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The signals obtained from the 5th-order (two-dimensional) Raman spectrum of a liquid can depend dramatically
on the polarizations of the various light beams, but to date there has been no evidence presented that different
polarization conditions probe any fundamentally different aspects of liquid dynamics. In order to explore the
molecular significance of polarization we have carried out a molecular dynamics simulation of the 5th-order
spectrum of a dilute solution of CS2 in liquid Xe, perhaps the simplest system capable of displaying a full range
of polarization dependencies. By focusing on the 5 distinct rotational invariants revealed by the different
polarizations and by comparing our results with those from liquid Xe, a liquid whose spectrum has no
significant polarization dependence, we discovered that the polarization experiments do, in fact, yield valuable
microscopic information. With different linear combinations of the experimental response functions one can
separate the part of the signal derived from the purely interaction-induced part of the many-body polarizability
from the portion with the largest contributions from single-molecule polarizabilities. This division does not
directly address the underlying liquid dynamics, but it significantly simplifies the interpretation of the
theoretical calculations which do address this issue. We find that the different linear combinations differ as well
in whether they exhibit nodal lines. Despite the absence of nodes with the atomic liquid Xe, observing the
resilience of our solution’s nodes when we artificially remove the anisotropy of our solute leads us to conclude
that there is no direct connection between nodes and specifically molecular degrees of freedom.

Key Words : Liquid, Nonlinear spectroscopy, Two-dimensional spectroscopy, Fifth-order Raman, Molecular
dynamics

Introduction

Though to date only one liquid, liquid CS2, has been
persuaded to divulge its two-dimensional (5-th order) Raman
spectrum1-4 in the laboratory,5-11 neat liquid CS2 is not
necessarily the simplest choice for learning how to interpret
such spectra. The same significant polarizability that no
doubt contributes to the strength of the experimental signals
also mixes the responses from the individual molecular
polarizabilities with the more collective responses derived
from the various orders of induced polarizabilities.12-14

Moreover, the fact that the rotations and translations of the
CS2 molecules couple strongly with one another, as well as
to the polarizability itself, makes it difficult to ascribe a
simple dynamical significance to any of the spectroscopic
features.15

It was with these considerations in mind that we and a
number of other groups decided to begin our analysis of 5-th
order Raman spectra by thinking about the spectrum
expected from an atomic liquid, liquid Xe.16-20 The ability to
concentrate on purely translational motion and on a single
term in the dipole-induced-dipole series17 meant that we
could focus on the more basic question of what the 5-th
order signal actually tells us about liquid dynamics. It could
have been the case, for example, that the signal arose
primarily from nonlinear coupling to the many-body
polarizability,16,17,21 a natural consequence in a nonlinear
Raman experiment, but not an especially revealing piece of

information about liquid motion. What we found instead18

was that it was largely the intrinsic anharmonicity of the
molecular dynamics that generated the signal in this
example.22-24 We found, in addition, that this anharmonicity
was surprisingly weak: it was amply capable of causing pure
dephasing of the liquid’s instantaneous normal modes, but it
seemed to be insufficient to destroy the essentially harmonic
definitions of the modes.18

Of course, an atomic liquid is a rather special case. Atoms
have neither the possibility of an anisotropic polarizability
nor the opportunity to undergo rotational motion. To help us
learn about the kinds of effects that we might expect to see in
a specifically molecular liquid -- without bringing in all of
the potential complications -- we therefore decided to examine
the simplest step up from an atomic liquid: an infinitely
dilute solution of CS2 dissolved in liquid Xe.25 What makes
this case particularly straightforward is that the molecular
polarizability of CS2 is sufficiently larger than that of Xe

 + ,  (1)

 = , 

,  (2)

where α(CS2) = 8.95 Å3 and γ (CS2) = 10.05 Å3 are the
isotropic and anisotropic components of CS2’s polarizability,13
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Xe’s polarizability,26 and e is a unit vector directed along the
CS2 bonding axis, that the many-body polarizability of the
solution Π is well approximated by the sum of the molecular
polarizability of the CS2 and the leading term in the induced
polarizability.13,17

 = (CS2) + induced,  (3)

induced = (Xe) 

+ (CS2). (4)

Here, the center of mass of the CS2 molecule is assumed to
be located at r0, the sums are over the Xe solvent atoms
located at r j = r0 − r0j (j = 1, …, N), and the dipole-dipole
tensor is defined to be (r ) = ( )/r3.

The fifth-order signal itself is still an involved function of
this polarizability. In its most basic form, the experiment
involves subjecting the sample to two pairs of visible light
pulses separated by a time interval t1, followed by a
measurement of the light scattering from a fifth visible pulse
a time t2 later.1-3 In the limit of purely classical motion, the
response function for this scattering can be written as an
ensemble average16,17,21,27

,  (5)

involving the Poisson brackets of the many-body polariz-
ability evaluated at the three different times relevant to the
experiment. If the coordinates and momenta of the species in
the liquid are designated as rjµ and pjµ respectively, with j = 0
referring to the sole CS2 molecule, and µ denoting all of the
intramolecular coordinates (x, y, and z for each Xe and for
the CS2 center of mass along with the orientational
coordinates for CS2), then the Poisson brackets we need are
of the form

.  (6)

Thus the experiment examines a kind of second-order
sensitivity of the polarizability to perturbations of the initial
conditions, (r j(0), pj(0)).17

Although introducing molecules to our liquid does add a
level of complexity to this already complex scenario, a
feature of molecular liquids that more than counterbalances
any difficulties is that the presence of anisotropic molecules
affords us an additional experimental handle: the choice of
polarization conditions.28-30 As one might expect from the
fact that the response function, Eq. (5), depends on 6
different tensor indices (two for each appearance of ), the
fifth-order Raman spectrum of neat liquid CS2 exhibits a
dramatic dependence on polarization conditions.6,8,31,32 Just
what molecular interpretation one should place on this
dependence, though, has never been clear. The first goal of

the present work is therefore to see if examining our
conceptually simpler mixed system can help us understand
the different dynamical signatures of the various polarizations.

Once we are armed with such results, there are other
aspects of the CS2 experiments that we should be able to
consider. A consistent prediction from both Xe and CS2

molecular dynamics simulations is a ridge along the t2 axis
(t1 = 0).17,31,32 Although an unambiguous experimental
observation is awkward because of hyperpolarizability and
finite-pulse-duration effects,6,7,33 it has been pointed out that
this region is conceptually intriguing. If we think of the
liquid’s ultrafast dynamics as a superposition of various
intermolecular vibrations, the suggestion is that we should
regard measurements along this axis as a direct measurement
of vibrational population relaxation.6,19,21,34 Indeed, WKB
instantaneous-normal-mode calculations on Xe − which
allow for pure dephasing but manifestly omit such energy
relaxation mechanisms − exhibit a strikingly prolonged
response along this axis.18 Our current work should allow us
to see how universal this t2 ridge phenomenon is and, to the
extent the behavior is universal, to see which molecular
degrees of freedom contribute to it the most.

The other noteworthy feature of the most recent experimental
and theoretical studies of neat liquid CS2 is the presence of
nodal lines − lines in the (t1, t2) plane where the response
function changes sign.8,31 Since calculations on Xe, an atomic
liquid, do not show any such nodal lines,17 it is possible that
these nodes signify something uniquely molecular about the
dynamics or the coupling. But it is also conceivable that it is
the relatively low polarizability of Xe (which makes the
leading term in its dipole-induced-dipole series so dominant)
that suppresses the nodes − and that some other atomic
liquid could, in principle, have nodal lines. Here again, the
ability to examine the CS2/Xe mixture gives us a chance to
gain some insight into the molecular origins of the spectra.

This paper, then, will present the results of a molecular
dynamics simulation of the 5-th-order Raman response for
CS2 dissolved in liquid Xe. Section II sets out the details of
the model, the precise form of the response functions we
compute, and the algorithm required to propagate our Poisson
brackets. The results from our simulation are described in
Sec. III, and we conclude in Sec. IV with a summary of what
one can and cannot discern from such a simulation. A future
publication will round out the picture by presenting the
results of a traditional and an anharmonically corrected
instantaneous-normal-mode analysis performed on this same
system.35

The Simulation Model and Methods

The model we consider consists of a single rigid CS2

molecule, regarded as three collinear Lennard-Jones atoms,
and 29 Xe atoms, also taken to interact via Lennard-Jones
potentials. The parameters used are standard ones for CS2

and Xe along with those from the standard Lorentz-
Berthelot combining rules for the CS2/Xe interactions (Table
1).13,36,37 The system was equilibrated at a reduced density of
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 = 0.8 and a reduced temperature  = 1.0,
well within the liquid range, and we carried out an NVE
simulation to trace the time evolution of the many-body
polarizability (which was specified as we indicated in the
previous section). The specifics of calculating the 5th order
spectrum are described in more detail below. 

A. The response function and its tensor invariants.
Although we could, in principle, base our calculations on the
formal expression for the classical 5th order response
function shown in Eq. (5), we can avoid having to compute a
nested set of Poisson brackets by transforming the ensemble-
averaged expression so that it involves just a single Poisson
bracket. The transformation we use here is one derived in an
earlier paper17

 , (7)

a version particularly well-suited to numerical calculation in that
it avoids computing small differences between averaged quanti-
ties. Here β = (kBT)−1.

Evaluating the remaining Poisson bracket still requires
that we look at the time evolution of the derivatives of the
many-body polarizability with respect to initial conditions,
Eq. (6), a process that can produce numerically awkward
divergences if we regard the CS2 orientation angles θ and φ
as being among the time evolving coordinates. However the
problem can be removed simply by propagating the three
Cartesian components of the CS2 orientation unit vector e
rather than propagating θ and φ. It is therefore convenient to
be able to express the Poisson bracket in terms of both the
3N+5 original initial coordinates  and a new set of
3N+6 coordinates at time t, . As before we take j, k =
0, …, N to label the solute and solvent molecules, and we
use µ = χ = x, y or z for the solute center-of-mass and solvent
coordinates, but instead of having the solute orientational
coordinates be just  = θ, φ, we characterize the orientation
by  = ex, ey, ez. In particular, using the chain rule we write

{ (0), (t)} = (0) (t) (t)

(0) = (0)/ (0), (t) = (t)/ (t),
(8)

which expresses the polarizability dynamics in terms of a
fundamental Poisson bracket, the Jacobian17

(t)/ (0), (9)

where we have adopted the definitions

. (10)

The other issue mitigating against doing our calculations
using Eq. (5) as it is written concerns the 6 unspecified
tensor indices (a, b, c, d, e, f) = x, y or z. There are, in fact,
only 5 rotationally invariant combinations of the 
response functions: The only rotationally invariant
combinations of the many-body polarizability tensors at
three different times involve the trace (Tr), pair product (PP),
and triple product (TP):28,29

Tr( (t)) = (t)

PP( (t), ( )) = (t)

TP( (t), ( ), ( )) = (t) .
 (11)

So, the only rotationally invariant observables stemming
from Eq. (5) (or for that matter, from Eq. (7)) are of the form

TP(0, 1, 2)ù TP( (0), (t1), (t1 + t2))

PP(0, 1) T(2)ù PP( (0), (t1)) Tr( (t1 + t2))

PP(1,2) T(0) ù PP( (t1), (t1 + t2)) Tr( (0))

PP(0, 2) T(1)ù PP( (0), (t1 + t2)) Tr( (t1))

T(0) T(1) T(2)ù Tr( (0)) Tr( (t1)) Tr( (t1 + t2)). (12)

The actual calculations of Eq. (7) are therefore performed
for just these 5 invariants. Results for specific experimental
polarizations (such as abcdef = zzzzzz) can then be computed
from simple linear combinations of the invariants.28 Aside
from minimizing the redundancy of the calculations, we
have shown in our previous work that this kind of approach
has the side benefit of providing a valuable extra measure of
averaging for the computed signals.16,17

B. Evaluating the fundamental Poisson bracket. The
equations of motion for the fundamental Poisson bracket are
most easily derived from the second derivative of Eq. (9)

,  (13)

which, itself, can be written in terms of the time-dependent
dynamical matrix (the Hessian of the potential energy V)
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Table 1. Model parameters for our simulation of CS2 in liquid Xea

Atom σ (Å)b ε/kB (K)b  m (amu)c

C 3.350 51.2 12.01
S 3.520 183.0 32.06

Xe 4.099 222.3 131.3
aThe potential energy of the system consists of a sum of Xe-Xe pair
potentials uXeXe(r) plus a Xe-X pair potential uXeX(r) for each atom X =
S, C or S in CS2. The pair potentials between atoms of species A and
species B are given by uAB(r) = 4εAB[(σAB/r)12−(σAB/r)6)]. The C-S
distance in CS2 is fixed at 1.57 Å. bLennard-Jones parameters for atoms
interacting with other atoms of the same kind (i.e., for an atom of species
A, σ = σAA, ε = εAA). For interactions between atoms of species A and B,
we use the values σAB = 1/2(σA + σB) and εAB = . cAtomic mass.εA εB



Polarization Effects on Two-dimensional Raman Spectra  Bull. Korean Chem. Soc. 2003, Vol. 24, No. 8     1129

.  (14)

For translational components χ, the equations of motion are
simply

 (χ = x, y, z).  (15)

where mi is the mass of molecule i, and the index  runs
over all 3N+6 of our translational and rotational coordinates.

A more compact notation arises by labeling the 3N+6
dimensional vectors with arrows ( ), 3N+5 dimensional
vectors with tildes ( ), and matrices by the appropriate pairs
of these labels. If we define the (3N+6) × (3N+6) molecular
mass matrix , for example, by

( )  = ,  (16)

and define the elements of the Jacobian ( ) and dynamical
( ) matrices by Eqs. (13) and (14), then Eq. (15) can be
written

(t)trans = − [ ] trans (t) (t),  (17)

where the subscript “trans” refers to the (3N+3) × (3N+6)
matrix containing just the translational (row) components.

However the dynamics of the rotational components of the
Poisson bracket, χ = ex, ey, ez are somewhat more involved
because the equation of motion for the rotational coordinates
themselves are a bit more complicated. Denoting 3-vectors
by boldface characters, we can express the rotational
dynamics of our linear solute e(t) in terms of the torque g
and the moment of inertia I,38,39

. (18)

Since the derivatives with respect to initial momenta involve
the rotational (row) components of the Jacobian and
dynamical matrices

 = − (t)rot (t)

 = (t)rot,  = (t)rot ,  (19)

the equivalent to Eq. (17) for the rotational (row)
components of our Poisson bracket becomes

(t)rot  = − (t)rot (t)

−  g(t) [e(t) (t)rot + (t)rot e(t)]

− � �G (t)rotGTG2[ (t)rot ]e(t).
 (20)

Equations of motions such as those of Eq. (17) lend
themselves naturally to numerical solution by conventional

molecular dynamics algorithms. In schematic terms, since
(t) = [ (t)], this equation has the form of a simple 2nd

order differential equation for a matrix (t)

(t) = [ (t); (t), (t)],  (21)

coupled to the trajectory (t) of our liquid. Hence we can
propagate the elements of (t) with time step δ, just by using
the central difference (Verlet) algorithm39

(t + δ) = 2 (t) − (t − δ) + δ2 (t),

(t) ù [ (t); (t), (t)].  (22)

The corresponding rotational component equations of
motion, Eq. (20), are of a slightly different form

(t) = [ (t); (t), (t)] + [ (t), (t)] (t). (23)

but if we express both the “velocity” and the “acceleration”
in central difference form

(t) = [ (t + δ) − (t − δ)]

(t) = [ (t + δ) − 2 (t) + (t − δ)], 

we find that we can propagate Eq. (23) in much the same
fashion

(t + δ) = (  − (t))
−1

[2 (t) − (  + (t)) (t − δ) + δ 2 (t)].  (24)

Moreover for us, the 3 × 3 matrix  =  −2e . Since  = 0,

 =  = Î = 0,
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it is easy to find (0), we can initiate both Eqs. (22) and
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where the values of the second time derivatives follow from
Eqs. (17) and (20).

Parenthetically, we should also point out that while this
scheme for propagating the Jacobian is free of the diver-
gences we alluded to earlier -- divergences triggered by θ(t)
passing near 0 or π during the course of the trajectory --
these special values can still lead to divergences at the start
of the trajectory. Such problems can be avoided by
transforming the coordinate system used to define e

e = (sinθ cosφ, sinθsinφ, cosθ) → 
e = (cos , sin sin , sin cos )

whenever the initial angle θ is near 0 or π.40

C. Computational details. The dynamics of the solution
itself was simulated in conjunction with that of the
fundamental Poisson bracket by using the velocity Verlet
algorithm for solute and solvent translation and the Rattle
algorithm to describe the solute rotation.39,41,42 All the
simulations employed a time step of δ = 0.001 τLJ(Xe) =
3.47 fs, with the initial liquid structure equilibrated for 104

time steps from a zero-translational-order-parameter43 liquid
configuration before taking any data.

All response functions reported here were averaged over
106 statistically independent liquid configurations.

Results

We begin our presentation by looking at the variety of 5th-
order responses that we can obtain from our solution,
Figure 1.

Just as in the neat liquid CS2, changing polarization
conditions for our simpler system does indeed produce some
noticeable changes in the response functions.6,8,31,32 The all-
parallel (zzzzzz) polarization yields a kidney shape quite
similar to that found with neat liquid Xe,16,17 but with a peak
at (t1 ≈ 140 fs, t2 ≈ 170 fs), much closer to the t1 = t2 echo line
than we saw in pure Xe (t1 ≈ 30 fs, t2 ≈ 330 fs). Rotating the
final two polarizations to the magic angle (resulting in the
mmzzzz polarization) generates a peak and a lengthy ridge
along the t2 axis, with a distinct, mostly vertical, nodal line
near t1 = 200-250 fs, and an overall shape remarkably similar
to that seen in Saito and Ohmine’s simulation of the mmzzzz
response for neat liquid CS2 (despite the absence of a node in
the latter).31 The yyzzzz polarization shows yet another set
of motifs. The t2 ridge and the associated node are now
combined with valley along the echo direction featuring a
minimum at (t1 ≈ 200 fs, t2 ≈ 210 fs).

The diversity of these plots not withstanding, the most
fundamental results from this study are not going to be these
spectra, but the five rotational invariants described by Eq.
(12). We therefore turn in Figure 2 to the response functions
appropriate for each of these.

As this figure makes quite clear, the reason that different
polarization conditions give rise to such different spectra is
that the invariants from which they are constructed are so
markedly different. Both of the invariants involving T(2) (the
trace of the polarizability at time t1 + t2) have an extended

ridge along the t2 axis. By contrast, the TP invariant (the one
involving the triple product of the polarizability at the times
0, t1, and t1 + t2) and the PP(0, 2) T(1) invariant both have a
sharp peak located a short distance along the echo (t1 = t2)

θ′ θ′ φ′ θ′ φ′

Figure 1. Molecular dynamics simulations of the 5th-order Raman
response functions (t1, t2) for an infinitely dilute solution of
CS2 in liquid Xe. The three panels display the results for three
different choices of polarization conditions (the tensor indices a, b,
c, d, e, f); “m” denotes the magic angle. Contour plots shown in this
and all succeeding figures have 15 equally spaced contours
between the minimum and maximum values, with negative values
indicated by dashed lines.

Rabcdef
5( )
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diagonal. The remaining invariant PP(1, 2) T(0) is different
still; it has a much broader peak located directly on the t2
axis. Of course, the other intriguing feature of these
invariants has to do with the presence of nodal lines. Out of
all the invariants, we note that only those involving T(2)
display these nodes.

So what distinguishes these invariants physically? Looking
back at Eqs. (3) and (4) tells us that the many-body
polarizability at each time is the sum of a contribution from
the CS2 solute itself, = (CS2) − a tensor which is
fixed in the molecular frame and whose dynamics can
therefore only arise from CS2 reorientation − and an
interaction-induced term  − which will evolve
whenever either the CS2 rotates or the solute-solvent center
of mass distance changes. The trace of , though, cannot

evolve at all; it is fixed at 3α(CS2) = 3(8.95) Å3. The end
result is that any invariant involving the trace of a single
many-body polarizability at some time t looks only at the
induced portion of the polarizability, at least at that time.44

The most extreme example, the triple-trace invariant
T(0)T(1)T(2), sees nothing but interaction-induced contribu-
tions to the 5th order spectrum. As a consequence, the
numerical contribution of this invariant is far smaller than
that of any of the other invariants (and, in fact, may be safely
neglected for our system).

Given this analysis it is hardly surprising that the invariant
that contributes the most to the overall spectrum is the triple
product, TP(0, 1, 2) (the one without any traces over
individual polarizabilities). Quite generally, whenever the
substantial dynamics of the purely molecular polarizability,

(t), is not hidden by symmetry considerations, we
expect it to dominate the spectrum of our solution.45 We can
confirm this expectation quite simply by partitioning the
triple-product spectrum into the component coming from the
solely molecular terms, the component stemming from the
purely interaction-induced terms, and the cross terms, Figure
3. Despite the fact that the latter two contributions
outnumber the pure molecular term 7 to 1, the former −
which represents purely rotational dynamics − accounts for
75% of the total triple-product response.

The physical importance of these observations is that we

Πmol α

Πinduced

Πmol
Πmol

Figure 2. Molecular dynamics simulation results for the five different rotational invariants entering into the 5th-order Raman signal for our
solution of CS2 in liquid Xe. In our notation (0, 1, 2) refers to the many-body polarizabilities at times 0, t1 and t1 + t2, respectively, T refers to
a trace, PP to a pair-product over two of the polarizabilities, and TP to a triple product over all three of the polarizabilities. The explicit
connections between these invariants and the response functions shown in Fig. 1 are detailed in Table 2.

Table 2. Response function for different choices of polarization
conditionsa

c  T(0)T(1)T(2) PP(0,1)T(2) PP(0,2)T(1) PP(1,2)T(0) TP(0,1,2)

z 1/105 2/105 2/105 2/105  8/105
m 1/150 2/150  0  0  0
y 1/350 2/350 −1/105 −1/105  −4/105
aThe contributions of each of the 5 rotational invariants to the 5th-order
Raman response function (t1, t2) for different choices of the final
(t1 + t2) polarization “c”. Here “m” denotes the magic angle. Adopted
from refs. 28, 29.
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can now begin to point to the 5th-order Raman signatures of
various contributions to the dynamics. Pure reorientational
motion evidently shows up in this system as a sharp peak
located about 150 fs along the echo diagonal with crescent-
shaped wings appearing symmetrically along both the t1 and

t2 axes. We know the precise appearance of the interaction-
induced part of the 5th-order spectrum as well. But it is worth
remembering that this last information is not necessarily a
help in interpreting the underlying molecular motions. The
label “interaction-induced” refers to a component of the
coupling of the system to the spectroscopic signal; it does
not, in itself, imply any kind of dynamical characterization.
Indeed, as we have mentioned, both rotation and translation
could contribute to its time evolution in this example.
Nonetheless it may be significant that this spectrum has a
noticeable asymmetry, with almost all of the response
concentrated near the t2 axis. This same motif shows up in
anharmonic instantaneous-normal-mode treatments of neat
liquid Xe.18 Since these treatments allow for dephasing of
effectively independent dynamical degrees of freedom, but
ignore the possibility of dynamical mode-mode coupling,
the interaction-induced portion of our solution spectrum
may very well be reporting on the component of the
dynamics that displays an independent-mode behavior.18,19

Interestingly, these same figures also place us in a position
to say something about the significance of nodal lines.
Although it is hard to see on the scale of the figure, and
despite the fact that the full triple-product invariant does not
exhibit a node, the induced portion of this invariant actually
has a nodal line close to the t2 axis. Perhaps the most
important conclusion to draw from this fact is that nodes are
subtle. The presence of a node in one spectrum and the
absence in another might not be all that physically
significant. Nodes might simply appear and disappear with
small shifts in the delicate cancellations among the various
contributions to the spectrum.

We can elaborate on this point by looking in a little more
detail at the relationship between our solution and neat liquid
Xe. The same triple product is the only nonzero tensor
invariant for the 5th-order Raman spectrum of neat liquid Xe
(through the leading order in the dipole-induced-dipole
series) and the entire Xe spectrum is interaction-induced.17

This spectrum, however, does not have any nodal lines. Is
there something about the difference between an atomic
liquid and a molecule dissolved in an atomic liquid that
generates a node in the latter but not in the former?

It is easy enough to examine each of the possible distinc-
tions between these examples, Figure 4. Molecules have
anisotropic intermolecular interactions, which affects the
liquids structure and dynamics, as well as an anistropic
polarizability, which influences the coupling of that dynamics
to the spectroscopic response. Suppose we simply turn off
the polarizability anisotropy of our solute. When we do so
(Fig. 4a), we find that the interaction-induced part of the
triple-product invariant has an even more pronounced node.
If we then make this artificial CS2 solute even more atom-
like by making the potential nearly isotropic, say by
shrinking the C-S distance to 1% of its physical value (Fig.
4b), we find that the node still remains robust.

At this point, though, we have erased all the molecular
features of our solute. The lack of polarizability anisotropy
means that the solute’s orientation can no longer have any

Figure 3. Contributions to the TP invariant for our solution of CS2

in liquid Xe. (a) Molecular dynamics simulation of the complete
invariant. (b) The contribution from purely single-molecule
polarizabilities. (c) The contribution from the purely interaction-
induced components. Contributions from the remaining single-
molecule/interaction-induced cross terms are not shown.
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direct relevance to the spectroscopy, and the isotropy of the
potential interactions implies that the orientation cannot even
influence the spectrum indirectly by any coupling to the
intermolecular translation. Hence, the only difference
remaining between neat liquid Xe and our imaginary Xe
solution lies in the many-body character of the polarizability
in the neat liquid. While the solution polarizability stems
from just the coupling of the solute to each of the N solvents,

(solution) = 2 αu αv (r0j),

with αu and αv the polarizabilities of the CS2 solute and Xe
solvent, respectively, the neat liquid has a contribution from
every pair of solvents in the liquid:

(neat liquid) = (αv)2 (r jk).

The response function of the neat liquid will therefore
contain cross terms absent in the solution. It is these cross
terms that must be responsible for suppressing the nodal
lines -- which we would predict would otherwise appear
even in an atomic liquid.

Concluding Remarks

The somewhat specialized systems we have chosen to
investigate via two-dimensional Raman spectroscopy seems
to have presented us with useful case studies. Because we
were able to compare two closely related liquids, a single-
component atomic liquid and the same liquid with a dilute
molecular solute, we found that we were able to draw a
number of conclusions about the features of this spectros-
copy that directly reflect the anisotropy of molecules. In
particular, we now know that it is at least possible to attach a
microscopic significance to the signals generated under
different polarization conditions.

The key ingredients in this analysis were the rotational
invariants that combine to make up the experimental signals
under various polarization conditions. For example, we
noted that the triple-trace invariant is entirely the result of the
time-evolving interaction-induced part of the many-body
polarizability. Both our atomic liquid and our solution have
such interaction-induced parts but (at our level of treatment
of the polarizability) the triple trace vanishes identically for a
neat atomic liquid,46 so this invariant is explicitly molecular.
However it is difficult to say more based on these calculations
alone. For our solution the dynamics seen by this invariant
could arise from either the center-of-mass translation or the
solute reorientation (or both). It is interesting to note,
though, that while the invariant needs a nonspherical molec-
ular shape to be nonvanishing, it does not need the molecule
to rotate. The anisotropy of the molecular polarizability
could give rise to a signal by a kind of “heterodyned” process,
merely amplifying and making visible the translational
dynamics.

By way of contrast, the triple-product invariant, the
invariant at the other end of the scale, lent itself much more
easily to interpretation. We saw that while this invariant
could have had contributions from the time evolutions of
both the single-molecule and the interaction-induced
polarizabilities, the former was noticeably larger in our
solution example. As a result, we can be fairly confident that
this invariant mostly tracks the reorientational dynamics of
our solute in the solution case.

This last feature points out another key feature of our
analysis. The comparison between neat Xe liquid and the Xe
solution is a comparison between a system with many
identically polarizable species and a system with one, uniquely
large polarizability. Having such an inhomogeneous set of
polarizabilities significantly decouples the response functions

Πinduced
j 1=

N

∑ T

Πinduced
j k, 1=

j k≠

N

∑ T

Figure 4. The origin of the nodal lines in the 5th-order Raman
spectrum of our solution of CS2 in liquid Xe. We start by
considering the total induced contribution to the TP rotational
invariant, Fig. 3(c) (which has a barely visible node in the upper
left-hand corner). (a) The total induced contribution to this
invariant with the polarizability anisotropy of the CS2 solute (γ in
Eq. (1)) set to zero. (b) The total induced contribution to the
invariant when the CS2 solute has both zero polarizability
anisotropy and its C-S distances reduced to 0.0157 Å. The pictures
in the upper right hand corners of panels (a) and (b) represent the
shape of the solute for each case, correctly drawn to scale.
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of the solution, permitting the single-molecule terms to
dominate whenever they are symmetry allowed. More than
that though, this decoupling may be what allows us to see
some of the nodal lines and to see what might be independent-
mode behavior, both of which stand in marked contrast to
the results for neat liquid Xe.

Understanding the nodes was, of course, one of the main
goals of this work. However what the evidence in this paper
suggests is that there may not much to understand. Nodes
seem to appear and disappear with little systematic regularity:
They show up in the original rotational invariants and in the
combinations of invariants that correspond to experimental
polarization conditions. They can arise from either the
single-molecule part of the polarizability or the interaction-
induced part. They can show up in a molecular liquid or an
atomic mixture. If there is any physical significance to the
presence (or more likely to the absence) of nodal lines
beyond their being a sensitive measure of the similarity of
two different studies, it is a significance yet to be uncovered.

A more promising avenue for investigation, perhaps, is to
delve more deeply into the specific dynamical origins of
each of the rotational invariants. Straightforward molecular
dynamics can only take us so far in associating specific
signals with specific kinds of molecular motion. It cannot
tell us, for example whether rotational and librational
motions differ noticeably from translation in their 5th-order
Raman signatures. Nor can it tell us whether the spectrum is
really looking at the anharmonicity inherent in the liquid
dynamics or the presence of nonlinearity in the coupling of
that dynamics to the experimental signal.3,18,22-24,47 To pursue
these questions we have carried out instantaneous-normal-
mode analyses16,18 on the two-dimensional Raman spectra of
this same CS2/Xe solution. The findings from these studies
will be presented in a subsequent paper.35
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