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In the late 1970s, scientists at Merck disclosed the potermirovides crystalline epoxy alcohol derivatives which were
antibacterial properties and the structure of thienamlycin.previously difficult to obtairl. Thus, the catalytic epoxida-
This nonclassica3-lactam antibiotic is a constitutent of tion of 2 [Ti(OPr)a4, (+)-DIPT, cumene hydroperoxide] was
fermentation broths of the soil microorganiStreptomyces employed to afford the chiral epoxy-alcohol. After the ex-
cattleyg and it displays activity againBseudomonaand- cess of hydroperoxide was destroyed with trimethyl phos-
lactamase-producing species. Since the discovery of thienghite, the chiral glycidol wa# situ derivatized into the
mycin, many advances have been made in the chemistry atmsylate3, [a]3' —13.7 € 1.2, CHC}), at the standard condi-
biology of the carbapenem antibiotics, owing to their structions (TsCl, DMAP) in 84% yield with >95% ee B)YMR
tural uniqueness and wide spectrum of antibacterial actiehiral shift analysis. Nucleophilic substitution®fvith one
vities. The efforts have yielded a plethora of pofelsictam  equivalent of sodium benzenethiolate in THF gave the epoxy
antibiotics, many of which are currently marketed as antisulfide4a, [a]5 +53.4 € 1.06, CHCJ), in 95% vyield. This
biotics, as exemplified by imipenérand meropenerhlt is reaction did not show any epoxide ring opening product.
well known that the most direct access to carbapenem arimilarly, transepoxide4c, [a]y -2.6 € 1.70, CHC)),
penem antibiotics is the utilization of 4-acetoxyazetidin-2-was prepared from the commercially availaioés-crotyl
one or its synthetic equivalents. Although there are manwlcohol. During the preparation dt, (-)-DIPT was used
methods for synthesizing such intermediates, one majanstead of (+)-DIPT in the asymmetric epoxidation step as
difficulty in the construction of azetidinone is the control of shown in Scheme 1.
the relative and absolute stereochemistry of the three contigu-
ous chiral centre§From existing methods, the isocyanate- — i i a
alkene approach seems to be the most efficient procedure f ™ - /:\_OH - /Q\‘OTS
the construction of thg-lactam ringZ We have now applied
this method to a novel stereoselective synthesis-)efi-( 2 3
phenylsulfonyl-2-azetidinon@a, as a versatile intermediate TBDMSO
for carbapenem synthesis. 0 _ o

Cis-crotyl alcohol2 was prepared from 2-butyn-1-bloy 2 A YOrvi /&H \_L
hydrogenation at atmospheric pressure with 5% quinoline R W R SPh
treated Pd/BaS{ According to Sharpless epoxidation in-
volving in situ derivatization, the epoxidation of low mole-
cular weight allylic alcohols is especially facilitated and

_— 4aR=SPh 5a,b de
[ 4b R = SO,Ph

T Scheme 1 Reagents and Conditions:5% quinoline-treated Pd
Current adress: Central Research Labs, Choongwae Pharma Cgasq, H,, MeOH:; ii, Ti(OPH)4, (+)-DIPT, cumene hydroperoxide,
poration, P.O. Box 61, Suwon, Korea 3A molecular sieves, Cigl,, —25 °C; P(OMe); TsCl, DMAP,
*Current address: C-TRI Central Research Center, Suwon UnEtN: iii, NaH, PhSH, THF, 0C: iv, oxone, MeOH-KD: v for 5a,
versity, Whasung 445-743, Korea KOBU, THF, 0°C; TBDMSCI; vi for5b, DBU, THF; TBDMSCI.
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Thecis-epoxideda was then subjected to the key elimina- O=Cxy_so.a
tion step promoted by KOBuo afford the ring-opened : TBDMSQ

species, which were immediately trapped by treatment witl j /H;/SOZP"
N

TBDMSCI to giveE-alkenyl phenyl sulfidésa and sulfone Al? (HMe a ) Al

5b, respectively, in 95% yield. THe-geometry was deter- \—H 0 S0,
mined by the coupling constants for vinyl protonsaf & R

5.82 (dd, 1H,J = 14.9, 5.2 Hz) and 6.26 (dd, 1Bz 15.0, . b

1.2 Hz). The epoxy-sulfonéb, prepared fromda by the

sulfur oxidation with oxon& was also readily converted to Figure 1.

the E-vinyl sulfone 5b by the treatment of organic bases

such as BN and DBU. It is noteworthy that an optically fonyl group (Figure 1-b). This observation strongly suggest-

active y-hydroxy-a,-unsaturated sulfone has been utilizeded that the activation of alkene by electron-releasing sub-

in stereocontrolled cycloadditions and conjugated additions stituents is favorable in this reaction.

Whereas, the ring-opening of tlrans-epoxide4c showed This communication has demonstrated ¢tisepoxy sulfide

the mixture ofE- (5a) and the correspondingtalkenyl sul-  can be efficiently transformed intg-alkenyl sulfide in a

fides in 1.4:1 ratio from NMR spectrum. The stereo- highly stereoselective manner. Optically active alkenyl phenyl

chemical outcome of the eliminative ring-opening &f  sulfide has been proved as a useful building block in the

epoxy derivatives is in agreement with the observatiorenantioselective synthesis of azetidin-2-one. Further studies

reported by Takand. are in progress to improve the diastereoselection in [2 +
The cycloaddition of an alkene across the C=N bond of a]cyclization and the construction of carbapenem skeleton.

isocyanate is a useful method for the synthesi&la€tams.
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