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Abstract. We consider a two-peak model for the phonon density of states to investigate the nature of electron 
pairing mechanism for superconducting state in fullerides. We first study the intercage interactions between 
the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring 
model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C60 phonons. 
Electronic parameter as repulsive parameter and the attractive coupling strength are obtained within the 
random phase approximation. Transition temperature, Tc, is obtained in a situation when the free electrons in 
lowest molecular orbital are coupled with alkali-C60 phonons as 5 K, which is much lower as compared to  
reported Tc (≈≈ 20 K). The superconducting pairing is mainly driven by the high frequency intramolecular 
phonons and their effects enhance it to 22 K. To illustrate the usefulness of the above approach, the carbon 
isotope exponent and the pressure effect are also estimated. Temperature dependence of electrical resistivity is 
then analysed within the same model phonon spectrum. It is inferred from the two-peak model for phonon 
density of states that high frequency intramolecular phonon modes play a major role in pairing mechanism 
with possibly some contribution from alkali-C60 phonon to describe most of the superconducting and normal 
state properties of doped fullerides. 
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1. Introduction 

Buckminsterfullerenes are known to make compounds 
with alkali metals intensively studied mainly due to  
superconductivity and the variation of compounds (Hebard 
et al 1991; Holczer et al 1991; Tanigaki et al 1991). The 
doping in C60 as MxC60 (M = K, Rb, Cs; x = 1, 2 and 3) 
and (NH3) K3C60 is the subject of renewed interest be-
cause of its technological and industrial importance. In 
close relation the nature of attractive pairing mechanism 
with conventional phonon mediated electron pairing or 
unconventional electronic mechanisms in fullerides (Tc ~ 
20–45 K) remains a central point of several experimental 
studies. The normal state electronic and magnetic properties 
of alkali metal intercalated fullerides are reviewed at 
great length (Dresselhaus et al 1996; Gunnarson 1997; 
Forro and Mihaly 2001). 
 Neutron inelastic scattering measurement (Prassides  
et al 1991; Pintschovius 1996) probes that the vibrational 
spectrum may be conveniently divided into two regions. 
One of them belongs to the rotation of C60 molecule and 
the intermolecular vibrations (∼ 2⋅5–25 meV) and the others 
are the intramolecular mode with frequency, 25–200 meV. 
Raman scattering (Mitch et al 1992) yields the on-ball 

C60 vibrational modes (~ 40 meV–0⋅2 eV). Lattice dyna-
mical studies (Belosludov and Shpakov 1991) point out 
that the spectrum consists of mode of C60 (26 cm–1), the 
vibrations of K+ ions, the translational vibrations as a 
whole (~ 45–120 cm–1) and the C60 vibrations (~ 260–
1900 cm–1). The wide frequency range of phonon spec-
trum, however, raises an important issue to clarify which 
of these molecular phonon modes induce the supercon-
ductivity in doped fullerides. 
 The energy scales of the various phonon modes that 
mediate the electron–phonon coupling are different, thanks 
to the dependence of transition temperature on isotopic 
mass, a good probe to clarify phonon mechanism. The 
carbon isotope effect demonstrates αc = 0⋅30 ± 0⋅05 with 
100% substitution of 6C13 for 6C12 (Chen and Lieber 
1993) and naturally favours the phonon mediated pairing 
and ruled out electronic in origin. Fuhrer and coworkers 
(1991) documented a reduced αc of about 0⋅21 ± 0⋅012. It 
is apparent that conventional BCS weak coupling theory 
predicts one half value of isotope effect and reduced 
value of αc than BCS result is quite intriguing. 
 It is worth to point out that it is the alkali metal isotope 
effect and not the carbon isotope effect which will identify 
whether inter or intramolecular phonon modes induce the 
superconductivity. Burk and coworkers (1994) have shown 
a Rb isotope effect of αRb = − 0⋅028 ± 0⋅036, a result 
which implies that the alkali-C60 optic phonons play at 
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most a minor role in the pairing mechanism. The small 
negative αRb could possibly be an artifact anharmonic 
alkali dopant potential in the interstitial sites. Although 
reduced value of αc imposes a constraint on the conven-
tional phonon pairing in fullerides, but also raises the 
possibility of alkali-C60 optic phonons if they contribute 
to pairing, whose alkali–metal isotope effect exponent may 
be masked by the effects of an anharmonic potential. 
 Tunneling measurements predict a large energy gap 
ratio (β = 2∆0/kBTc) of 5⋅3 ± 0⋅2 for K3C60 which leads to 
strong coupling regime (Zhang et al 1991b). Although 
tunneling measurements predict a large magnitude of the 
reduced energy gap then the BCS value of 3⋅53 supports 
a low energy intermolecular phonon as the source of su-
perconductivity. Other techniques as infrared spectroscopy 
(DeGiorgi et al 1994), muon spin relaxation measure-
ment (µSR) (Kiefl et al 1993), reflectivity measurement 
(DeGiorgi et al 1992) and nuclear spin relaxation mea-
surement (Tycko et al 1992) yield a energy gap value of 
3⋅6 ∼ 4⋅0 close to the BCS weak coupling limit. The spin 
relaxation measurement suggests that the coupling bet-
ween the electrons and the intermolecular phonons or 
radial intramolecular phonons is important for supercon-
ductivity in K3C60. Optical studies (Koller et al 1996) on 
Rb3C60

 led to β = 4⋅2 which indicates that the supercon-
ductivity cannot be described in the weak coupling limit. 
Hence, these measurements (Zhang et al 1991b; DeGiorgi 
et al 1992, 1994; Tycko et al 1992; Kiefl et al 1993; 
Koller et al 1996) although favour the electron–phonon 
coupling but questioned whether the weak or strong cou-
pling limit applies. 
 Mechanisms for pairing in fullerides based on either 
intramolecular or with intermolecular phonons have been 
suggested. Zhang and coworkers (1991a) first proposed 
that the doped alkali-C60 phonon mode produces a strong 
attraction for electrons on C60 using a Hubbard model to 
describe the superconductivity. Varma et al (1991) stress 
for the fact that the electron–phonon interaction in full-
eride be induced by high frequency intramolecular vibra-
tional modes on a ball of C60 and it should be a key 
feature of superconductivity. The same follows from 
Schluter et al (1992). Kresin (1992) stressed that the 
strong electron–intramolecular phonon coupling will des-
cribe the superconducting state. 
 On the other hand, Zhang and Guo (1994) stressed that 
the coupled K+ optical mode and the vibration of C60 

mass centre will induce a strong electron–phonon interac-
tion. A three square well model which is characterized by 
windows of low-frequency intermolecular phonons, high 
frequency intramolecular and Coulomb energy allows  
a coherent interpretation of superconducting fulleride 
properties (Ivanov and Maruyama 1995). Furthermore,  
Alexandrov and Kabanov (1996) formulated a non-adiabatic 
theory of superconductivity taking into account the polaron 
band narrowing and the realistic electron–phonon as well as 
the Coulomb interactions. By and large these approaches 

favour the participation of on ball C60 intramolecular 
phonon for superconducting state with an experimental 
support of small negative αRb that rules out the possible 
participation of intermolecular phonons. 
 Study on transition temperature under high pressure is 
another convincing test for determination of the partici-
pation of the exact phonon mode in the wide energy scale 
of phonon spectrum. In the doped fullerides, Tc monoto-
nically changes with the unit cell size (lattice constant), a. 
The pressure effect in fullerides is huge, dTc/dP is nega-
tive, dTc/dlna for different fullerides are close to each 
other. Sparn and coworkers (1992) noticed that for K3C60, 
Tc (= 19⋅3 K), decreases strongly with increasing pressure, 
dTc/dP = − 7⋅8 K/GPa. Subsequently, measuring magnetic 
susceptibility (Diederich et al 1996) under hydrostatic 
pressure yields dTc/dP = − 9⋅7 K/GPa with a Tc of 29⋅6 K 
for single-phase Rb3C60. Chaban (2002) argued that the 
dependence of Tc on pressure is to be connected with the 
chemical pressure effect in fullerides. 
 In this respect, it is interesting to look at the nature of 
superconducting state, to which the energy scale of the 
mediating boson in the electron-pairing interaction is crucial 
in determining whether weak or strong coupling is appro-
priate. These experimental and theoretical understanding 
on fullerides motivates us to develop a theory with both 
inter- and intramolecular phonon to reveal the attractive 
pairing mechanism as well as the understanding of the 
transition temperature and its pressure (volume) dependence 
of fullerides. The idea borne in mind is mainly due to 
two-fold reasons. Firstly the intermolecular vibrations 
possess energy in the range 2⋅5–25 meV and the band 
structure calculations (Erwin and Pickett 1992; Satapthy 
et al 1992) reveal the Fermi energy (εF) as 0⋅2 ∼ 0⋅3 eV. 
Thus, fullerides obey ωer < εF, so the consideration of 
intermolecular vibrations, i.e. the coupling of the conduc-
tion electrons with the intermolecular phonons, will be 
appropriate. Secondly, the coupling with the displacements 
of the alkali-C60 optic is definitely important to the elec-
tron–phonon interaction, because of finite positive αc in 
K3C60. 
 To be complete, the normal state resistivity measure-
ments on doped fullerides reveal its metallic behaviour. 
Xiang and coworkers (1992) have first documented the 
resistivity measurement data of single crystal K3C60. The 
observed temperature dependence can be accounted for 
with an electron–phonon scattering mechanism if there is 
a high frequency contribution from the intraball phonons 
and a lower frequency contribution from phonons. The 
overall temperature dependence of ρ(T) above Tc places 
constraints on the normal state transport models. Palstra 
et al (1992) argued that K3C60 is near metal–insulator 
transition as the effective mean free path and interatomic 
distances are of similar order in thin films. A good fit to 
temperature dependent resistivity of K3C60 was obtained 
only by including a phonon mode with θ* = 185 K (Gel-
fand and Lu 1992). Crespi et al (1992) have analysed the 
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single crystal K3C60 resistivity data using Ziman’s resis-
tivity formula and show that both high frequency intra-
ball and low frequency interball modes will account for 
the reported behaviour of resistivity. 
 Although the low frequency interball phonons will be 
strongly temperature dependent, the fit to the Ziman for-
mula suggests that the coupling to these modes is small 
(Varshney and Singh 1997; Varshney et al 1998). The 
normal state resistivity measurement (Crespi et al 1992; 
Gelfand and Lu 1992; Palstra et al 1992; Xiang et al 
1992; Goldoni et al 2001) points to the fact that both on 
ball molecule vibrations and alkali C60 optic phonons in 
the metallic state are important in retrieving the measured 
data. However, it is unclear that the normal state resistivity 
minima will correspond to inter- or intra-molecular phonons. 
Henceforth, the second objective of the present study is 
to look for the fact that which phonon modes in particular 
best reproduce the form of temperature dependent resis-
tivity apart from their major role in pairing mechanism. 
 The present investigations are organized as follows. In 
§2, we introduce the model and sketch the formalism 
applied. As a first step we derive the force constants and 
the longitudinal phonon frequency for C60 molecule. Fur-
thermore, a relationship in between force constant for 
undoped and alkali metal doped fullerenes has been esta-
blished. The longitudinal phonon modes of K3C60 propa-
gating along 110 directions are evaluated based on the 
spring model. The effective coupling strength between 
the conduction is then deduced and renormalized Cou-
lomb repulsive parameter for the intermolecular phonon 
frequency is used to estimate Tc. Later on, the intramole-
cular phonons are used for the estimation of Tc. Developing 
this scheme, we have estimated the carbon isotope effect, 
the energy gap parameter, the pressure effect and normal 
state resistivity for K3C60. 
 The details of numerical analysis are presented along 
with discussion in §3. The purpose of the present investi-
gation is to improve the understanding of various physical 
properties by including the effects of Coulomb, inter- and 
intramolecular phonons. However, we do not claim the 
process to be rigorous, but the results we report here do 
indeed shed light on the nature of these interactions in the 
test material. Conclusions are discussed in §4 where we 
provide physical descriptions of the model calculations 
herein. 

2. Formalism and model 

To begin with, we consider the undoped C60 molecule. It 
is a pure carbon compound and possesses a spherical 
structure. The nuclear cage of C60 (the C60 sphere) has a 
diameter of 7⋅1 Å with 2 bond lengths, (6–6 ring) 1⋅4 Å 
and (6–5 ring) 1⋅46 Å. The distance of the nearest approach 
in the molecular solid is 3⋅1 Å (Martins and Troullier 
1992). The C60 molecule crystallizes in the fcc phase with 
lattice parameter, a = 14⋅20 Å and the distance between 

the centres of the nearest neighbour C60 cages is b = a/√2. 
Furthermore, in C60 molecule, out of 4 valence electrons 
on each carbon atom, 3 electrons participate in the 90 σ 
bonds along the edges of truncated icosahedron and the 
remaining 60 electrons of the molecule are in the orbitals. 
In fact, the diameter of C60 molecule is large in such a 
way that the electron density is localized near the surface 
of the sphere. Electronic energy band structure (Satapthy 
et al 1992) reveals that for C60, the lowest unoccupied 
molecular orbital is empty and can accommodate 6 elec-
trons. The C60 cages may be regarded as rigid spheres and 
a bandwidth develops from the weak interactions bet-
ween the nearest neighbour (n–n) C60 cages. We begin 
with the n–n C60 cages interactions of undoped C60 mole-
cule and derive the force constants along with the phonon 
frequencies of the fcc lattice. 

2.1 Dispersion relation of undoped C60 

To begin with, we consider the undoped C60 molecule, as 
a cube with N cages and volume is Na3/4. When the volume 
is compressed from V to V + dV the work done is 

,
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B being the bulk modulus and a the lattice parameter. For 
a cube V = a3 and dV/V = 3da/a. Keeping in mind the 
contribution of 6N bonds between n–n C60 cages, W is 
expressed as 
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with κ being the force constant for n–n cages. A com-
parison yields, κ = 3Ba/4. 
 A set of C60 molecule is treated as a three-dimensional 
monoatomic lattice with atomic mass and the position of 

cage is denoted as mk and u (
k
l

), respectively. The lattice 

considered S unit cells numbered by an index l = 1, 2 … 
S and for masses k (= 1) (Maraduddin et al 1963). The 
equations of motion along 110-direction are obtained 
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as the potential energy of the crystal. Hence equation of 
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also 
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 We express the equilibrium position of the lth unit cell 
relative to an origin located at some atom is r(l) = l1a + 
l2b + l3c, where l1, l2, l3 are integers and a, b, c are the 
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primitive translational vectors. In the following the plane 
wave solution as uj (l) = A (q) exp i[qjr(l)-ωt], with A as 
the amplitude, q the wave-vector in 110 direction is used 
and ω(q) the angular frequency. Hence, the dispersion 
relation reads 

mBamqL /3/2)( == κω , (5) 

at the zone boundary (q = π/b). The above is the longitu-
dinal phonon mode, which is due to the rotational motion 
of the C60 molecule. The lattice is expanded due to inter-
calation of alkali metal (K, Rb and Cs) at tetrahedral and 
octahedral sites when C60 molecule is doped. We discuss 
this in the following subsection. 

2.2 Dispersion relation of alkali metal intercalated C60 

The C60 molecule when chemically substituted with alkali 
metal (K) atoms, the semiconducting C60 becomes metal-
lic, at the K3C60 composition and it shows the supercon-
ducting nature. With the doping, K atoms become fully 
ionized in the C60 crystal and give up their electrons to 
highly polarizable C60 molecule. These electrons go to 
de-localized lowest unoccupied molecular orbitals, which 
can accommodate six electrons. The conduction band is 
empty for C60 crystal and for K3C60 the conduction band 
is half filled up to the Fermi level. The alkali atoms, K, 
were located in two non-equivalent tetrahedral and an 
octahedral position of the lattice. In doped fullerides, 
there exists 6N C60–C60 bonds at a bond distance of a/√2, 
also 8N C60–K bonds with bond distance of a√3/4 with 
a = 14⋅28 Å for K3C60. In the true sense, a dopant enter-
ing into parent lattice C60 tends to expand the lattice for 
creating a place for itself. 
 The transfer of charge will certainly result into some 
contraction and the final lattice parameter of the doped 
material will be the resultant of these effects. It is noticed 
that the lattice parameter for K3C60 (a = 14⋅28 Å), Rb3C60 

(a = 14⋅45 Å) and Cs3C60 (a = 14⋅60 Å) are more than the 
lattice parameter of undoped C60 viz. a = 14⋅20 Å (Hebard 
et al 1991) and hence there is a resultant expansion. Fur-
thermore, out of 8N C60–K bonds 4N are at octahedral 
position and 4N takes the tetrahedral position. For the 
sake of simplicity, the K atoms are considered at the te-
trahedral site, as the cavity is large enough to accommo-
date K atom. The total bond energy within the harmonic 
approximation is expressed as 
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where rcc is the equilibrium C60–C60 bond distance 
(10⋅04 Å) and rmc denotes the metal–C60 bond distance 
and is rmc = (rcc/2) + ri, with ri = 1⋅63 Å is the ionic radius 
of K. A relationship in between the force constants κ 
(C60–C60) and κ ′ (M–C60) is established when the total 

bond energy reaches its maximum at the experimental 
value of lattice parameter, a. 
 Let us now consider the n–n interactions between the 
C60 cages and C60 cages are bonded to both K atoms as 
well as adjacent C60 cages while the K atoms are bonded 
to C60 cages only. Treating K3C60 as a three-dimensional 
(3D) diatomic lattice with atomic masses as m (M) and 
positions u (v) for C60 (K), the equations of motion follows 
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 We employ the plane wave solutions as uj (l) = A exp 
i[qj r(l) – ωt] and vj (l) = B exp i [qj r(l) – ωt]. The rela-
tion κ1 is 0⋅66κ ′. It is useful to expand the coefficient Φ, 
and the atomic force constants about its equilibrium 
value using the 3D forms of Taylor theorem for small 
displacements. Following harmonic approximation, all 
cubic and higher order terms are neglected and also the 
nearest neighbour interactions naturally demand the force 
constants and several other parameters in 3D (Maradu-
ddin et al 1963). For various symmetries in K3C60, seve-
ral transverse and longitudinal frequencies will be then  
obtained from the 3D dynamical matrix and are rigorous 
which indeed is not the scope of the present analysis. 
Confining only for the longitudinal phonon modes along 
110-direction, the dispersion relation reads for small q 
value 

[ ] [ ] 21
212121

2 )(4 qbDDDDDD
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 Here, D1 = [κ + (2κ ′/3)]m−1 and D2 = [κ ′/3]M−1. Equa-
tion (9) is an intermolecular optical mode and acoustic 
characteristics are seen from (10) in the long-wavelength 
limit (q → 0). The developed modes are alkali-C60 phonon 
in the K3C60. We begin with the coupling of conduction 
electrons with the intermolecular optical vibrations (ω+) 
to seek their role in attractive force for superconductivity. 
 As an application, the coupling parameters of K3C60 are 
evaluated in the following subsection. 

2.3 Electron–phonon attractive parameter 

Superconducting tunneling data yields the electron–
phonon spectral weight, α2F(ω) from a strong coupling 
inversion procedure for the estimation of the coupling 
constant. Band structure calculation using full potential 
linear muffin-tin orbital (Novikov et al 1992) method 
suggests that the superconducting electrons are composed 
entirely of carbon 2p, the contribution of C 2s orbital is 
very small and the largest contributions to N(εF) are pro-
vided by the C(3) atoms which are the closest to the nei-
ghbouring C60 molecule. It is worth stressing that the 
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electron–phonon coupling strength for various phonon 
modes has been calculated using quantum mechanical 
(Varma et al 1991) and band structure calculations  
(Satapthy et al 1992; Erwin and Pickett 1992). 
 Instead of making use of complicated methods, we use 
rather simple expressions within McMillan approximation 
(McMillan 1968) to check whether we find results con-
sistent with the reported data. The use of McMillan ex-
pression for the calculation of intermolecular phonon 
coupling strength is appropriate in K3C60 superconductors 
due to the fact that the mass difference of K and C60 is 
large. The electron–phonon coupling strength, λer, in this 
situation is 
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where <I2> is a mean square electron–ion matrix element, 
Mred the reduced molecular mass and >< 2

erω  an averaged 
square molecular vibration frequency. We comment that 
despite large density of states due to C(3) atoms, (11) 
may not be used for a crystal with similar mass of carbon 
in C60. Hence the electron–phonon coupling strength for 
on-ball-C60 high-energy intramolecular modes needs rigo-
rous quantum mechanical calculations. 
 The mean square electron–ion matrix element is 
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 V(q) being the screened Coulomb potential. In terms  
of bare Coulomb potential, Vc(q), one expresses V(q) = 
Vc(q)/ε(q). 
 Quite generally, the random phase approximation (RPA) 
properly describes the screening when the kinetic energy 
is much larger than the interaction energy. Screening in 
RPA essentially depends on the ratio of effective Coulomb 
interaction, U, and the bandwidth, W. In the limit where 
U/W (∼ 0⋅5–1⋅0) i.e. for small values, the RPA under-
estimates the screening. For large U/W, the RPA becomes 
qualitatively wrong. For intermediate values of U/W 
(∼ 1⋅0–2⋅0), the RPA yields efficient screening and is the 
situation in narrow bandwidth alkali intercalated fullerides 
(Varshney 2000). Looking to the various experimental 
reports and the fact that for intermediate values of U/W, 
RPA is a valid concept. The idea we have in mind is to 
deduce the screened Coulomb potential and electron–
phonon coupling strength within the RPA with a simpli-
fied expression on the various physical properties leading 
to superconducting state. 

 In particular, within RPA the dielectric function, ε(q, ω), 
for electron with density, n, and effective mass, m*, in 
the long-wavelength limit (q → 0), is modeled as 
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with vF as the Fermi velocity. 
 The static dielectric function, ε(q), in the long-wave-
length limit is 
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and the result for screened Coulomb potential is 
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where Ω is being the volume of the cell and Ze denotes 
effective nuclear charge and is 7e. 
 Thus, the mean square electron ion matrix element 
from (13) follows 
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and the electron–phonon coupling strength for the inter-
molecular phonon is 
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 We may comment on the deduced expression that the 
electron–phonon coupling strength in fullerides depends 
very sensitively on the phonon eigen vectors and the 
electronic structure due to difference between coupling to 
phonons of different symmetry. We now use the same 3D 
model to derive the expression for the Coulomb repulsive 
parameter. 

2.4 Screening parameter 

The effective Coulomb interaction between carriers is 
introduced by means of the pseudopotential parameter, 
µ* (Bogoliubov et al 1959), that we evaluate following 
the model dielectric function presented in the earlier sec-
tion. The renormalized Coulomb repulsive parameter is 

}]./ln{1/[ erF
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 We write the Coulomb strength parameter µ in (20) as 
µ = N (εF) U, where N (εF) is the density of states at the 
Fermi energy, εF and U the static screened interaction, V 
(q, ω = 0) averaged over the Fermi sphere. From (15) we 
have the result  
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 Having discussed the intermolecular phonon frequen-
cies and coupling strengths, we shall now estimate the 
superconducting and normal state properties for alkali 
metal intercalated fullerenes, K3C60, viz. transition tem-
perature, Tc, the carbon isotope effect, α, the energy gap 
ratio β, the pressure and volume effect on Tc, as well as 
the normal state resistivity and associated transport para-
meters for doped fullerides. 

3. Discussion and analysis of results 

Any discussion of the fullerides necessitates knowledge 
of the crystal structure, and this is particularly true of the 
calculations reviewed here. The C60 molecule is first ana-
lysed using the lattice parameter, a = 14⋅20 Å and 
b = 18 GPa (Huffman 1991; Hebard 1992). The effective 
mass of C60 cage is 1⋅2 × 10–24 kg and the force constant 
κ is obtained as 19⋅17 N/m. The estimated value of the 
longitudinal phonon frequency of the C60 molecule from 
(5) is 42⋅42 cm–1 (5⋅2 meV). The above phonon mode comes 
from 6N bonds between n–n cages of C60 molecule. 
 Essentially the rotation of C60 molecule is inhibited at 
temperatures near to room temperature and it appears 
appropriate to ignore the rotation of C60 molecule in a 
theory dealing with system at temperatures in the vicinity 
of Tc. Chemical substitution of alkali metal ion in C60 
molecule introduces extra electrons which are accommo-
dated in the conduction band which is half filled up to the 
Fermi level and these conduction electrons distort the 
lattice of K3C60. The distortion leads to a net expansion 
as lattice parameter for K doped fulleride (14⋅28 Å) and 
parent fulleride is a = 14⋅20 Å. For the evaluation of 
force constant relationship the total bond energy is then 
minimized at the experimental value of a (= 14⋅28 Å) for 
K3C60 to obtain, κ′ as 0⋅17κ. It appears that the magnitude 
of force constant for alkali metal intercalated fullerenes is 
larger than the undoped C60. 
 The dispersion relations for the intermolecular phonon 
modes originate due to the displacement of C60 molecule 
or K+ ions in doped fullerides. It is evident from the eigen- 
frequencies that these correspond to the intermolecular 
acoustic and alkali-C60 optical modes in the long wave-
length limit (q → 0). The mass of three alkali metals (K) 
is used as 0⋅17 amu. The intermolecular alkali C60 optic 
mode (ωer) is obtained as 7⋅84 meV at q → 0. The scatter-
ing of charge carriers at the Fermi surface is considered 
for all possible values of scattering angle, θ. The wave 
vector, q (≅ 2kF sinθ), can, therefore, take maximum 
value up to 2kF. For small value of q, the product qb is 10 
to deduce the value of acoustic mode as 125⋅47 meV at 
2kF. In fulleride K3C60, if all the electrons are free, the 
electron density, n (= 4 × 3/a3), is estimated as 4⋅12 × 
1021 cm–3 from the lattice parameter, a, of 14⋅28 Å (Hebard 
et al 1991). The band structure value of mass, 3⋅0 me, is 
used (Novikov et al 1992). Thus the electron parameters 
as Fermi velocity, Fermi wave vector and plasma fre-

quency are obtained as 1⋅91 × 107 cm s–1, 0⋅496 Å–1 and 
1⋅37 eV, respectively. Electronic energy band structure 
calculations (Erwin and Pickett 1992; Satapthy et al 1992) 
derive the average Fermi velocity as 1⋅8 × 107 cm s−1 and 
the plasma frequency of about 1⋅2 eV. 
 The electron–phonon coupling strength (λer) using (19) 
is obtained as 1⋅2. We note that the dimensionless electron– 
phonon coupling strength as estimated by Gunnarson is 
about 0⋅5–1⋅0 (Gunnarson 1997). Earlier calculations by 
Zhang et al (1991a) suggest, however, that the alkali pho-
nons could contribute an attractive interaction of the order 
of 0⋅9 eV, which corresponds to λ ∼ 2⋅0 i.e. a strong coupl-
ing limit. Later, Burk and coworkers (1994) have shown 
a null isotope effect with respect to alkali metal dopants, 
a result which implies that the alkali ions have a weak 
influence on Tc. Theoretical estimates for intermolecular 
phonon coupling strength is large which is a problem in 
real sense. It is clear that the enhanced coupling strength 
is unrealistic. Such strong electron–phonon attraction in 
fullerides makes the lattice unstable and hence prevents 
the formation of superconducting state. We argue that the 
normal state resistivity analysis may provide an interest-
ing check of the value of coupling strength. 
 The renormalized Coulomb repulsive parameter, µ*, is 
estimated as 0⋅19 using (21) and is attributed to the fact 
that εF is higher atleast an order of magnitude with the 
intermolecular alkali-C60 optic phonon frequency. Quite 
generally, the moderately large value of Coulomb repul-
sive parameter (Gunnarson 1997; Cappelluti et al 2001) 
is appropriate for a narrow band width material on the 
metallic side of a metal–insulator transition. To this end, 
one can see that in dealing with K3C60 fullerides the cou-
pling strength (λ > 1) and the renormalized Coulomb re-
pulsive parameter (µ* = 0⋅19) for the characteristic phonon 
frequency (ωer = 7⋅84 meV) distort the lattice leading to a 
superconducting state. 
 We now discuss the superconducting transition tem-
perature. 

3.1  Transition temperature 

In the regime, λ > 1, the strong coupling theory applies 
and we utilize the Kresin Tc expression to get this quan-
tity (Kresin 1987). 

[ ] ,1)/2exp(250 2/1
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 The effective coupling constant, λeff, is deduced as 
0⋅62 for the numerical function t (λer) value 1⋅07 with λ er 
= 1⋅2 and Tc

er is estimated as ≅ 5 K which is much lower 
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than the reported experimental data (Hebard et al 1991) 
of about 18 K. The low value of Tc is due to the fact that 
the vibrations developed due to the lattice deformations i.e. 
the soft optical intermolecular phonons, are considered. 
The above approach with intermolecular phonons does 
not explain a medium Tc in K3C60. It is essential to seek 
the role of high-energy phonons to assess the reported 
value. 
 The role of collective excitation mechanism over con-
ventional phonon mechanism in cuprates was earlier suc-
cessfully explained with a generalized expression for Tc 
(Kresin 1987). A related problem is that whether one can 
utilize the broad vibrational spectrum of fullerenes for 
evaluating Tc. With this motivation an analytic result for 
Tc is employed by incorporating the simultaneous presence 
of both inter- and intramolecular phonons in fullerides as 

,]/[ er
cra

er
cc

χω TTT =  (25) 

with 

.][ 1
errara

−+= λλλχ  (26) 

 λra being the intramolecular coupling constant and is 
obtained as 0⋅4 from the scattering time (τ = 1⋅2 × 10–14 s) 
(Xiang et al 1993) as 

).2/( Bra τπλ Tkh=  (27) 

 We use the reported value of high-energy, Hg, on-ball-
C60 molecular phonons, ωra = 1012 cm–1 (Hebard et al 
1991; Holczer et al 1991), Tc is obtained as 22 K. It is 
stressed that Tc is mainly determined by the high-energy, 
Hg, on-ball-C60 molecular phonons. From the analysis of 
superconducting Tc, it is natural to make two comments 
(i) the high-energy intramolecular phonons are mode-
rately coupled while the low-energy intermolecular pho-
nons are strongly coupled to neighbouring electrons, and 
(ii) Tc mainly arises from the significant contribution of 
on-ball-C60 intramolecular phonons. 
 We now address the screening effects in fullerides. It  
is known for conventional superconductors, retardation  
effects in view of different energy scales for electrons 
and phonons drastically reduce the effects of Coulomb 
interactions. The dimensionless Coulomb repulsive pa-
rameter, µ*, is therefore, severely reduced and attributed 
to the scaling factor ln [εF/ωer] appeared in denominator 
of the expression of µ*. As the Fermi energy is larger 
atleast by an order of magnitude in intermolecular pho-
nons, the retardation effects are expected to be very 
small. 
 On the other hand the Fermi energy and intramolecular 
phonon frequency are of almost similar order and hence 
vertex correction becomes important because the Migdal 
theorem does not hold and the frequency dependence of 
the effective Coulomb interaction should be considered 
in fullerides. The above issue will be resolved by consid-
ering the Coulomb interactions more carefully. Gene-

rally, energy, ωb, is presented as characterizing bosons 
(ωer or ωra), but opinion about its choice in screening is 
far from being unanimous. The only thing one must be 
sure of is that, if a boson is a candidate for superconduc-
tivity, one must expect µ* < µ ∼ 0⋅5 and of course λ – µ* 
> 0. The importance of nonadiabatic effects in fullerides 
has been discussed earlier at great length (Cappelluti et al 
2000, 2001; Alexandrov 2001). 
 To obtain some specific results, we obtain numerical 
results (see figure 1) for the transition temperature with 
intramolecular coupling strength. It is clear that Tc is 
strongly influenced by the Coulomb repulsive parameter 
and is higher for small values of µ∗. As seen from figure 
1, for higher µ* value the result is the increased electron–
electron repulsive contribution along with the in-
tramolecular phonons producing an attractive interaction 
is reduced alone against the phonon attraction and attri-
butes to suppressed Tc. Higher and positive µ* implies a 
constant repulsive interaction that is insufficient to create 
a superconducting state despite the coupling of intra-
molecular phonons. Thus Coulomb pseudopotential is an 
important concept in fullerides. It is noticed from the plot 
that Tc is highly sensitive to λra even for moderate cou-
pling. Thus, if we start with a pure intermolecular phonon 
mechanism and later on adding a correction term with 
moderately coupled intramolecular phonons, one can eas-
ily enhance Tc values. 
 An argument that is often put forward with analytical 
methods is an error bar while estimating transition tem-
perature. In a true sense, the complete calculation, which 
includes the non-adiabatic effects, carrier mass enhance-
ment effects, exchange and correlations, phase and ampli-
tude fluctuations and narrow band electronic structures of 
certain materials are quite subtle. Here, in the present 
study, we argue that the Hg intramolecular phonon be-
sides alkali-C60 phonon is important for electron pairing 
in fullerides. An often raised query, and one that has 
caused controversy in the calculations of transition tem-
perature, is: How the vertex corrections and other beyond- 

 
Figure 1. Variation of the superconducting transition tem-
perature with λρα. Four values of the Coulomb repulsion, µ*, 
are plotted. Solid line is the experimental value. 
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Migdal corrections as well as the momentum dependence 
of nonadiabatic corrections influence this pairing mecha-
nism, are indeed important issues and will be taken up  
in near future. However, we admit that the developed 
mechanism is greatly weakened by these corrections. 
 Having discussed the transition temperature, we pro-
ceed to evaluate the carbon isotope effect coefficient in 
the next subsection. 

3.2 Isotope effect coefficient 

The isotope effect coefficient is defined as 

).lnd/lnd)(50( redc MT⋅=α  (28) 

The Mred dependence of Tc is introduced in terms of µ*, 
leading to the following result 
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with ω as the average phonon frequency. 
 
 Equation (29) yields α ≅ 0⋅24 which is slightly lower 
than the reported value of α = 0⋅30 ± 0⋅06 with 100% 
substitution of 6C13 for 6C12 (Chen and Lieber 1993) and 
consistent with results of Fuhrer et al (1999). Figure 2 
shows the variation of estimated isotope effect from (29) 
with screening parameter. It is noticed that the BCS  
one half value is recovered for µ* = 0⋅0. With the in-
crease in µ* values the isotope effect exponent decreases 
for λer = 1⋅2 and λra = 0⋅4. 
 The intermolecular phonon frequency is dominated by 
the mass of alkali metal as ωer ∼[mM/(m + M) ]−1/2 with m 
(M) mass of C60 (K) yielding a nearly zero α value. How-
ever, the mass of C60 makes a noticeable change in the 
intramolecular phonon frequency, as ωra ∼ [(m + M)/2]−1/2, 
leading to a finite value of carbon isotope effect. Thus 
alkali metal isotope essentially changes intermolecular 
vibrations as the reduced interfullerene mass [mM/(m + M)] 

is small in comparison with the intrafullerene mass 
[(m + M)/2]. Furthermore, the null alkali metal isotope 
points to the fact that the interfullerene isotopic disorder 
reduces the Tc more than does the intrafullerene isotopic 
disorder. Thus, the alkali metal ion modes contribute 
very little to superconducting state of fullerides and in-
tramolecular phonons, which are moderately coupled, 
conceive the superconducting state in fullerides. 
 What is required is the total isotope effect to assess the 
role of electron–phonon in the pairing mechanism. How-
ever, a reliable alkali metal isotope effect is not reported 
for K3C60 system, but a negative αRb is documented (Burk 
et al 1994). The requirement is to know either the ratio 
αc/αK or the total isotope effect to have a final conclusion 
about the role of inter- or intramolecular phonons in the 
superconducting state based on isotope effect exponent. 
The justification lies in a fact that the ratio αc/αK depends 
on the weights of on ball carbon and C60–alkali metal 
dominated phonon modes that are sensitive to coupling 
strength parameters. We argue that the Coulomb interac-
tions, multiatomic compounds, anharmonicity, and non-
phononic mechanisms may affect the value of isotope 
effect exponent and needs detailed investigations. As a 
next step we focus on the magnitude of the energy gap 
parameter. 

3.3 Energy gap parameter 

The energy gap parameter, β (Kresin 1987), is 

[ )],/ln()/(51253/)0(2 cra
2

raccB TTTk ωωβ +⋅=∆≅  (30) 

where ∆(0) is the energy gap at zero temperature. The 
gap parameter when intramolecular phonons are alone 
considered in the pairing mechanism is estimated as 3⋅54 
which is close to the BCS limit where the values, ωra = 
1012 cm–1 and Tc = 22 K, are used. This implies that, the 
intramolecular phonons require moderate interactions 
with the conduction electrons and is consistent with the 
infrared spectroscopy (DeGiorgi et al 1994), muon spin 
relaxation rate measurements (Kiefl et al 1993) and 
nuclear spin relaxation measurements (Tycko et al 1992), 
which strongly favour the participation of intramolecular 
phonons in the pairing mechanism. Furthermore, the  
absolute reflectivity measurements (DeGiorgi et al 1992) 
on K3C60 reports β = 3⋅6 ∼ 4⋅0, which is similar to BCS 
weak coupling limit and the electron–phonon coupling 
strength cannot be as large as 2. 
 The Fermi velocity, vF, along with a Tc of 22 K leads to 
a BCS coherence length of 12⋅9 nm using the precise 
definition  

ξ0 ≅ hvF/1⋅76πkBTc, 

which is consistent with the value of 12⋅0 (Ramirez et al 
1992), 13⋅0 ± 0⋅15 (Hou et al 1993) and 15⋅0 nm (Palstra 
et al 1992), for K3C60 fullerenes. It is interesting to com-

 
Figure 2. Variation of isotope effect exponent with Coulomb 
pseudopotential. 
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ment that the coherence length which, even if small, is 
much larger than inverse Fermi momentum. We further 
estimate the zero temperature mean free path, l = vFτ 
≈ 3⋅4 nm. The small value of l is mainly attributed to the 
disorder, which is present in doped fulleride samples, 
including the best available single crystals. The effective 
coherence length following ξ00

–1 = ξ0
–1 + l–1 leads to a value 

of about 2⋅7 nm consistent with the earlier estimates of 
2⋅6–4⋅5 nm (Sparn et al 1991, 1992). Hence, the alkali 
metal doped fullerides are dirty superconductors defined 
by l ≤ ξ0, ξ00. 
 The magnetic penetration depth at T = 0 K as λL0 
[= √(m*c2/4πne2)] is estimated as 143⋅6 nm which is 
slightly smaller than the values of 156 nm (Hou et al 
1995) in K3C60. The consistency is attributed to the 
proper choice of transport parameters as effective mass 
of carriers and carrier density. The effective penetration 
depth, {λL00 = λL0√[1 + ξ00l

–1]}, is about 192 nm consis-
tent with the earlier estimate of 240 ± 30 nm (Hou et al 
1995), 600 nm (Tycko et al 1992) and 800 nm (DeGiorgi 
et al 1992). Given the numbers that emerge from the 
analysis, it seems fair to conclude that fullerides belong 
to conventional s wave superconductor. We now discuss 
the method of calculation for pressure and volume effect 
on superconducting transition temperature in the test  
material. 

3.4 Pressure effect on transition temperature 

To analyse the pressure dependence of Tc for K3C60 sys-
tem, we begin with (25) according to which, 
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 Keeping in mind that C60 molecules are extremely rigid 
and hence neglecting the pressure induced effects of in-
tramolecular phonons, 
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Henceforth, we rewrite (31) as 
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Using (22), we get the following results 

,
d

lnd

d

dln er
11

er

er

er
c

P
D

P

T λλ
λ

=
∂

∂
 (35) 

where 

)36(.

14242
exp

14.242
exp1

)(

)07121(

2

er

er

1

er

er

2
er

er
11

2














































−

⋅++
+
























−

++
+

−

⋅++
=

−

∗

∗∗

−

∗

∗∗

∗

∗∗

µλ

µλµ

µλ

µλµ

µλ

µµλ
D
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Combining these, we write 
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 The first and the third terms are dependent on the 
variation of the N(εF) with pressure. 
 We proceed for further calculation by using the re-
ported value of B, 13⋅18 GPa (Huffman 1991) and calcu-
lated εF, 0⋅31 eV, as documented in the previous section. 
The free electron gas result dlnN(εF)/dP = (– 2/3) κT, 
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where κT (∼ B−1) is thermal compressibility. Deduced 
value of dlnN(εF)/dP is about – 5⋅058% (GPa)–1. Kerkoud 
and coworkers (1994) reported a rate of about ∼ − 10% 
(GPa)–1 from NMR technique although of limited accuracy. 
 From (11) and (13), we write 
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 Herein, the pressure dependence of the quantity <I2> 
has been neglected, as the mean-square electron–ion matrix 
element is independent of phonon frequencies. Assuming 
that delta functions entering the integrals in (12) does not 
vary much under pressure, we neglect the pressure de-
pendence of the quantity <I2>. Stated in another way the 
physical quantities appearing in (11) are unaffected under 
pressure. 
 Using (41) and (42) into (40), we obtain 
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 In order to make progress we assume dlnλra/dP ≈ dlnN 
(εF)/dP, dln<ωer

2>/dP ≈ 2dln <ωer>/dP and dln <ωer>/dP ≈ 
dln<ωer>/dP. The free electron estimate for dlnωp/dP = 
1/2B yields a value of about 3⋅79% (GPa)–1. We follow 
γG = B dln<ω>/dP to obtain dlnωer/dP = 15⋅17% (GPa)–1, 
using γG = + 2 as reported earlier (Diederich et al 1996). 
The parameters needed for further calculations are  
obtained as D11 = 1⋅7 and D12 = – 0⋅96 from the values of 
λ = 1⋅2, µ = 0⋅75 and µ* = 0⋅19. Using (33)–(43) we find 
the value of dlnµ*/dP = − 0⋅78% (GPa)–1, dlnλer/dP = 
− 35⋅39% (GPa)–1, dlnλra/dP = – 5⋅05% (GPa)–1, dlnTc

er/dP 
is – 45⋅64% (GPa)–1, dlnTc/dP = – 39⋅60% (GPa)–1 and slope 
dTc/dP = − 8⋅7 K/GPa which is consistent with the earlier 
reported value (Sparn et al 1991, 1992) of − 7⋅8 K/GPa. 
 Figure 3 shows the variation of Tc with pressure along 
with the experimental data. For fitting of the data we 
have employed the relation, Tc (P) = Tc (0) exp [− 0⋅3γP], 
using γG = + 2 (Diederich et al 1996). Here, the logarith-
mic derivative of the Coulomb pseudopotential with 
pressure, dlnµ*/dP, is smaller as compared to the other 
logarithmic derivatives involved in the expression of super-
conducting transition temperature. 
 In principle, the electron–intermolecular phonon cou-
pling parameter is directly proportional to the density of 
states at the Fermi level and inversely proportional to 

appropriately averaged square of the intermolecular opti-
cal phonon frequency. The variation of Tc with pressure 
is thus dependent on the variation of the density of states 
at Fermi level, the Coulomb pseudopotential and the 
variation of the characteristic phonon frequency with pre-
ssure. Due to extreme rigidity of C60, the pressure depen-
dence of on-ball-C60 phonon frequencies are neglected. 
To test this idea, it will be of interest to investigate the 
volume derivative of Tc. 

3.5 Volume dependent transition temperature 

We now explore our efforts in studying the volume deri-
vative of Tc or dTc /dV. We note that due to extreme rigidity 
of C60 the compression contracts the weak intermolecular 
bonds and high-energy intramolecular bonds are unaffec-
ted. The volume derivative of Tc from (25) reads, 
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We further write 
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 Herein, it is assumed that intramolecular phonons are 
independent in any change of the volume (Crespi and Cohen 
1996), 
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Here, we define 
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 Furthermore, the logarithmic volume derivative of the 
coupling parameter λer follows: 
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with the values of B, dlnN(εF)/dP and dln <ω>/dP dis-
cussed earlier, we find Φ = 3⋅3 for K3C60. To ascertain 
the physical significance of the volume derivative of Tc 
we estimate the parameters as D21 = 0⋅16, D22 = 70⋅6, 
D23 = − 2⋅7 and D24 = − 323 from the earlier mentioned 

values of various coupling strengths. Looking to (49), 
dTc/dV is being influenced by (a) volume dependence of 
screening parameter and (b) volume dependence of in-
termolecular vibrational mode as well as intramolecular 
phonon coupling strength. Because of the difficulties in 
determining the volume derivative of molecular phonon 
frequency, we are only able to provide some suggestive 
formal argument below. 
 Usually, the compression increases the bandwidth and 
hence εF resulted in the reduction of renormalized screen-
ing parameter. We note that the Coulomb repulsion sup-
presses Tc as is being noticed from figure 1. Henceforth, 
the contribution to dTc/dV proportional to dµ*/dV is nega-
tive. The logarithmic dependence of µ* on εF points to the 
fact that volume derivative of µ* is small in magnitude. A 
natural argument follows that the volume derivative of 
t(λer) and of µ* is small in comparison to dλer/dV, hence-
forth we neglect these two terms in (49). In summary, 
intermolecular phonon frequencies are influenced under 
compression modes and if superconductivity in the ful-
lerenes arose from coupling to intermolecular phonons 
then this argument implies strong electron–phonon cou-
pling. We write the logarithmic volume derivative of Tc 
in terms of bulk modulus and its lattice parameter de-
pendence as 
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 As dTc/dP is negative, we find the volume derivative 
of Tc is positive and large in fullerides. 
 We now discuss and compute numerically the response 
of resistivity in K3C60. 

3.6 Zero temperature limited resistivity 

In usual metals the electron–phonon scattering is a major 
source of temperature dependent resistivity and can de-
scribe the normal state transport properties. However, apart 
from electron–phonon scattering, other scattering mecha-
nisms as electrons scatter off impurities, defects, grain 
boundaries and disordered regions, leads to a temperature 
independent contribution. We begin with the latter con-
tribution to resistivity. 
 Information of zero temperature elastic scattering rate 
and plasma frequency will allow us to have an independent 
estimation of zero temperature-limited resistivity. The zero 
temperature scattering rates is related through the upper 
critical magnetic field, Hc2 (0). Following the two-square- 
well analysis of Eliashberg theory, Carbotte (1990) sug-
gested that the strong coupling corrections are important 
and a rescaling factor of 1 + λ appears in the modified 
BCS results. The Matsubara gap function, which is re-
lated with upper critical magnetic field yields 
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Figure 3. The dependence of Tc with pressure. Experimental 
data (closed circles) taken from Sparn et al (1991, 1992). 
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mω being the Matsubara frequency, within the standard 
two-square-well model and is mω = ωm (1 + λ) + (2τ)−1 
(sgn ωm), λ the electron–phonon coupling strength with 
cut off at Nc and τ the scattering time. In this approxima-
tion, Nc follows 

]1)/)[(2/1(c += TN πω . (58) 

 µ* being the renormalized Coulomb repulsive parame-
ter and the factor χm appearing in (57) is 
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 The upper critical magnetic field is related through 
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 The physical quantities appearing in (57)–(61) involve 
renormalized values as 
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and impurity scattering time 
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 The above derived equations differ from the BCS limit, 
as the renormalizations in ξ*, vF*, H*c2 and τ* are intro-
duced. These expressions are valid for any impurity con-
centration described in (57)–(61) by scattering time. In 
the present analysis, Pauli limit has been neglected as an 
approximation (Grimvall 1981), due to relatively small 
value of dHc2/dT [1/(1 + λ)] in alkali metal intercalated 
fullerenes. In principle, the above approach describes 
quantitatively the renormalization of the physical proper-
ties due to electron–phonon interaction and is therefore 
reduced by 1 + λ. 
 The zero temperature-limited resistivity is expressed as 

2
p

1*4)0( −−= ωπτρ . (65) 

 From the above it is noticed that the determination of 
scattering rate essentially needs the Coulomb repulsive 
parameter, electron–phonon coupling strength, Fermi velo-
city, plasma frequency and upper critical magnetic field. 
This allows one to estimate the zero temperature limited 

resistivity independently. We use the earlier deduced 
value of Tc = 22 K, vF = 1⋅91 × 107 cm s–1, ωp = 1⋅2 eV 
and Hc2 (0) = 49 Tesla (Sparn et al 1991, 1992) to esti-
mate the zero temperature elastic scattering rate of about 
1⋅24 × 1014 s–1 and is consistent as those derived from the 
superconducting fluctuation measurements (Xiang et al 
1992). It is attributed to the fact that the larger the elec-
tron mass, the smaller the plasma frequency and hence 
the reduced zero temperature elastic scattering rate. 
 We have earlier estimated the zero temperature mean 
free path, l of about 3⋅4 nm which is highly sensitive for 
carrier scattering. We further find that the product, kFl 
(~ 17), seems to be much larger than unity indicates the 
metallic characteristics. It is worth to mention that the 
product, εFτ  >> 1, in the test material refers to the fact 
that the doped fullerides fall in the weak scattering limit. 
This is however, consistent with the s wave superconduc-
tors. With these parameters, we estimate zero tempera-
ture limited resistivity (ρ0 = 2⋅4 mΩcm) consistent with 
the single crystal result (Xiang et al 1992). 
 We complete our model calculations by analysing the 
temperature dependent resistivity for K3C60 superconduc-
tors. 

3.7 Normal state resistivity 

To formulate a specific model, we start with the general 
expression for the temperature dependent part of the re-
sistivity (Grimvall 1981), given by 
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v(q) is the Fourier transform of the potential associated 
with one lattice site and S(q) being the structure factor. 
Following the Debye model it takes the following form 
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f(x) being the statistical factor and is 
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Thus the resistivity expression leads to 
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vs being the sound velocity. Equation (69) in terms of 
intermolecular phonon contribution yields the Bloch–
Gruneisen function of temperature dependence resistivity 
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where, x = hω/kBT. Aer being a constant of proportionality 
defined as 
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 In view of inelastic neutron scattering measurements, 
the phonon spectrum can be conveniently separated into 
two parts of phonon density of states (Prassides et al 
1991; Pintschovius 1996). It is natural to choose a model 
phonon spectrum consisting of two parts: an intermolecular 
phonon frequency, ωer (θer), and an intramolecular pho-
non frequency, ωra (θra). If the Matthiessen rule is obeyed, 
the resistivity may be represented as a sum ρ(T) = ρ0 + ρe–ph 
(T), where ρ0 is the residual resistivity that does not de-
pend on temperature as described earlier. On the other 
hand, in case of the intramolecular phonon spectrum, ρra 

(T) may be described as follows 
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Ara is defined analogously to (60). Finally, the phonon 
resistivity reads 
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Henceforth, the total resistivity is now rewritten as 
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 Though this is a purely phenomenological expression, 
it seems to provide a reasonable description of the avai-
lable experimental data. Having discussed the model, we 
now proceed to analyse numerically the temperature de-
pendent contribution in K3C60 superconductor. 

 Figure 4 illustrates the results of temperature depend-
ence of resistivity via the ordinary electron–phonon inter-
action from (74) with our choice of intermolecular phonon 
frequency, ωer (= 91 K) and intramolecular phonon frequ-
ency, ωra (= 1455 K). The contributions of intermolecular 
and intramolecular phonon towards resistivity are shown 
separately along with the total resistivity. It is inferred 
from the curve that ρer increases linearly, while ρra in-
creases exponentially with the increase in temperature. 
Both the contributions are clubbed together and the resul-
tant resistivity is exponential at low temperatures, and 
nearly linear at high temperatures till room temperature. 
 Our numerical results on temperature dependence of 
resistivity of K3C60 are plotted in figure 5 along with the 
single crystal data (Xiang et al 1992). It is noticed from 
the plot that the estimated ρ is lower than the reported 
data from Tc to near room temperature. Deduced values 
of the temperature dependent ρ from (74) appears low, as 
ρ0 and ωp values are the constraints for the present analysis. 
Thus estimated model parameters [λ, µ*, vF, ωp, τ and 
ρ(0)] represent a good set of parameters for the estima-
tion of normal state resistivity in alkali metal intercalated 
fullerides. Nevertheless, the role of electron–phonon in-
teraction is better exploited and found prominent in the 
interpretation of normal state transport parameters. 
 The difference in between the measured ρ and calcu-
lated ρdiff [= ρexp − {ρ0 + ρe–ph (= ρer + ρra)}] is plotted in 
figure 6. A power temperature dependence of ρdiff is in-
ferred at low (~ 22 K to 200 K) temperature and it be-
comes almost saturate at higher temperature. The quadratic 
temperature contribution at low temperature for resistivity 
is an indication of conventional electron–electron scattering. 
The feature of quadratic temperature dependence of ρdiff 
is similar to that of electron doped cuprates, which is an 
artifact of electron–electron scattering (Varshney et al 
2002). The departure from linear T2 behaviour of ρdiff 
may be due to the dimensionality crossover if any. 
 Substantial deviation from the quadratic temperature 
dependence above 200 K may be due to possible struc-

 
Figure 4. Variation of ρe-ph with temperature, the contribution 
of ρer as well as ρra to the resistivity. 
 

 
Figure 5. Variation of ρ with temperature, T (K). Closed 
circles represent the experimental data taken from Xiang et al
(1992). 
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tural changes but the exact reason is not clear. As K3C60 
has a cubic structure, its electron system is not likely to 
change the dimensionality. Moreover, the transport pro-
perties may deviate from a Fermi liquid behaviour above 
~ 500 K, suggesting a possible phase transition to a non-
Fermi liquid metallic state (Goldoni et al 2001) in thin 
film of K3C60. Therefore, more extensive theoretical and 
experimental determination of crossover temperature is 
required. The additional term due to electron–electron 
contribution was required in understanding the resistivity 
behaviour, as extensive attempts to fit the data with re-
sidual resistivity and phonon resistivity were unsuccess-
ful. It is noteworthy to comment that in conventional metals, 
the electron–electron contribution to the resistivity can at 
best be seen at higher temperatures due to its small mag-
nitude at low temperature when comparison is made with 
phonon contribution. We have thus demonstrated the role 
of electron–phonon scattering versus electron–electron 
interaction effects in determining the normal state resisti-
vity of fullerides. 
 We refer to an earlier work of Thompson (1975), who 
postulated the power temperature dependence of electro-
resistivity in TiS2 as a consequence of low carrier concen-
tration. Correlating this concept, alkali metal intercalated 
fullerenes has definitely low carrier concentration 
(~ 1021 cm−3) and may result in a large enhancement of 
power temperature dependence of electrical resistivity 
even up to room temperature. 
 Analogously, one can shed further light by correlating 
the magnitude of electron–electron contribution to resis-
tivity with plasma frequency. If the quadratic temperature 
dependence of resistivity is a cause of three-dimensional 
electron–electron scattering (umklapp), then its magni-
tude should depend on the carrier concentration n as n−5/3 
or equivalently on the plasma frequency, as ωP

−10/3. Within 
this scenario, we estimate ρee of about 0⋅6 m Ω cm (as 
illustrated in figure 6) with ωP

−10/3 as 0⋅54 (eV) −10/3 for ρ0 
value of 2⋅4 m Ω cm in the vicinity of room temperature. 

In conclusion, both qualitatively and quantitatively our 
results strongly suggest that all the three scales as Coulomb, 
intermolecular and intramolecular phonons are important 
in fullerides. 
 We note that Crespi et al (1992) have argued that elec-
tron–electron scattering mechanism is contributing to the 
normal state resistivity of K3C60 superconductors. They 
work with the Ziman’s expression in analysing the single 
crystal K3C60 resistivity data. While interpreting the data 
they have used the value of coupling strength i.e. λhigh 
and λlow as well as the molecular phonon frequencies from 
various theoretical models of the electron–phonon cou-
pling and using α2 F(ω) corresponding to a uniformly 
scaled version of the inelastic neutron scattering inten-
sity. On the other hand in the present model calculations, 
we have used the coupling strength for electron–phonon 
coupling as deduced from the density of states, electron–
phonon interaction matrix and the inter-, intramolecular 
phonon frequency. The electron–ion matrix is derived from 
the Coulomb potential with static dielectric function in 
the long wavelength limit. Interestingly, the enhanced 
density of states adds the screening effect, which is pro-
perly incorporated in Coulomb potential. 
 We also refer to a recent photoemission spectra analy-
sis of K3C60 which points to the metallicity of doped 
fullerides as a result of charge fluctuation occurring due 
to competition between the electron–electron as well as 
electron–phonon interaction (Chida et al 2002). How-
ever, there are several reports, which emphasize the 
importance of including both interactions in the under-
standing of fullerides (Knufper and Fink 1997). Thus, 
one cannot escape in stating that the temperature depend-
ence of normal state resistivity in alkali metal doped 
fulleride is better understood by three-component model 
as ρ = ρo + ρe–ph + ρe–e. Hence the physical entities lead-
ing to superconductivity and normal state electrical resis-
tivity in doped fulleride can be better explained with the 
energy scales, alkali-C60 optic ωer (intermolecular vibra-
tions), on ball-C60 ωra (intermolecular vibrations), and ωc 
(the Coulomb interactions). 

4. Conclusions 

In this paper, we have devoted our efforts in revealing the 
attractive pairing mechanism and various physical pa-
rameters of alkali metal intercalated fullerenes supercon-
ductor within the framework of a two-peak model for the 
phonon density of states. Considering the three dimen-
sional K3C60 as a diatomic lattice of K and C60, we derive 
expression for intermolecular phonon modes. Looking to 
the importance of experimental constraints on high tem-
perature superconducting theories, we have properly used 
the bulk modulus as well as other structural parameters. 
The approach takes care of structure for 8 N C60-K bonds 
out of which 4N are at octahedral position and 4N takes 

 
Figure 6. Variation of ρdiff [= ρexp – (ρ0 + ρe-ph{ρer + ρra})]
(m Ω cm) with T 2(104 K2). 
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the tetrahedral sites. We exercised the physical entities 
describing superconducting state and normal state elec-
trical resistivity and presented our results on fullerides in 
terms of s wave pairing state. 
 We properly use the RPA form of polarizability to obtain 
the electronic parameters as effective coupling strength. 
RPA is a valid concept in fullerides as it describes effi-
cient screening for intermediate values of U/W (~ 1⋅0–
2⋅0). In this respect, the Coulomb pseudopotential is an 
essential parameter for superconductivity in fullerides. 
Thus we use rather simplified expression for effective 
coupling strength to understand various physical proper-
ties in fullerides instead of complicated quantum me-
chanical and band structure calculations. The proposed 
analysis reveals the condition µ* <µ, λer(λra) – µ*> 0 to 
account for high-Tc in doped fullerides from the depend-
ence of Tc on coupling strength. We find that Tc strongly 
depends on the Coulomb repulsive parameter and is an 
essential concept for superconductivity. 
 Also, by using the scaling factor as ωer while estimat-
ing the screening parameter, we correctly represent the 
retardation effects that are small. As the Fermi energy is 
larger at least an order of magnitude by intermolecular 
phonons, the retardation effects are expected to be very 
small. On the other hand the Fermi energy and intra-
molecular phonon frequency are of almost similar order 
and hence vertex correction becomes important because 
the Migdal theorem does not hold and the frequency de-
pendence of the effective Coulomb interaction must be 
considered in fullerides. Although we have provided a 
simple phenomenological explanation of screening para-
meter in fullerides, there is clearly a need for a detailed 
theoretical understanding of vertex corrections and shall 
be covered in near future. 
 The alkali-C60 intermolecular phonon participates in 
the pairing mechanism although strongly coupled but 
with little contribution as noticed from the transition 
temperature result. Keeping in mind that intramolecular 
phonons although moderately coupled indeed do play a 
significant role, we have obtained a steep increase in Tc. 
However, we do introduce the intramolecular phonons in 
an adhoc way, we therefore obtained an analytical result 
and do not claim to possess a rigorous expression for 
them. The result is both inter and intramolecular phonons 
will induce the state as well as essential for supercon-
ducting fulleride properties. The proposed approach also 
explains consistently a reduced value of α when com-
parison is made with the BCS limit. 
 The reduced value of α essentially points to the large 
Coulomb repulsion apart from large electron–phonon coupl-
ing strength. In addition, the model calculations reveal 
that the coherence length which, even if small, is much 
larger than inverse Fermi momentum. The zero tempera-
ture mean free path, l is much smaller than the zero tem-
perature coherence length. The small value of l is mainly 
attributed to the disorder, which is present in all alkali 

metal intercalated fulleride samples, including the best 
available single crystals. In this situation i.e. l << ξ0, 
fullerides are considered to be in the dirty limit. 
 The appropriateness of the model calculations with both 
Coulomb and molecular (inter and intra) phonons is fur-
ther revealed from the pressure dependence of dTc/dP 
that show the metallic behaviour. The variation of Tc with 
pressure depends on the variation of the Fermi level den-
sity of states, the Coulomb pseudopotential and the varia-
tion of the phonon frequency with volume. The pressure 
effect in fullerides is huge and negative, while to that 
volume derivative of Tc is positive. Usually, the compres-
sion increases the bandwidth and hence the εF resulted in 
the reduction of renormalized screening parameter, and 
hence the contribution to dTc/dV proportional to dµ*/dV is 
negative. We notice that intermolecular phonon frequen-
cies are influenced under compression modes and if  
superconductivity in the fullerenes arose from coupling 
to intermolecular phonons then this argument implies 
strong electron–phonon coupling. We end by stating that 
both Tc and its pressure (volume) dependence are dictated 
by the properties of Coulomb, inter and intramolecular 
vibrations. 
 Within the framework of Bloch Gruneisen theory, we 
find that the normal state resistivity of alkali metal doped 
fullerenes consistent with single crystal data for K3C60 

superconductors. We have first estimated the zero tem-
perature elastic scattering rate with the use of parameters 
(λ, µ*, vF, τ, Hc2 (0) and ωp) from the developed approach. 
The larger mean free path and product kF l >> l favours 
the metallic conduction. Hence, the use of Bloch Gruneisen 
expression in estimating the electron–phonon contributions 
is appropriate. It is noticed that contribution from inter-
molecular phonon and intramolecular phonon together 
with the zero temperature-limited resistivity is smaller 
than the reported data on the single crystal. 
 In view of inelastic neutron scattering data, the phonon 
spectrum is conveniently separated into two parts, inter-
molecular and intramolecular phonons. The high-energy 
intramolecular phonon yields a large contribution to the 
resistivity. We note that the product εFτ >> 1 in the test  
material refers to the fact that the doped fullerides fall in 
the weak scattering limit. When the subtracted data is 
plotted as a function of T2, a clear straight line is depicted 
from 22 K to 200 K but it becomes saturate at further 
higher temperature. The observation of T2 dependence 
points toward the electron–electron scattering and departure 
from T2 behaviour is an outcome of dimensionality cross-
over if any in these alkali metal intercalated fullerides. 
 The additional term due to electron–electron contribu-
tion was required in understanding the resistivity behav-
iour, as extensive attempts to fit the data with residual 
resistivity and phonon resistivity were unsuccessful. The 
magnitude of the resistivity is high for a metallic system, 
indicating a small density of carriers participating in the 
electrical conduction. The zero temperature-limited resis-
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tivity is also a large fraction of the total resistivity at 
room temperature, which suggests a large amount of im-
purity scattering is present. The large residual scattering 
is also susceptible to the phonon drag and as a conse-
quence it decreases even in the single crystals. This pre-
sence of strong elastic scattering of electrons due to 
disorder may play a role in reducing the temperature de-
pendence due to scattering by phonons below the T5 be-
haviour seen in good metals with small elastic scattering, 
or the power temperature behaviour may arise from elec-
tron–electron scattering in Fermi liquid. 
 Conclusively, within the two peak model for phonon 
density of states the high frequency intramolecular pho-
non modes play a dominating role in pairing mechanism 
with possibly some contribution from alkali-C60 phonon 
to describe most of the superconducting and normal state 
properties of doped fullerides. Physically, we envisage a 
scenario in which the Coulomb screening apart from 
electron–phonon within RPA is an essential concept for 
superconductivity. It is a must to mention that the elec-
tron–intramolecular phonon coupling strength as well as 
the Coulomb pseudopotential from the simple method 
instead of rigorous quantum mechanical and electronic 
structure calculations is viable to retrace some of the ex-
perimental facts for alkali metal doped fullerides. The 
possibility of the cooperative mechanism in ammonia 
doped fullerides will gain an additional insight. 
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