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Existence domains for invariant reactions in binary regular solution 
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Abstract. The thermodynamic origin of various types of phase diagrams in simple binary systems exhibiting 
two phases (e.g. a liquid and a solid phase) has been examined using the regular solution model. The necessary 
conditions for the occurrence of each of these types are identified in terms of the appropriate intersections of 
the miscibility gap boundaries (in solid/liquid phases) and the liquidus/solidus/iso-G curves. Thus, the regions 
of occurrence of the different types of possible phase diagrams in the space of the regular solution interchange 
energy parameters (Wαα, Wββ) are clearly delineated. This analysis makes it easier to make intelligent initial 
selections of model (energy) parameters for their optimization in the calculation of phase diagrams using 
thermodynamic models such as CALPHAD/CVM. 
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1. Introduction 

Using the regular solution model, van Laar (1908) has 
shown that many of the observed types of simple phase 
diagrams can be obtained by a systematic variation of the 
regular solution interchange energy parameters (Wβ and 
Wα for liquid and solid phases, respectively) in the  
positive domain with Wβ ≤ Wα. By varying Wα from  
very large positive values to zero (keeping Wβ = 0), he 
has obtained eutectic, peritectic + congruent minimum, 
isomorphous with a congruent minimum followed by 
simple isomorphous (without an extremum) phase dia-
grams. Except for the limiting case (Wβ = Wα = 0) of a 
simple isomorphous phase diagram, the last two types of 
phase diagrams display a miscibility gap in the solid 
phase at low temperatures. Further, an increase in Wβ 
from zero to Wα for large positive values of Wα, resulted 
in the formation of eutectic, monotectic + eutectic fol-
lowed by monotectic + peritectic phase diagrams, respec-
tively. The thermodynamic conditions for the transitions 
among these types of phase diagrams have been clearly 
identified for the first time by him. Pelton and Thompson 
(1975), Oonk (1981), DeHoff (1993) and Chang and 
Chen (1997), among others, have shown the occurrence 
of several types of simple binary phase diagrams for dif-
ferent combinations of regular solution parameters. 
 While the pioneering analysis of van Laar is restricted 
to a positive octant of (Wα, Wβ) space, none of the earlier 

investigators have attempted to delineate the regions cor-
responding to all the types of possible regular solution 
binary phase diagrams. This is carried out in the present 
investigation. 

2. Thermodynamic background 

Let us consider two phases α and β which exhibit regular 
solution behaviour. The molar free energy of say α phase 
can be expressed as 
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where xα is the mole fraction of B, Wα the interchange 
energy parameter while α

AGo
 and α

BGo
 are the standard 

molar free energies of the pure components in the α 
phase. A similar expression can be written for the β 
phase. The chemical potentials of the components A and 
B in α phase can be obtained from standard thermo-
dynamics and are given by 
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 From the conditions of equilibrium between α and β 
phases that the chemical potentials of each component in 
both the phases be the same, we obtain, after simplifica-
tion (van Laar 1908), 
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where the free energies for the transformation from α to 
β have been expressed in terms of the enthalpies (∆H) 
and entropies (∆S) of transformation of the pure compo-
nents as in the following 
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in which, TA is the transformation temperature of pure A. 
 The slopes of the phase boundaries are given by the 
Van der Waals equations (Oonk 1981), according to which 
the slope of the solidus is given by 
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where Sα and Sβ are the entropies of the two phases at 
their respective equilibrium compositions, xα and xβ. For 
the regular solution model being utilized, the numerator 
and the denominator are respectively given by 
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 The iso-G curve (Oonk 1981) is the locus of points (x, 
T) for which the free energies of two phases α and β are 
equal, i.e. 
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 Substituting for Gα and Gβ from equations of the type 
(1) and simplifying, we obtain 
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where ∆W = Wβ – Wα. Substituting from (6) and an 
analogous one for component B in (11) and solving for 
T0, we obtain 
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 For the special case when ∆SA = ∆SB = ∆S, this relation 
simplifies to 
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 We shall recapitulate the relation (Oonk 1981) for a 
miscibility gap boundary in the α phase 
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 The maximum temperature corresponding to the mis-
cibility gap boundary (the so-called consolute point) is 
given by 
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3. Isomorphous systems 

While the subsequent arguments are valid for phase dia-
grams exhibiting any two phases α and β, we shall pre-
sent the discussion treating α as the solid phase and β as 
the liquid phase. We shall first consider isomorphous 
systems and obtain conditions for the presence or absence 
of a congruent extremum (maximum or minimum) in 
such systems. Since the condition for iso-G curve (Gβ –
Gα = 0) happens to be one of the equilibrium conditions 
corresponding to the congruent extremum (Gβ – Gα = 0 
and dGβ/dx – dGβ/dx = 0), the congruent extremum in the 
iso-G curve coincides with that in the α–β equilibrium 
boundaries. Hence the necessary condition for the occur-
rence of a congruent extremum can be found by differen-
tiating T0 with respect to x and setting the derivative to 
zero. 
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where ∆T = TB – TA. Thus, the composition for the maxi-
mum or minimum is given by 
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in which the positive (negative) sign is applicable for posi-
tive (negative) values of ∆W. 
 A considerable simplification occurs for the case of 
∆SA = ∆SB = ∆S. 
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 On substitution of this value in (13), the temperature 
for the congruent extremum for this special case is given by 
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 We shall adopt the convention TB > TA. Since the limit-
ing values of x are 0 and 1, we have for x ≥ 0 (the solu-
tion with negative sign in (17)) 

∆W ≤ – ∆T ∆SB, (20) 

and for x ≤ 1 (the solution with positive sign in (17)) 

∆W ≥ + ∆T ∆SA. (21) 

 Clearly, the iso-G curve exhibits monotonic variation 
with x in the range 0 ≤ x ≤ 1 for the case –∆T ∆SB ≤ 
∆W ≤ + ∆T ∆SA. For this case, the mathematical extre-
mum of the iso-G curve lies outside this composition 
range. In particular, for ∆W = 0, the iso-G curve becomes 
a straight line. 
 The nature of the extremum can be found from the 
second derivative of T0 evaluated at x = xm. Differentiat-
ing (dT0 /dx) with respect to x and simplifying, we obtain 
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 Since the denominator is necessarily positive and the 
second term in the numerator is usually much smaller 
than ∆W in magnitude, the extremum in T0 is a minimum 
or maximum according as ∆W < 0 or ∆W > 0, respec-
tively. Thus, conditions (20) and (21) apply respectively 
to occurrence of minima and maxima in the iso-G curve. 
Alternatively, these conditions for extrema have been 
obtained earlier by van Laar (1908) in terms of  
the initial slopes of the liquidus and solidus, and by  
DeHoff (1993) in terms of the initial slopes of the iso-G 
curve. 
 The locus of the congruent extremum can be found 
from (12) and (17)  by continuously varying ∆W.  A  
minimum is  obtained  for 2)( AB HH ∆+∆−  W∆<  

T∆−< .BS∆  The lower limit corresponds to T0  →  0, 

AHx ∆→0 / )(
AB HH ∆+∆  while  the  upper  limit 

corresponds  to T0 = TA, x = 0. However, as discussed 
later the physically observable domain of a congruent 
minimum is restricted due to the occurrence of an or-
dered phase or a eutectic reaction. The boundary thus 
obtained is denoted by 1 in figure 1. Similarly, a maxi-
mum is obtained for ∆T ∆SA < ∆W <  +  ∞, for which the 
lower  limit corresponds to T0 = TB, x = 1 and the upper 
limit to →∞+→ ∞xT ,0  .)(/ BAA SSS ∆+∆∆  Simi-
lar to the case of a congruent minimum, the domain of 
occurrence of a congruent maximum is limited by the 

intervention of an ordered phase or a syntectic reaction. 
The calculated boundary is denoted as 2 in figure 1. 
Thus, the congruent minimum can occur only within the 
composition range of 0 to x0 (adjoining the component 
with lower transformation temperature) while the con-
gruent maximum can occur only in the composition range 
of x∞ to 1. Figure 1 shows the regions of occurrence of 
isomorphous phase diagrams having (i) no extremum 
(regions Q and N), (ii) congruent minimum (regions R 
and T) and (iii) congruent maximum (regions K and L) in 
terms of the values of the regular solution parameters, Wα 
and Wβ. In each of these cases, an ordered phase region 
or a miscibility gap occurs at low temperature according 
as Wα < 0 or Wα > 0, respectively. For this illustration, 
TA, TB, ∆SA and ∆SB have been chosen to be TA = 800 K, 
TB = 1200 K, ∆SA = ∆SB = ∆S = 10 J mol–1 K–1. This value 
of ∆S is representative for the entropy of melting for 
metals. 

4. Peritectic or monotectic systems 

A peritectic reaction can occur in a phase diagram if 
there is (i) a miscibility gap in the solid phase and (ii) the 
maximum of the miscibility gap of the solid intersects  
the solidus. As discussed later, a eutectic reaction occurs 
instead of a peritectic reaction if the iso-G curve displays 
a minimum lying inside the solid phase miscibility gap 
compositions. Following van Laar (1908), the limiting 
case thus corresponds to the touching of the maximum of 

 
 
Figure 1. Existence domains for different topologies of binary
phase diagrams in the space of regular solution parameters for 
the two phases (∆S = 10 J mol–1 K–1). 
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the solid phase miscibility gap and the solidus, which 
occurs at xα = 0⋅5, since the slope of the miscibility gap 
boundary as well as that of the solidus vanish simulta-
neously at this composition. Thus, 

.C
αTT =sol  (23) 

 For this condition, at the point of touching (xα = 0⋅5), 
the solidus in fact shows a horizontal inflection, for which, 
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 Substituting from (4), (5) and (15) at xα = 0⋅5 we have, 
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 Eliminating Wα from (25) and (26), we have 
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 Since TB > TA, the composition of the liquidus corres-
ponding to a horizontal inflection in the solidus at 
xα = 0⋅5 will always be less than 0⋅5. Thus, Wβ has been 
evaluated for a series of values of xβ varying from 0 to 
0⋅5. Subsequently, Wα has been found from (26). Figure 1 
shows the boundary (denoted by 3) thus obtained for the 
selected pure element properties as given above. Thus the 
peritectic reaction occurs in the regions O, M, J, H, G, F, 
and D, all of which lie to the right of the calculated 
boundary. This boundary terminates at one end when 
Wα = 0, owing to the fact that the solid phase miscibility 
gap (which is a prerequisite for the peritectic reaction to 
take place) disappears for this value of Wα. The coordi-
nates of this terminal point in figure 1 are (Wα, Wβ) = (0, 
– 39595⋅9). 
 The occurrence of a monotectic reaction can be ana-
lysed in an analogous manner. Thus, 
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 Eliminating Wβ from (29) and (30), we have 
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 Wα has been evaluated for a series of xα values from 
0⋅5 to 1⋅0. Subsequently, Wβ has been found from (30). 
Figure 1 shows the boundary (denoted by 4) thus obtai- 
ned. Thus, a monotectic reaction occurs in the regions  
A, E, F, G, H and I, all of which lie above the calculated 
boundary. As discussed below, a syntectic reaction  
occurs instead of a monotectic reaction if the iso-G curve 
displays a maximum lying inside the liquid phase misci-
bility gap compositions. 

5. Eutectic or syntectic reactions 

A eutectic reaction can occur in a phase diagram if there is 
(i) a miscibility gap in the solid phase, (ii) a minimum in 
the iso-G curve and (iii) the composition corresponding to 
the minimum lies within the composition range of the mis-
cibility gap. The limiting case thus corresponds to the inter-
section of the miscibility gap and the iso-G curve at the 
minimum in the latter (van Laar 1908). In case this mini-
mum lies outside the miscibility gap, a peritectic instead of 
a eutectic reaction occurs as mentioned earlier. Thus, 
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α
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 Substituting from (14), (18) and (19) in the above, we 
have, for the special case of ∆SA = ∆SB = ∆S, 
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where ω = ∆W/(∆T ∆S). A more general relation valid for 
the case of ∆SB ≠ ∆SA can be found by substituting from 
(17) in (12) to find mT0  and in (14) to find .mg

αT  These 
can then be utilized in (32) to yield Wα in terms of ∆W. 
Wα has been evaluated for a series of values of ∆W. Sub-
sequently, Wβ has been found from Wβ = Wα + ∆W. The 
computed boundary denoted by 5 is displayed in figure 1. 
Hence the eutectic reaction occurs in the regions P and I 
lying to the right of this boundary. As in the case of the 
peritectic boundary, a limiting value for ∆W can be found 
by observing that Wα ≥ 0. At Wα = 0, 

.)( 2
AB STTWW ∆+−=∆=β  (34) 

Thus, this eutectic boundary also terminates at (Wα, 
Wβ) = (0, – 39595⋅9). 
 The occurrence of syntectic reaction can be analysed in 
an analogous manner. Thus, 
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 Substituting from an equation analogous to (14) for the 
β-phase and (18) and (19), we obtain, for the special case 
of ∆SA = ∆SB = ∆S, 
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 As noted above, an equation for Wβ for the general case 
of ∆SB ≠ ∆SA can be found easily. The above expression 
has been utilized for evaluating Wβ for various values of 
∆W. Subsequently, Wα has been found from Wα = Wβ –
∆W. The boundary between the regions of occurrence of 
syntectic and monotectic reactions is denoted as 6 in figure 
1. Thus, the syntectic reaction occurs in the regions B, C 
and D, which lie above this boundary. 

6. Order–disorder transformations 

For negative values of Wα, ordering takes place in the 
solid phase. For large negative values of Wα, there is a 
possibility that the order–disorder boundary intersects the 
α–β equilibrium boundaries, leading to the formation of 
complex phase diagrams exhibiting intermediate ordered 
phases. Thermodynamic models for ordering do not satis-
factorily reproduce all the observed topographical details 
of real systems. Detailed analysis of such phase diagrams 
is therefore not very useful. Hence we shall approxi-
mately demarcate the region in which such complex 
phase diagrams will occur, without attempting to analyse 
them further. The simple Bragg–Williams model (Gordon 
1968) of ordering for bcc phases (B2) will be utilized for 
this purpose, since it is the analogue of the regular solu-
tion model for ordered structures. This leads to a second 
order transition, while a first order transition is observed 
for ordering in close packed structures. Thus, the bound-
ary that will be obtained in this case will only be an  
approximate one for solution phases having crystal struc-
tures other than bcc. The order–disorder transformation 
temperature in this case is given by 
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 For this, the slope is given by 
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 The effect of ordering in the solid phase will be seen in 
the phase diagram when the order–disorder boundary 
touches the solidus. The conditions for these two curves 
to touch are 
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 Substituting from (37) in (8), we have 
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 Substituting from (41) and (9) in (7), we have 
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 Substituting from (38) and (42) in (40), we obtain a 
transcendental equation with xα and xβ as the only un-
knowns. For the present convention, TB > TA, 0 < xβ < xα 
< 0⋅5, by selecting xβ, one can numerically solve for xα. 
These values can be substituted in (39) with appropriate 
substitutions from (4), (5) and (37) to yield two linear 
equations in Wα and Wβ. By solving these equations we 
obtain the pairs of Wα and Wβ, which when plotted yield 
the boundary denoted by 7 in figure 1. The region lying 
to the left of this boundary corresponds to the occurrence 
of complex phase diagrams in which the solidus gets 
modified due to the presence of an ordered phase. This 
boundary terminates at one end corresponding to Wα = 0, 
since the ordered phase regions can form only for Wα < 0. 
The coordinates of the terminal point are (Wα, Wβ) = (0,  
– 39595⋅9). Note that the boundaries 3, 5 and 7 are co-
terminus at this point. 
 For Wβ < – 39595⋅9 J mol–1, positive values of Wα give 
rise to a eutectic while negative values of Wα give rise to 
complex phase diagrams with intermediate phases. Hence 
the boundary between these regions is defined by Wα = 0 
and Wβ < – 39595⋅9 J mol–1. This boundary is denoted as 
8 in figure 1. The region S lying to the left of boundaries 
7 and 8 thus represents the occurrence of complex phase 
diagrams exhibiting intermediate ordered phases. For Wα = 
0 and Wβ > – 39595⋅9 J mol–1, the dashed line denoted as 
9 in figure 1 corresponds to the occurrence of a low tem-
perature miscibility gap to the right of the boundary and a 
low temperature ordered phase field to its left. 

7. Results and discussion 

In the preceding sections, we have given procedures for 
calculating the boundaries corresponding to the appea-
rance/absence of a particular type of invariant reaction. 
For example, the region lying below the boundary 1 (b1) 
has a congruent minimum, while that above this boun-
dary corresponds to the absence of a congruent minimum. 
Further, the region below b5 corresponds to the occur-
rence of a eutectic reaction, while that above b5 corres-
ponds to its absence. As discussed earlier, the presence of 
a eutectic implies a metastable congruent minimum within 
the miscibility gap boundaries in the phase diagram. 
Thus, a stable congruent minimum will not be encoun-
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tered in the regions in which a eutectic reaction occurs. 
In addition, ordered intermediate phases can arise in the 
region lying to the left of b7. Thus, a congruent minimum 
can occur only in the region bounded by b1, b5 and b7. 
 In an analogous manner, it can be shown that a peritec-
tic reaction occurs in the region bounded by b3 and b5. 
The intersection set of points of the above two regions 
(denoted by O in figure 1) corresponds to the occurrence 
of a peritectic reaction as well as a congruent minimum 
in the phase diagram. Similar arguments lead to an iden-
tification of the regions of occurrence of the different 
invariant reactions as well as their combinations shown 
in figure 1. These are listed below along with several of 
the known examples. Since the domains J and H are too 
small to be resolved on the scale used in figure 1, enlarged 
views of the same are presented respectively in figures 2 
and 3. 
 
A Congruent maximum (MX) + monotectic (MO) + 

ordered phase region at low temperature (OR) 
B Syntectic (SY) + OR 
C SY + miscibility gap at low temperature (MG) 
D SY + peritectic (PE) 
E MX + MO + MG 
F MX + MO + PE 
G MO + PE [Au–Rh] 
H MO + PE + congruent minimum (MN) 
I MO + eutectic (EU) [Ag–Ni, Ag–Rh, Al–Pb, 

Cu–Pb, Ho–V, Li–Na, Ni–Pb] 
J MX + PE + MG 
K MX + OR 
L MX + MG 
M PE [Ag–Pt, Cu–Ir] 
N Simple isomorphous (SI) + MG [Au–Pt, Cr–W, 

Cu–Ni, Cu–Rh, Ir–Pd, Ir–Pt, Ir–Rh, Ni–Rh, Pd–Rh] 
O PE + MN 
P EU [Ag–Cu, Ag–Pb, Cd–Zn, Ho–Ta, Na–Rb] 
Q SI + OR [Au–Pd, Cd–Mg, Cu–Pd, Cu–Pt, Ta–V] 
R MN + MG [Au–Ni, Cr–Mo] 
S Complex phase diagrams exhibiting intermediate 

ordered phases 
T MN + OR [Au–Cu, Cs–K, Ni–Pt] 
U MO (see figure 4) 
Q + N SI [Ag–Au, Ag–Pd, Mo–Ta, Mo–V, Mo–W, 

Nb–Ta, Nb–W, Os–Re, Os–Ru, Pd–Pt, Pt–Rh, 
Re–Ru, Ta–W, V–W] 

R + T MN [Cr–V, Cs–Rb, K–Rb, Nb–V, Ni–Pd]. 
 

 As mentioned earlier, van Laar (1908) also calculated 
different types of phase diagrams by varying the values 
of Wα and Wβ. However, his study was restricted to the 
positive octant of Wα and Wβ space (Wα > Wβ > 0). We 
have delineated the regions corresponding to all types of 
possible regular solution binary phase diagrams in the 
entire space of (Wα, Wβ). It is interesting to note that all 
the real systems cited above lie essentially in the regions 

corresponding to Wα > Wβ but are not confined only to 
the positive octant. 
 All the combinations of Wα and Wβ considered by  
Pelton and Thompson (1975) and DeHoff (1993) for 
computing phase diagrams can be mapped on to figure 1. 
The phase diagrams computed by them are in conformity 
with the respective domains of existence identified in our 
analysis, with the following exceptions. As can be seen 

 
Figure 2. Enlarged view of the domain J in which a congruent 
maximum and a peritectic reaction occur (∆S = 10 J mol–1 K–1). 
 

 
Figure 3. Enlarged view of the domain H in which a mono-
tectic, a peritectic and a congruent minimum occur (∆S = 10 
J mol–1 K–1). 
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from figure 1, the phase diagram corresponding to the 
choice of Wα = 20 kJ mol–1 and Wβ = 15 kJ mol–1 is ex-
pected to exhibit a congruent maximum and a monotectic 
reaction. The phase diagram computed with the above 
choice of parameters indeed exhibits a congruent maxi-
mum at T = 1205 K and x = 0⋅9, and a monotectic invari-
ant reaction at T = 1190 K. This is in contradiction with 
the simple monotectic phase diagram reported by Pelton 
and Thompson (1975). Similarly, the phase diagram cor-
responding to Wα = 10 kJ mol–1 and Wβ = 15 kJ mol–1 exhi-
bits a peritectic reaction at T = 799 K and a congruent 
minimum at T = 795 K and x = 0⋅1, contrary to the simple 
peritectic phase diagram reported by these investigators. 
Further, Pelton and Thompson (1975) have not consi-
dered the possibility of occurrence of complex phase dia-
grams with intermediate ordered phases arising due to an 
intersection of the solidus with the order–disorder boun-
daries. As a result, the phase diagram corresponding to 
Wα = – 15 kJ mol–1 and Wβ = – 20 kJ mol–1 is shown as a 
simple isomorphous diagram by them. However, the pre-
sent analysis shows that the boundary of an ordered  
intermediate phase will intersect the solidus, thereby 
completely changing the topology of the phase diagram. 
 Chang and Chen (1997) have also calculated some of 
the possible phase diagrams corresponding to a choice of 
∆S = 20 J mol–1 K–1. Their results are in conformity with 
the domains for existence of a given type of phase dia-
gram as calculated by us for the same choice of ∆S. How-
ever, the (Wα, Wβ) plot for ∆S = 20 J mol–1 K–1 is not 
being presented here. 
 As can be seen from figure 2, the small triangular region 
J corresponds to the occurrence of a congruent maximum 
and a peritectic reaction. It is interesting to study the  
effect of variation of ∆S on the presence of this region. 
By a systematic variation of ∆S, it is found that the 
boundaries 2, 3, and 4 concur for ∆S ≈ 11⋅5 J mol–1 K–1. 
Specifically for ∆S = 13 J mol–1 K–1, the region J in figure 2 
vanishes and a new region labeled U is formed, as shown 
in figure 4. This region U corresponds to the occurrence 
of simple monotectic phase diagram. 
 It may be noted that the calculations presented above 
have all been carried out for the special case of ∆SA = 
∆SB. However, the analysis is valid for the general case 
as well and can be readily carried out for arbitrarily  
chosen values of entropies of transformation of the pure 
components. 
 

8. Conclusions 

Analytical conditions for the presence/absence of different 
invariant reactions in binary regular solution phase dia-
grams exhibiting two phases α and β have been obtained. 
This is accomplished in terms of the appropriate inter-
sections of the liquidus/solidus/iso-G curves with the 
miscibility gap boundaries in liquid/solid phases. These 

conditions represent curves in the space of regular solu-
tion parameters (Wα, Wβ). Sets of these curves give rise 
to a domain of existence for a given type of invariant 
reaction. The intersection sets of such domains corres-
ponding to two or more invariant reactions represent the 
domains in which a combination of these invariant reac-
tions occur in the phase diagram. A procedure for a com-
plete delineation of the existence domains of various 
invariant reactions or their combinations (except for the 
regions corresponding to the existence of ordered inter-
mediate phases) has been formulated for the first time. 
This is illustrated for binary systems with chosen proper-
ties for pure components. 
 Computation of phase diagrams using solution models 
such as the CALPHAD/cluster variation method (Saunders 
and Miodownik 1998) proceeds by a nonlinear optimiza-
tion of experimental data for the evaluation of the model 
(energy) parameters. If appropriate initial values of the 
parameters are not chosen, the topology of the phase dia-
gram will be different from that of the observed one.  
Under such circumstances, the errors (the deviations bet-
ween the calculated and observed compositions/tempera- 
tures, which are utilized in the optimization) cannot even 
be evaluated, leading to the breakdown of the optimi-
zation procedure. The analysis presented above serves as 
a very useful guide for selecting initial values of these 
energy parameters for ensuring a desired topology of the 
phase diagram of a chosen material system. 
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