.8397 > 0.5

r
2
 = 0.8236 > 0.6

r
2

r0
2

–( )/r2 = 0.8236 0.9963–( )/0.8236 = 0.2090–  < 1

or r
2

r′0
2

–( )/r2 = 0.8236 0.9986–( )/0.8236 = 0.2125–  < 0.1

0.85 k = 1.002 1.15 or 0.85 k′ = 0.997 1.15≤ ≤ ≤ ≤

Figure 4. Plot of predicted vs. experimental λmax for the entire
dataset.

Figure 5. Plot of residual vs. experimental λmax for the entire
dataset.

Figure 6. Relative contributions of the selected descriptors to the
MLR model.
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to the walk and path counts. This type of molecular descrip-
tors is related to molecular branching and size or in general
to molecular complexity of graph. When the molecule is
bigger and its elemental composition is more complex, this
descriptor increases. The coefficient of piPC07 is positive,
meaning that the azobenzenes with larger values for this
descriptor and accordingly more complex composition would
have larger λmax values.
PW5 is a topological descriptor. Topological descriptors

are based on a graph representation of the molecule. They
are numerical quantifiers of molecular topology obtained by
the application of algebraic operators to matrices represent-
ing molecular graphs and whose values are independent of
vertex numbering or labeling. They can be sensitive to one
or more structural features of the molecule such as size,
shape, symmetry, branching and cyclicity and can also encode
chemical information concerning atom type and bond multi-
plicity. When this descriptor increases, the λmax decreases.
GATS2v belongs to the Geary autocorrelations, which has

a smaller correlation coefficient with the experimental λmax

values (R = 0.1504). GATS2v33 is defined by Eq. (8), where
v is the atomic van der Waals volumes,  is its average
value on the molecule, nSK is the number of non-hydrogen
atoms, δij is the Kronecker delta (δij = 1 if dij = k, zero
otherwise, dij being the topological distance between two
considered atoms). Δ is the sum of the Kronecker deltas, i.e.
the number of atom pairs at distance equal to k. The positive
sign of GATS2v in Eq. (7) indicates that the azobenzenes
containing atoms with larger atomic volumes would possess
higher λmax, because this descriptor increases with increased
atomic volumes.

(8)

R4u is a GETAWAY descriptor and correlates with the
experimental λmax values of 0.4527. The GETAWAY de-
scriptors45,46 have been proposed as chemical structure
descriptors derived from a new representation of molecular
structure, the molecular influence matrix. These descriptors,
as based on spatial autocorrelation, encode information on
the effective position of substituents and fragments in the
molecular space. Moreover, they are independent of mole-
cule alignment and, to some extent, account also for infor-
mation on molecular size and shape as well as for specific
atomic properties. The positive sign of R4u means that the
increase in this descriptor increases the λmax.
The functional group count nArCN has a positive sign in

Eq. (7), pointing out that the azobenzenes with more nitrile
group (aromatic) would possess larger λmax values. The
contribution of this descriptor to the λmax values is in agree-
ment with the contribution that one could expect for the
influence of the electron-withdrawing moiety.
The last descriptor Mor02v is a 3D-MoRSE descriptor,

which correlates with the experimental λmax values of 0.6684.

3D-MoRSE descriptors are the 3D molecular representa-
tions of structure based on electron diffraction descriptor,47,48

which are calculated by summing atomic weights viewed by
a different angular scattering function. The values of these
descriptor functions are calculated at 32 evenly distributed
values of scattering angle(s) in the range of 0-31 Å−1 from
the three dimensional atomic coordinates of a molecule. The
3D-MoRSE descriptor is calculated using following expre-
ssion:

Morsw = (9)

where s is the scattering angle, nAT is the number of atoms,
rij is the interatomic distance between ith and jth atom, w is
an atomic property, including atomic number, masses, van
der Waals volumes, Sanderson electronegativities, and
polarizabilities. The coefficient for Mor02v is positive,
indicating that an increase in Mor02v would result in an
increase in λmax values. However, the value and sign of the
3D-MoRSE descriptor depend, to a large extent, on the
values of s and rij.49 Thus, it could not be concluded that
atomic volumes have a specific effect on the λmax values,
either negative or positive, only taking into account the
coefficient sign of the descriptor. When the coefficient and
the descriptor have the same sign, the contribution of the
descriptor is positive, else, negative.
Applicability Domain of the MLR Model. It needs to be

pointed out that no matter how robust, significant and
validated a QSPR model may be, it cannot be expected to
reliably predict the modeled property for the entire universe
of compounds. Therefore, before a QSPR model is put into
use for screening compounds, its applicability domain must
be defined and predictions for only those compounds that
fall in this domain can be considered as reliable.
The AD of the MLR model was analyzed in the Williams

plot (shown in Fig. 7). There are one X outlier with leverage
higher than the warning limit of 0.1589 (Compound 73) and
two Y outliers with residual higher than ± 2.5 s (Compounds
5 and 107) in the training set. Removing these three outliers
could improve R2 between the experimental λmax values and
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Figure 7. Williams plots of the MLR model for the entire dataset.
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the selected descriptors to 0.8895 (RCV
2 = 0.8760) and the

standard error decreased to 13.039.
Due to its high predictive ability, the proposed model

could be used to screen existing databases or virtual chemical
structures to identify organic compounds with desired ab-
sorption maxima. In this case, the applicability domain will
serve as a valuable tool to filter out “dissimilar” chemical
structures.

Conclusions

In this paper, the QSPR method was applied to the
prediction of the absorption maxima of azobenzene dyes. A
seven-parameter linear model was developed by MLR, with
R2 of 0.8755 and s of 14.476 for the training set. Several
validation techniques, including leave-many-out cross-vali-
dation, randomization tests, and validation through the test
set, illustrated the reliability of the proposed model. All of
the descriptors involved can be directly calculated from the
molecular structure of the compound, thus the proposed
model is predictive and could be used to estimate the
absorption maxima of azobenzene dyes.

Supporting Information. Figure SI The structures of
the studied compounds are available on request from the
correspondence author. Fax: +86-27-87426559; Email:
xujie0@ustc.edu
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