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There is a growing need for the synthesis of non-natural L-
sugars and naturally occurring rare L-sugars because of the
medicinal potential of L-carbohydrates and related nucleo-
sides due to their potent biological activity and lower
toxicity compared to their D-counterparts.1 L-Sugars are also
used as the building block for the synthesis of L-oligo-
nucleotides and enantio-DNA (DNA having L-sugar), which
are valuable tools for studying protein-DNA interactions and
are promising antisense agents.2 Although certain L-sugars
such as L-fucose, L-rhamnose, and L-arabinose are quite
abundant in nature, L-galactose is a rare sugar and occurs as
a minor component in agar-agar, chagual gum, red algae,
flaxseed mucilage and a snail galactan.3 There have been
reports for the synthesis of L-galactose: (i) a synthesis by
reduction of L-galactono-1,4-lactone,4 (ii) a method based
on the repeated asymmetric epoxidation starting from achiral
2-butene-1,4-diol,5 (iii) a synthesis employing the Pummerer
rearrangement starting from 6-S-phenyl-6-thio-D-galactose,6

and (iv) an enzymatic synthesis by galactose oxidase-
catalyzed oxidation of galactitol.7 These methods have some
limitations such as the lengthy synthesis, the carefully
controlled reaction in certain steps, and/or the low yield of
the product. Herein we report an efficient new method for
the synthesis of L-galactose (1) starting from readily
available inexpensive L-ascorbic acid (2). 

The synthesis commenced with transformation of L-
ascorbic acid (2) into the methyl threonate 3 in 74% yield by
the known procedure.8 The hydroxyl group of the compound
3 was protected with t-butyldimethylsilyl (TBS) chloride
(Scheme 1). The resulting TBS ether was subjected to
reduction with DIBAL-H at 78 °C to give the aldehyde 4 in
87% yield. Wittig reaction of the aldehyde 4 with Ph3P =
CHCO2Et in the presence of a catalytic amount of benzoic
acid provided the (E)-α,β-unsaturated ester 5 in 93% yield
along with a small amount of (Z)-isomer (E/Z = 20 : 1).
Dihydroxylation9 of the compound 5 utilizing AD-mix-β in
the presence of MeSO2NH2 in t-BuOH/H2O afforded
exclusively the diol 6 in 93% yield. Protection of the diol 6
with 2,2-dimethoxypropane followed by reduction of the

resultant di-O-isopropylidene ester with DIBAL-H at 78 °C
gave the protected L-galactose 7.10 Hydrolysis of the purified
7 with c-HCl in acetonitrile provided L-galactose (1), of
which acetylation with acetic anhydride in the presence of a
catalytic amount of DMAP in pyridine gave the L-galactose
pentaacetate 8 in 80% yield in two steps. The crude aldehyde
7 could be used without purification for the subsequent
hydrolysis and acetylation steps. 1H and 13C NMR spectra of
the compound 8 were identical with those of D-galactose
pentaacetate, which we prepared from D-galactose. For the
purpose of further identification, L-galactose (1) was treated
with EtSH in the presence of c-HCl to afford the acyclic L-
galactose dithioacetal as white solid, of which acetylation
with acetic anhydride gave the pentaacetyl-L-galactose
dithioacetal 9 {[ α]D -10.7 (c 3.4, CHCl3)}. 1H and 13C NMR
spectra of the compound 9 was identical with those of its
enantiomer, pentaacetyl-D-galactose dithioacetal {[α]D +10.5
(c 3.4, CHCl3) (lit11: [α]D +9.8, CHCl3) (lit12: [α]D +11.31, c†This paper is dedicated to the late Professor Sang Chul Shim.

Scheme 1. Reagents and conditions: (a) see reference 8, 74% in 3
steps; (b) (i) TBSCl, imidazole, DMF, rt, 12 h, 98%; (ii) DIBAL-H,
CH2Cl2, -78 oC, 1 h, 87%; (c) Ph3PCHCO2Et, benzoic acid (cat.),
CH2Cl2, rt, 4 h, 93%; (d) AD-mix-β, MeSO2NH2, t-BuOH-H2O, rt,
30 min, then 5, 0 oC, 12 h, 93%; (e) (i) 2,2-dimethoxypropane,
TsOH (cat.), acetone, 4 h, 96%; (ii) DIBAL-H, CH2Cl2, -78 oC, 1 h,
89%; (f) c-HCl, CH3CN-H2O, rt, 1 h; (g) Ac2O, DMAP (cat.),
pyridine, 0 oC to rt, 5 h, 80% in 2 steps from 7; (h) (i) EtSH, c-HCl,
rt, 10 min; (ii) Ac2O, DMAP (cat.), pyridine 0 oC to rt, 4 h, 91% in
3 steps from 7.
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2.2, CHCl3)}, which we prepared from D-galactose. Thus,
the conversion of L-ascorbic acid to the L-galactose penta-
acetate 8 was accomplished in 37% overall yield.
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