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When the result of an analysis or measurement is reported,
it is obligatory that some quantitative indication of the qual-
ity of the result be given. The use of the Guide to the Expres-
sion of Uncertainty in Measurements (GUM)1 is one of the
prerequisites for the expression of the quality because it has
been internationally accepted as an unified standard for com-
municating uncertainty. It has been widely applied to many
fields of chemical analysis and measurements as an authen-
tic standard.1-3 

One of the general assumption in ordinary least square
(OLS) method4,5 is that the reference values in calibration
have no uncertainty. This assumption is seriously impracti-
cal because the uncertainty in reference is one of the major
sources. But, the calibration processes are generally assisted
by OLS in most of all the fields without any serious consid-
eration of errors. The purpose of this paper is to present a
modified error model in calibration and how to calculate the
uncertainty using the model strictly following the idea of
GUM. The procedure developed can be applied to the results
treated using OLS without any consideration on whether the
reference values have uncertainties or not. 

The model generally assumed in OLS4,5 is 

yi = f(xi) + (1)

, where yi is a variable of ith reading and xi is a variable of ith
reference. The model can be successfully used in OLS if the
data obtained has the following characteristics. 

i. The xi value are controlled and/or observed without error.
ii. The errors are mutually independent.
iii. The errors have the same variance whatever be the

value of yi

iv. The errors are normally distributed.
v. The polynomial equation of calibration curve can be

expressed like 

y = f(x) = b0 + b1x + ···········+ bmxm (2)

And the coefficients are calculated by OLS and uncertainty
of unknown sample obtained using the equation (1) and (2).
Matrix form of the coefficients of mth polynomial equation
( f(x)) is given by

b = (X' ·X)−1 ·X' · y (3)

In case that both the reference and reading values have
uncertainties, the error model of equation (1) can be
expressed as

yi + εyi = f(xi + εxi)+ τi  (4)

εi
o

Figure 1. Illustration of measurement errors.
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This correlation of the error model is presented in Figure
1. The errors between a solid data point and calibration
curve can be divided into 3 vector quantities: εxi

, εyi
, τi. The

figure shows that the equation (4) can be derived as

(5)

The error presented in the equation (1) is same as the sum of
errors in the equation (4), so that 

(6)

And, the sum of squared errors is given by

(7)

, where the n is the number of the reference point used for
calibration.

If the method of OLS is applied to data, then the coeffi-
cients of equation can be obtained by taking the partial dif-
ferential of Eq. (7) and minimizing the Q. Therefore, the
coefficients obtained through OLS are same as those
obtained by new approach with model equation (4). In the
modified error model, the polynomial equation of calibration
curve can be expressed as 

y = f(x) + τ = b0 + b1x + ···········+ bnxn + τ (8)

, where y is measurand, x is reading value of an unknown
and the function is mth polynomial equation. And the coeffi-
cients of polynomial equation are same as those in equation
(3). Practically, the equation (8) and (3) are used for the cal-
culation of uncertainty strictly following the concept of GUM.

The value of error (τ) should be zero and the uncertainty
and degree of freedom can be estimated from the ANOVA
represented in Table 1. If error propagation law is applied to
Eq. (6), Eq. (9) can be derived. 

(9)

Therefore, standard uncertainty of error (u(τ)) is obtained

using

(10)

The effective degree of freedom (νeff) can be obtained from
Welch-Satterswaite formula.1,2 Thus,

. (11)

Therefore, degree of freedom on error (τ) can be calculated
with equation (12) and Table 1. 

 (12)

Because of all the input data including those of the error (τ)
quantified, we can calculate combined standard uncertainty
and effective degrees of freedom of output variable (y). In
the equation (8), the coefficients are expressed with the func-
tions of all the variables of the reading and reference vari-
ables so that the equation is independently described by all
the reading and reference values, reading value of unknown,
and the error (τ) :

y = f(x, x1, x2,····, xn, y1, y2,····, yn) + τ  (13)

The combined standard uncertainty is obtained from the prin-
ciple of error propagation. Therefore, the combined uncer-
tainty (uc) of y is obtained from 

 

 (14)

Contrary to uncertainty treatment in OLS, all the uncer-
tainty of reading and reference value and the error (τ) should
be propagated to the final out variable (y) because of the ini-
tial assumption at which both the reading and reference val-
ues have uncertainties. 
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Table 1. ANOVA table

Expected variance Experimental variance Degrees of freedom
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