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Acyl-transfer reactions have been suggested to procee~
either through a concerted mechanism or through a stepwis
mechanism, depending on the nature of the nucleophile ar
the leaving group of substrate®.It has generally been under-
stood that the reaction of esters with amine nucleophile
proceeds through a stepwise mechanism with an additio
intermediate”* However, the reaction of esters with anionic 1 1a
nucleophiles has not been completely undersicadsome
studies have suggested a concerted mechafishile others
have proposed a stepwise mecharfish.

Williams et al have concluded that acyl-transfer reactions 5
between anionic nuclephiles proceed through a concerte
mechanism, based on the lineap@sted-type plot obtained
from the reaction of 4-nitrophenyl acetate with a series o
substituted phenoxide aniohA. similar conclusion was drawn
for phosphoryl- and sulfonyl-transfer reactions with anionic 7 T 7 y
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nucleophiles. However, Buncekt al have suggested that mole % DMSO
acyl-.transfer reactions proceed through an addition in.terFigure 1. Plots showing contrasting solvent effect profiles for
mediate, b'ased on the p oor Hammgtt correlation Ol:)t"’“nealkaline hydrolyses of paraoxonég and parathionel1p) in
from reactions of a series of substituted phenyl acetatenyso-H,0 mixtures at 25.0 + 0.9C.
phosphinates and sulfonates with anionic nucleophiles.

Linear free energy relationships (LFERs) have been em-
ployed as one of the most popular probes for determinatiosolvent effect profile together with the TS structure is herein
of reaction mechanisms. However, the conclusion drawmresented.
based on LFERs alone has been suggested to be inconclufigure 1 shows that the second-order rate constant in-
sive? Additional evidence €.g, kinetic isotope effecf  creases with increasing mole % DMSO in the reaction medi-
oxygen isotope exchanddirect observation or isolation of um for both reactions dfa and1b. However, surprisingly,
intermediates?) should be required to get more conclusive the effect of solvent on rates is contrastirg, the second-
information about the reaction mechanism. We have recentlgrder rate constant for the reactionlaf exhibits a down-
reported spectral evidence for a stable intermediate alongard curvature while the one for the reactiodloshows an
with kinetic evidence for the nucleophilic substitution reac-upward curvature.
tion of a cyclic sulfinate ester, dibenzo[1,2]oxathiin-6-oxide, Significant rate enhancements have often been reported
with ethoxide anion in anhydrous ethaf8ITo obtain further  for nucleophilic substitution reactions involving anionic nucleo-
information on the reaction mechanisms, we have novphiles as the solvent changes froa©Ho DMSO!® Such
expanded our study to alkaline hydrolyses of paraoxte)e ( rate enhancements upon addition of DMSO to the reaction
and parathionel) in dimethyl sulfoxide (DMSO)-bD mix-  medium have been rationalized by postulates such as
tures of varying compositions, eqg. (1), and found contrastinglesolvation of the anionic nucleophile and/or stabilization of
solvent effect profiles. A plausible cause of the contrastinghe transition state (T$J:® The negative end of the dipole

of DMSO is exposed whereas the positive end is buried
within the molecule. Therefore, DMSO stabilizes cations,
X ] X Y whereas it strongly destabilizes anions due to the repulsion
(EtO)P-O-{_%-NOp + OH — (EtORP-OH + O {)no, between the anion and the negative end of the dipole. It has
@) generally been understood that destabilization of anionic
species is more significant for small and charge localized
Solvent : 15, 30, 45, 60, 75 and 90 molc % DMSO in Hy0 anions than large and charge delocalized Hrisce earlier
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X = QO (paraoxone, 1a) and S (parathione, 1b)
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studies on ester hydrolysis have concluded that substratea and1b proceed through an addition intermediatd his
solvation changes are not responsible for rate enhancemerasgyument is consistent with the conclusion drawn from
in DMSO!2 one can suggest that destabilization of G841  LFERs that acyl-, phosphinyl- and sulfonyl-group transfer
largely responsible for the rate enhancement upon additioreactions between anions proceed in a stepwise mechanism
of DMSO to the reaction medium. However, O the  with an addition intermediafe:™ 4

common nucleophile for the reactionslafand 1b. There- Acknowledgment The authors are grateful for the finan-
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ly not due to the ground-state (GS) but due to differential

solvent effect on the TS. References
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