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Application of genetic algorithms to hydrogenated silicon clusters 
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Abstract. We discuss the application of biologically inspired genetic algorithms to determine the ground 
state structures of a number of Si–H clusters. The total energy of a given configuration of a cluster has been 
obtained by using a non-orthogonal tight-binding model and the energy minimization has been carried out by 
using genetic algorithms and their recent variant differential evolution. Our results for ground state struc-
tures and cohesive energies for Si–H clusters are in good agreement with the earlier work conducted using the 
simulated annealing technique. We find that the results obtained by genetic algorithms turn out to be compa-
rable and often better than the results obtained by the simulated annealing technique. 
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1. Introduction 

In some of our recent articles (Gupte and Prasad 1998a, 
b; Prasad and Chakraborti 1998; Chakraborti et al 1999; 
2001a, 2002), we have reported successful ground state 
calculations for a number of Si–H clusters, by coupling 
the biologically inspired genetic algorithms (Mitchell 
1998) with a tight-binding formulation (Ohno et al 1999). 
Since hydrogenated silicon is an important opto-
electronic material, such studies are expected to have a 
significant impact in the field of computational material 
design. Our usage of the tight-binding methodology has 
drastically reduced the computing time as compared to 
the first principle ab initio technique (Car and Parrinello 
1985; Balamurugan and Prasad 2001). The results 
obtained by tight binding method, on the other hand, are 
quite comparable to what we have recently obtained 
through Car–Parrinello molecular dynamics (Car and 
Parrinello 1985; Balamurugan and Prasad 2001). In our 
earlier work a non-orthogonal tight-binding formulation 
was coupled with a simulated annealing strategy (Gupte 
and Prasad 1998a, b). Subsequent adaptation of genetic 
algorithms has rendered the search for the ground state 
energy minimum, a far more efficient process. A brief 
overview of the methodology along with some of the 
salient features of the results obtained is presented in this 
article. 

2. Genetic fundamentals 

Genetic algorithms are state-of-the-art computing tech-
niques, which tend to mimic the Darwinian principle of 
survival of the fittest, often in a context far fetched from 

biology of any kind. Being a highly robust optimizer, 
they are now being vigorously applied in a wide variety 
of problems, some of which are of extremely complex 
and computing intensive (Wang and Ho 1997). In the 
most common form of genetic algorithms, viz. the simple 
genetic algorithms (SGA), the variables are mapped on to 
corresponding binaries, generally using a linear mapping 
formula (Chakraborti et al 2001b). The binary variables 
are juxtaposed to form an individual, while a collection 
of individuals forms a population. Each member of the 
population, therefore, carries a potential solution of the 
problem and the initial population is generated randomly. 
A number of genetic operators, crossover and mutation 
for example, then act on the population, roughly emulat-
ing the similar processes in the natural world. The better 
individuals for the next generation are selected based 
upon their respective fitness values—a parameter that 
quantifies the proximity of the individual to the actual 
solution. In the context of an optimization problem, a 
pseudo code for genetic algorithms can be given as: ini-
tialize random binary population; do {calculation of fit-
ness; reproduction; crossover; mutation} while (termination 
criterion not satisfied). 
 The major difference between genetic algorithms and 
most of the traditional search routines lies in the imple-
mentation of the population concept. In contrast to the 
traditional methods where only one updated solution is 
available at any particular iteration, genetic algorithms 
rely upon a number of possible solutions, each being a 
member of the population at a particular generation—the 
term synonymous to iteration in the classical sense. For a 
successful application of genetic algorithms, the diversity 
among the population members need to be ensured till 
the solution converges. Unless there is enough diversity 
in the gene pool, the relatively strong individuals tend to 
make increasing number of copies of themselves in the 
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forthcoming generations and ultimately the stagnant 
population leads to a premature convergence. A good 
genetic algorithm generally uses a safeguard against it. A 
fitness-sharing concept was used in our earlier work on 
Si–H clusters (Chakraborti et al 2002) where each indi-
vidual shared its cohesive energy values with the popula-
tion members in the neighbourhood, measured by a 
prescribed Euclidean distance. This prevented uninhibi-
ted growth of any individual, since the weaker members 
in the vicinity always lowered its fitness. 
 Genetic algorithms, as indicated before, require map-
ping of all the system variables in a binary format. In 
case of a large number of variables, this leads to proce-
ssing of large arrays containing 1s and 0s, which often 
substantially retards the computational speed. In addition, 
binary arithmetic has an implicit disadvantage called 
Hamming Cliff problem (Deb and Agrawal 1995), which 
sometimes adversely affects the performance of SGA. 
When the search reaches a Hamming Cliff, any small 
change in the variable values in the real space requires a 
very large change in the corresponding binary. This 
decelerates the progress of the search and sometimes, 
fine convergence becomes impossible in a near optimal 
scenario. Such problems can be easily averted if, instead 
of the binary equivalents, the genetic operations can be 
performed on the real-coded variables themselves. Some 
of the recent versions of genetic algorithms precisely 
tend to attempt that. We have successfully applied one 
such algorithm, the recently proposed differential evolu-
tion (DE) (Price and Storn 1997), for the present prob-
lem. Like most other genetic algorithms, differential 
evolution can also be used for optimizing any function 
with a number of constraints. Being an evolutionary 
optimization technique, DE works with a population, 
resorts to natural selection, based upon the fitness of its 
individuals and creates a new and hopefully improved, 
generation by doing crossover and mutation. All such 
operations however, need to be redefined in case of DE, 
as the variable space is real, not binary. Further details of 
DE are provided elsewhere (Chakraborti et al 2001a). 

3. Non-orthogonal tight-binding approximation  

The tight binding approximation is now becoming 
increasingly popular for studying covalently bonded 
materials (Ohno et al 1999). It assumes the system to be 
consisting of ionic cores and electron gas, and attempts to 
calculate the total energy functional for the entire system 

)( totalE  by adding up the one particle eigenvalues and the 
individual pair potential terms, such that 
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where the constant, U0, shifts the cohesive energy as 
needed, Eel denotes the energy associated with the occu-
pied eigenvalues of the electronic system and Epair the 

sum of pair potential terms arising due to repulsion 
between the ionic cores.  
 Denoting the occupancy of the k th eigenstate as gk, and 
Nocc as the number of occupied orbitals, the electronic 
contribution to the total energy is expressed as 
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Furthermore, summing up the pair potential terms related 
to repulsion between the ionic cores, Epair is obtained as 
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Utilizing this basic definition for total energy, the wave 
functions of these eigenstates are given in terms of non-
orthogonal basis as 
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where |φi〉 are the basis functions. In non-orthogonal tight 
binding theory employed here the basis functions are 
localized on each atom resembling its atomic orbital and 
spherical harmonic functions (Yim) are used to describe 
their angular parts. The characteristic equation is then 
expressed as 

,0)( =−∑
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where Hij denotes the Hamiltonian matrix elements 
between the ith and jth orbitals, such that  

.|| 〉〈= ji
ij HH φφ  (6) 

The overlap matrix elements between them are expressed 
as 

.|| 〉〈= ji
ijS φφ  (7) 

Further details of calculating the Hamiltonian and the 
overlap elements are provided elsewhere (Gupte 1998). 

4. Computational 

There are actually infinite atomic arrangements possible 
in this solution domain and the task of genetic algo- 
rithms was to locate the configuration at ground state 
containing the minimum energy. The atomic coordinates 
were taken as the genetic variables and a Cartesian 
coordinate system was used for simplicity. The search for 
the ground state was conducted in a cubic space of 125 
cubic Å. The population size was adjusted on the basis of 
number of variables and a scheme for adjusting the 
mutation constant and crossover probability was evolved 
through a systematic trial and error.  
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Figure 1. Ground state geometry of (a) Si2H, (b) Si3H, (c) 
Si4H, (d) Si5H cluster and (e) Si6H cluster. 
 

 
 
 All the calculations were performed in a local area 
network of a number of silicon graphics workstations of 
SG 200 origin series. 

5. Results and discussion 

The ground state geometries of SinH clusters using the 
genetic algorithms from n = 2 to n = 6 are shown in 
figure 1. The results obtained by simulated annealing 
(Gupte and Prasad 1998a, b), genetic algorithms (Chakra-
borti et al 1999, 2002) and differential evolution 
(Chakraborti et al 2001a) are in excellent agreement with 
what has been calculated recently by using Car–
Parrinello technique (Balamurugan and Prasad 2001). It 
is interesting to note that hydrogen is bonded with two 
silicon atoms in Si3H and Si5H although its valence is 
one. Such Si–H–Si bridge type bonds are thought to 
be present in amorphous hydrogenated silicon and 
play an important role in explaining Staebler–Wronski 
effect.  

 Further details of each of the clusters are provided 
below. 
 
Si2H: There are two competing structures for Si2H, one 
is symmetric and the other is asymmetric. Our initial cal-
culations using differential evolution (Chakraborti et al 
2001a) obtained this structure as planar, asymmetric as 
shown in figure 1(a). However, subsequent calculations 
(Balamurugan and Prasad 2001) using Car–Parrinello 
molecular dynamics gives symmetric structure as ground 
state. 
 
Si3H: In Si3H structure two Si atoms are situated sym-
metrically with respect to the third. The lone hydrogen 
atom is also situated equidistantly from two Si atoms, 
forming a planar structure shown in figure 1(b). Note that 
in this case H is bonded to two silicon atoms. 
 
Si4H: The ground state structure of this cluster is quite 
similar to that of Si4 reported earlier (Menon and Sub-
baswamy 1994). The presence of hydrogen causes some 
distortion in the structure. The essential geometric 
features of Si4 are however retained, as shown in figure 
1(c). 
 
Si5H: In this case three Si atoms are situated on the 
same plane as the lone hydrogen atom as shown in figure 
1(d). The coordinates of hydrogen atom predicted by 
Car–Parrinello method is slightly different from what has 
been obtained by GAs and DE, and is shown here for the 
sake of accuracy. The structure is symmetric along this 
plane with Si atoms. This structure is quite deviant from 
the reported structure of Si5 (Menon and Subbaswamy 
1994), and in fact it is more like the reported structure of 
Si6 (Menon and Subbaswamy 1994). 
 
Si6H: The ground state structure of Si6H appears to be a 
slightly distorted bicapped tetrahedron. The distortion is 
caused by the presence of hydrogen in the lattice, which 
shifts the Si atoms in its immediate neighbourhood. The 
structure is shown in figure 1(f). This structure is quite 
different from that obtained from the Car–Parrinello 
method. 
 

This study has suggested that hydrogen can bond with 
two silicon atoms forming a bridge-like Si–H–Si bond. In 
case of a closed compact silicon cluster, hydrogen bonds 
to the cluster from outside. Our results show that the 
addition of single hydrogen can cause large changes in 
the electronic structure of a silicon cluster but the 
geometry is not much affected. Such observations may 
have some important consequences in the material selec-
tion for the opto-electronic devices like light sensors, thin 
film transistors, light emitting diodes etc where hydro-
genated amorphous silicon appears to be an important 
material (Paesler et al 1989). 

(a) (b) 

(c) (d) 

(e) 
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6. Conclusions 

During the last decade there has been a very rapid deve-
lopment in the study of small clusters. This has been 
partly due to the growing importance of these systems in 
applications like catalysis and due to possibilities of 
developing nano-electronic devices. Also some clusters 
are found to be very stable and referred to as magic 
clusters. There have been attempts to design novel mate-
rials using these clusters as basic building blocks. These 
materials may have very different properties compared to 
the naturally occurring solids. This study has demon-
strated that biologically inspired genetic algorithms and 
differential evolution can be efficiently used for com-
puting the ground state configurations of the small, 
hydrogenated silicon clusters. These techniques can be 
easily tried out for a large number of related problems 
and their increasing presence in materials research is 
expected to be seen in a very near future.  
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