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On statistical behaviour of stress drops in Portevin–Le Chatelier effect
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Abstract. The Portevin–Le Chatelier (PLC) effect is a kind of plastic instability observed in many dilute alloys
when deformed at certain ranges of strain rate and temperature. In this paper we present a comprehensive statistical
analysis of the observed experimental data obtained during PLC effect and establish that the occurrence probability
of the stress drops in the dynamical process responsible for PLC effect is Poisson in nature.
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1. Introduction

Many interstitial and substitutional alloys exhibit repeated
stress drops followed by periods of reloading during ten-
sile deformation in certain ranges of strain rate and tempe-
rature (Mazot 1979; Balik and Lukac 1993). This repeated
yielding of these alloys is referred to as the Portevin–Le
Chatelier (PLC) effect and has been extensively studied over
the decades (Van den Beukel 1980; Kubin and Estrin 1990;
Rizzi and Hahner 2004). It is a striking example of the col-
lective behaviour of dislocations leading to complex spa-
tiotemporal patterns. Due to the complexity of the problem,
the methods of nonlinear dynamics and statistical analysis
have been applied to understand the underlying dynamics
of the PLC effect (Ananthakrishna et al 1999; Kugiumtzis
et al 2004). These studies have provided a considerable
understanding of the mechanism of PLC effect. The general
consensus explains the origin of the PLC effect as a dyna-
mical interaction of the mobile dislocations and the diffus-
ing solute atoms, which is denoted as the dynamic strain
aging (DSA) (Van den Beukel 1980; Kubin and Estrin 1990;
Rizzi and Hahner 2004). Mobile dislocations which are
the carrier of the plastic strain move jerkily between the
obstacles provided by the other dislocations. Solute atoms
diffuse in the stress field generated by the mobile dislocations
and pin them further while they are arrested at the obstacles.
This DSA leads to negative strain rate sensitivity of the flow
stress for certain ranges of applied strain rate and tempera-
ture when the mobile dislocations and the solute atoms have
comparable mobility. Bands of localized deformation are
then formed, in association with stress serrations and close
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investigations of the PLC effect revealed the occurrence of
different types of stress serrations. These serrations are well
characterized in polycrystals, where they exhibit three main
types of behaviour of the bands: static, hopping and propa-
gating, which are traditionally labeled as types C, B and A,
respectively. Type C bands appear almost at random in the
sample without propagating, type B bands exhibit an oscilla-
tory or intermittent propagation and type A bands propagate
continuously. Recent analyses suggest that distinct dynamic
features could be associated with each of these band types
(Bharathi et al 2001, 2002). At low strain rates static (type C)
bands are associated with weak spatial interactions, consis-
tent with randomness in their spatial distribution. In contrast,
at high strain rates, strong spatial correlations are associated
with type A propagating bands, leading to self-organized criti-
cality regime. At medium strain rates, partially relaxed spa-
tial interactions lead to marginal spatial coupling linked to
type B hopping bands. In this case, a chaotic regime was
demonstrated (Kubin et al 2002).

The occurrence of the stress drops during the PLC effect
is an outcome of complex nonlinear threshold dynamics in
the material. This dynamics is a combined effect of diffe-
rent temporal and spatial processes taking place in a highly
heterogeneous media over a wide range of temporal and spa-
tial scales. Despite this complexity, one can consider the
PLC stress drops as a point process in space and time, by
neglecting the spatial scale of the bands and the tempo-
ral scale of the duration of each stress drop. Hence, one
can study statistical properties of this process and test the
methods that may explain the observed load drops. In this
paper, we present a comprehensive analysis of the statisti-
cal nature of the occurrence probability of the stress drops
during PLC effect in Al–2·5%Mg alloy and low carbon
steel.
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2. Experimental

Al–Mg alloys containing a nominal percentage of Mg and
low carbon steel exhibit PLC effect at room temperature for
a wide range of strain rates (Chihab et al 1987; Pink and
Kumar 1995). We have carried out tensile tests at room tem-
perature on flat Al–2·5%Mg alloy and cylindrical low carbon
steel samples at different strain rates (10−5 s−1 to 10−3 s−1).
In this range of strain rate, we could observe three types of
stress serrations. The details of the experimental procedures
can be found elsewhere (Barat et al 2005).

3. Method of analysis and results

Figure 1 shows the observed PLC effect in Al–2·5%Mg alloy
and low carbon steel samples. In our experiments, we have
recorded the load at an interval of 0·05 s. True stress was
calculated from the load values using instantaneous cross-
sectional area of the sample. For our analysis, we have per-
formed a symbolic representation of the experimental stress
time series data. When there was a stress drop, it was desig-
nated by one and its absence by zero. Hence, the result-
ing experimental data were binary in nature consisting of a
sequence of 0s and 1s.

During the tensile deformation of the samples, the occur-
rences of stress drops in the stress-time curve apparently
looked to be random and rare. These rare occurrences of the
stress drops lead us to believe that their distribution is Pois-
son in nature. In order to validate our assumptions, we have
adopted the following statistical analysis.

Any distribution or process is characterized by certain spe-
cific parameters which ultimately govern the distribution or
the process. In a Poisson process, the distribution can be
represented by the form

f (x) = λ (t)x e−λ(t)

x ! , (1)

where λ is a function of time and x the number of occur-
rences. The parameter λ(t) of the Poisson distribution is
usually estimated by mean of the data, which are the mini-
mum variance unbiased estimator and the maximum likeli-
hood estimator (Fisher 1971). Table 1 shows estimated mean
of the experimental data in binary form at some arbitrarily
chosen strain rate values obtained for Al–2·5%Mg alloy and
low carbon steel. The small values of the mean signify that
the occurrences of the stress drops are rare. To analyse the
experimental data statistically, we have subdivided the entire
data set obtained from a particular strain rate experiment, into
subgroups of 4 to 8 time-points. The occurrences of the load
drops for this modified data set should follow a Poisson dis-
tribution with a new parameter, n1λ (n1 being the number of
time-points in a single subgroup). We formulate the empi-
rical Poisson distribution from this new parameter and com-
pute the expected frequency of occurrence by (1). From the
modified data set, we also tabulate a frequency distribution
and compute the relative frequency. This relative frequency
will be close to the expected frequency if the data really fol-
low Poisson distribution. To confirm this, we carried out the
χ2 and Kullback–Leibler (KL) tests (Rao 1973). The results
of the χ2 test and the corresponding p-values (Sellke et al
2001) are shown in table 2. It is seen that the p-values for

Table 1. Values of test statistic (z) and corresponding p-values
for some arbitrary chosen strain rates.

Al–2·5%Mg alloy Low carbon steel

Strain rate (s−1) Mean Strain rate (s−1) Mean

8·06 × 10−5 0·0684 6·30 × 10−5 0·0756
3·90 × 10−4 0·0962 3·84 × 10−4 0·1421
6·25 × 10−4 0·1250 8·28 × 10−4 0·1607
1·20 × 10−3 0·2093 1·34 × 10−3 0·1675
1·94 × 10−3 0·2491 2·85 × 10−3 0·2115

(a) (b)

Figure 1. Typical segment of stress-time curves for (a) Al–2·5%Mg alloy deformed at a strain rate of
6·25 × 10−4 s−1 and (b) low carbon steel deformed at a strain rate of 6·30 × 10−5 s−1. PLC serrations
are prominent in true stress time curves.
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Table 2. Results of χ2 test and corresponding p-values of data sets with subgroups of 4 time-points.

Al–2·5%Mg alloy Low carbon steel

Strain rate (s−1) Value of χ2-test statistic p-value Strain rate (s−1) Value of χ2-test statistic p-value

8·06 × 10−5 0·0202 0·9992 6·30 × 10−5 0·0001 0·9999
3·90 × 10−4 0·0415 0·9978 3·84 × 10−4 0·0152 0·9995
6·25 × 10−4 0·0504 0·9970 8·28 × 10−4 0·0749 0·9947
1·20 × 10−3 0·0899 0·9930 1·34 × 10−3 0·0317 0·9985
1·94 × 10−3 0·1326 0·9877 2·85 × 10−3 0·0577 0·9964

Table 3. Values of test statistic (z) and corresponding p-values for some arbitrary chosen strain rates.

Al–2·5%Mg alloy Low carbon steel

Strain rate (s−1) Strain rate (s−1)

8·06 × 10−5 1·94 × 10−3 3·84 × 10−4 2·85 × 10−3

Data sets z p z p z p z p

1–2 340·0444 0·0 41·0903 0·0 379·8972 0·0 158·4237 0·0
2–3 489·3531 0·0 15·6070 0·0 121·3015 0·0 98·5782 0·0
3–4 145·6694 0·0 5·0375 0·0 54·2555 0·0 5·2577 0·0
4–5 897·7044 0·0 17·0666 0·0 15·2467 0·0 64·3697 0·0

(a) (b)

Figure 2. Typical plot showing variation of estimated Poisson parameter, λ, with time (segment
number) for (a) Al–2·5%Mg alloy deformed at strain rate, 6·25 × 10−4 s−1 and (b) low carbon steel
deformed at strain rate, 6·30 × 10−5 s−1. λ increases with time indicating that λ is not constant in a
deformation test.

PLC data obtained from all strain rates are >0·95. KL dis-
tances are also the measures of the distance between empi-
rical and experimental distribution. The small values of KL
distances indicate that the two distributions are alike. For the
analysed data, the KL distance are found to vary from 0·01
to 0·08. Hence, from the results of χ2 and KL tests, it can
be claimed with full confidence that the experimental data
actually follow Poisson distribution.

To prove through the confirmatory test that λ is not a con-
stant but varies with time during the test, we divide each data

set, obtained from a particular strain rate experiment, into 4–
6 segments of equal time-points, m and estimate the value
of λ for each segment. Choosing two contiguous segments,
a two-sided hypothesis test (Clark 1963) was performed at
95% confidence level to test the null hypothesis (H0: λ1 =
λ2) against the alternate hypothesis (HA: λ1 �= λ2), where
λ1 and λ2 are the values of λ for the two chosen contiguous
segments X and Y , respectively.

Under H0, X – Y will have the mean parameter λ1 − λ2

(which is zero) and the variance σ 2
1 /m + σ 2

2 /m (σ1 and σ2
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(a) (b)

Figure 3. Quantile quantile plot for (a) Al–2·5%Mg alloy deformed at a strain rate, 6·25 × 10−4 s−1

and (b) low carbon steel deformed at a strain rate, 6·30 × 10−5 s−1. Quantiles of waiting time distri-
bution are plotted against quantiles of specific exponential distribution. QQ plots are close to 45◦ line.

are the standard deviation of the first and second segments,
respectively). By the law of large numbers (Grimmett and
Stirzaker 1992) or the central limit theorem (Feller 1971)

[
{(X − Y ) − 0} /

{(
σ 2

1 /m + σ 2
2 /m

)}1/2
]

= z,

will follow a normal distribution with mean and variance
equal to 0 and 1, respectively. The values of our test statis-
tic z, and the corresponding p-values for both the samples
are listed in table 3. The p-values are <0·025 or >0·975
i.e. cut-off value >1·96 or <−1·96. Thus we reject the Null
hypothesis and say that the process is not stationary. From the
estimated values of λ in each of the four or six segments, we
see that there is a generic increasing trend of λ as a function
of time. Figure 2 shows a typical plot of the variation of λ

with segment number for Al–2·5%Mg alloy and low carbon
steel where the values of λ are 0·1250 for the Al–2·5%Mg
alloy deformed at a strain rate of 6·25 × 10−4 s−1 and 0·0756
for the low carbon steel deformed at a strain rate of 6·30 ×
10−5 s−1.

If the time dependence of λ is linear, the waiting time (time
difference between the successive load drops) should follow
an exponential distribution (Feller 1971). In this regard, a
quantile quantile plot (QQ-plot) (Nair and Freeny 1994) of
the waiting time distribution against the specific exponen-
tial distribution was drawn. Figure 3 shows the typical QQ-
plots for Al–2·5%Mg alloy and low carbon steel. For most
of the cases, the QQ-plots are close to the 45◦ line indicat-
ing that the waiting time follows an exponential distribution.
This proves that λ varies linearly with time for the two types
of samples.

4. Discussion

Poisson process represents a set of events which are mutu-
ally independent. In our present work, we could establish that
the occurrence probability of the stress drops during the PLC
effect is Poisson in nature. During its propagation through

the material, the movement of deformation bands is hindered
by the presence of several obstacles and successively they
are pinned by the solute atoms. The pinning of a deforma-
tion band is governed by several factors like distribution of
the obstacles, local solute distribution and the mobility of the
deformation font etc. The band movement will be initiated
further provided the pinning barrier is overcome by increased
stress level and the thermal activation associated with the
respective pinning site. The system response to each unpin-
ning of deformation band is manifested as a stress drop in
macroscopic scale. Hence, the instant at which a stress drop
will occur will be governed by all these factors. But there is
no knowledge a priori to the system when the deformation
band will encounter the obstacle or if the thermal activation
will be high enough to unpin the band. Moreover, the thermal
fluctuations are completely random in nature. Hence, occur-
rence of each individual stress drop is an independent event
and it is not influenced by the occurrence of the earlier ones.

5. Conclusions

In conclusion, we have carried out uniaxial tensile tests on
Al–2·5%Mg alloy and low carbon steel at a wide range of
strain rates where PLC effect is observed. The experimen-
tal stress time series data are analysed using different statis-
tical approaches. Analysis revealed that the occurrences of
stress drops during the PLC effect follow Poisson distribu-
tion. The mean of the Poisson distribution increases linearly
with time or strain. The time interval between two consecu-
tive stress drops is found to obey an exponential distribution.
All these observations indicate that the stress drop during the
PLC effect is an outcome of a Poisson process.
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