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Abstract. The third-generation LMTO method provides a new wave function basis set in which the energy
dependence of theinterstitial region and inside muffin—tin (MT) spheresistreated on an equal footing. Within
theimproved method, basisfunctionsin theinterstitial arethe screened spherical waves (SSWs) with bound-
ary condition defined in termsof a set of ‘hard’ sphereradii ar . Energy eigenvalues obtained from the single-
particle Schrédinger equation for MT potential is energetically accurate and very useful for predictingareli-
ablefirst-principlestight-binding (TB) model of widely different systems. In this study, weinvestigate a possi-
bility of the new basis setstransferability to different environment which could be crucial for TB applications
tovery largeand complicated systemsin realistic materials modelling. For the case of C wheretheissue of g7
vs $p° bonding description is primarily important, we have found that by downfolding the unwanted channels
in thebasis, the TB electronic structure calculationsin both hexagonal graphite and diamond structuresare
well compared with those obtained from the full LDA schemesif we use the same choice of hard sphereradii,
ar. and a fixed, arbitrary energy, e,. Moreover, the choice is robust and transferable to various situations,
from different forms of graphite to a wide range of coordination. Using the obtained minimal basis set, we
have been investigating the TB Hamiltonian and overlap matrices for different structuretypesfor carbon, in
particular we have predicted the on-site and hopping parameters (g;, g, ¥ , gs) within an orthogonal represen-
tation for Slonczewski—W eiss—M cClure (SWMcC) model of the Bernal structure. Our theoretical valuesarein
excellent agreement with experimental ones from magnetor eflection measur ements of Fermi surfacesfor hex-

agonal graphite.
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1. Introduction

The past decade has witnessed an explosion in number of
applications of the tight-binding (TB) modd to smulat-
ing the dructurd and cohesve propeties of materids
(Turchi et al 1998). This is due to the TB modd being
the smplest scheme that includes correctly the underly-
ing quantum mechanicad character of covdent bond in
vaigy of materids induding semiconductors, trangition
metds and even more complex maerids with mixed
metdlic/ionic and covdent bonding. The conventiond
semiempiricd TB method, however, auffers from uncer-
tainty of how best to choose the TB parameters that enter
the scheme. Therefore, it is desrable to develop a direct
and determinigic way of computing the TB parameters
out of first-principles caculations.

The liner muffinrtin orbitd (LMTO) method of the
fird and second generations implemented in the bads of
the screened and  energy-independent  muffintin (MT)
orbitds (Andersen and Jepsen 1984; Andersen et al
1985) has dready been proved to be a powerful method
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for providing firg-principles parameters. Nevertheless, it
lacks the dedirable flexibility to be used as an automatic
scheme for providing smple and tight-binding bads sdts
for a broad class of maerids In this paper we shdl be
usng an improved verson of the LMTO method viz. the
third generation LMTO method (Andersen et al 1998)
which precisdly stisfies this objective. We shdl demon-
drate this by deriving tight-binding eectronic dructure
cdculations within different locd environment for C
induding graphite and diamond structures with sp® and
sp> bonding, respectively.

Cabon science has been revolutionized by the dis
covery and synthesis of fullerenes (Kroto et al 1985) and
subsequent identification of nanotubes (lijima 1991). On
the other hand, the outstanding chemicd and physca
properties of tetrehedral amorphous cabon (Mckenzie
1996) are again the subject of interest with the discovery
of so-cdled mediumrange order & nanoscde messured
by fluctuation eectron microscopy (Chen et al 2001).
The origin of mediumrange order in a-C is ill mysteri-
ous and computationd smulation with an accurate tight-
binding based interatomic potentid a very large scde
which is beyond the present dae-of-at of Ca—Parindlo
scheme, could hedp to gan more undersanding of its
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gructure. The long-term purpose of this project is to
sudy the extraction of trandferable tight-binding para-
meters from third-generation LMTO to be fed into the
new bond-order potentids scheme (Nguyen-Manh et al
2000).

2. Third-generation LMTO formalism

The crucid difference between the traditiond and the
improved LMTO method lies in the description of inter-
ditid region between MT spheres surrounding around
the podstion of aoms. In the new verson, the energy
dependence of the interdtitid is trested on an equa foot-
ing with the MT spheres, so that the single-paticle ener-
gies obtaned from the Hamiltonian and overlgp matrices
in the new bads st is enagedicdly more accurate.
Within 3rd generation LMTO, the basis functions in the
interditidd ae the screened sphericd  waves  (SSWs)
which are the solutions of the wave equaion (Andersen
et al 1998)

[D+ dy(er)=0, @

with boundary conditions defined for a sructure with
sites R. The boundary condition is defined in terms of a
st of had sphere radii, ar. (L° Im) being concentric
with eech MT sphere centred a& R such tha when
Ya(ery) is expanded in  sheicd  harmonics,
YreLo(fre) bOUt its neighbouring sites R¢ then each com-
ponent either venishes a a radius, rge=ageq OF IS @
regular solution a that ste. The hard sphere radii, for
different L channds are conddered to be different while
ag. for channds with high-l values are taken to be zero,
so that the radia pats of the high-l projection become
sphericd  Bessel  functions ji(krg) with K =e For the
low-I components, the range of SSWs depend on the
choice of hard sphere, ar, and the energy.

The radid deivatives of the SSWs a the hard spheres
ae defined, within the screened {a} representation, by
the dimensonless dope matrix, Si¢¢r. (€) which in tun
can be expressed in tems of the conventiond KKR
sructure congtant. In order to solve the Schrodinger
equation, one defines the kinked partid wave (KPW)

Fa@rr)=[faers)-iaE )Y (fR) +y q (8 1R),

@

where f 3 (e ry) ad j g (e rg) ae the radid patid
wave for each drong scatering channd  outwards from
the origin to the MT radius, s and inwads in zero
potentiadl from sz to the hard-sphere radius, ar ., respec-
tively. This KPW is everywhere continuous, but has
kinks of sze [SRegr (€)- D{j r(€ap)} Oregrl @
shown in figure 1, where D(f(X)) = TInf(x)/finx denotes
the radid logarithmic derivative. Like the dope matrix,
the kink matrix isnot Hermitian but the matrix
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Figure 1. Various components of kinked partial wave within
the third generation LMTO scheme.
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is. It is shown from Andersen et al (1998) that the
sreened KKR marix, K%(@) a a fixed arbitray energy,
&, is the negative of the Hamiltonian and its first energy
derivative, K®(e,)is the overlap marix in the besis of
KPW. Solving the KKR eguations lead to exact solution
of the Schrodinger equation, but it is more precticd to
wlve the st of dgenvdue equdions involving Hamilto-
nian, H and overlap, O matrices as is done in the LMTO
method. The energy-independent set of improved LMTO,
|chi=|F i |FIK 'K is complete to linear order with
repect to the MT Hamiltonian and yidds single-particle
energies @, Wwith erors proportiond to (e—e)*. For
comparison, previous generetion LMTO set has dngle-
patide energy erors of order (€—e)°. Addtiond fea
ture of the third-generation LMTO method is that it
enables us to maeke the m-dependent downfolding which
is very important for deriving the few-orbitlls TB Hamil-
tonians.

Renormdizing and  subsequently, Lowdin  orthonor-
malizing the KPWs, |Ff lead to a formdism andogous
to conventiona onewith h, o, p now redefined as

h=-K- Y2RK-12
o=-h/2 p*+o=-he, (4

whee K =4 |f A is the overlgp matrix for the renorma
lized KPWs. As a result, ones recover the conventiond
expressions for the MT-Hamiltonian in the completey
othogona representation as a power series in two-
centred Hamiltonian, h:

4c™ |Hy - € | c'fi=h- hoh+ h[oho- 4 (ph+hp)lh+---

®
where

| "o |Erac | T Y% ~ | Si1+oh) !

=| c9Awith | =i =|B fi+| O th.
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3. Orthogonal TB modé for graphite
3.1 Band structure calculations

Natura graphite occurs in two crysta dructures. the
Bend or hexagond (P6s/mmc) and the rhombohedral
(R3m) dructures. In difference to sSmple graphite sruc-
ture (P6/mmm) which has an AAA-gtacking with dl ca-
bon aoms in consecutive layers located on top of each
other, the Bernd dgructure possesses an ABAB-stacking
while rhombohedra grephite has an ABC-stacking. At
zero Kevin, the distance between nearest-neighbours is
D42A and the interlayer separations caculated by mini-
mizing totd energy obtaned by firg-principles cadcula
tions ae 3B3BA 385A ad 3IMUA for smple
hexagond and rhombohedrad grephite, respectivdly. The
converged LDA band dructure for hexagond graphite is
shown in figure 2 where the zero of energy is the Fermi
level. In order to highlight the role of different orbita-
projected contributions, we have used ‘fla’ band struc-
ture representation (Neumann et al 1998) for 25
20+ 2py (in the grephitic plane) and 2p, (perpendicular
to the graphitic plane). The strong bonding within the
layers is described by sp® hybridized 2s, 2p, and 2py
aomic orbitds (s daes) and the wesk interlayer bonding
is deived from the ovelgp between 2p, orbitds (p
states).

We have agpplied the improved formdism of 3rd-gene
raion LMTO method presented in 82 for genereting TB
Hamiltonian for graphite using C-sp® basis set (all empty
spheres spd and C-d channds are downfolded). The TB
cdculaions have been performed within the orthogond
representation for Hamiltonian from (5). The hard sphere
radii, as and a, for 2s and 2p orbitals respectively, and
dso the fixed linearized energy, @ have been optimized
in order to get the correct dectronic sructure for al the
vadence band dates and the two firs conduction band
dates dong the K—H direction of the Brillouin zone
where a zero-ggp semiconductor or semimetd  behaviour
is observed. For hexagond grephite, we have found that
as=D1®4au, a,=183au. ad =-0¢7/Ry. In figure
3 we compare the LDA band sructure (full lines) with
results obtained from the Hamiltonian matrix truncated to

Figure 2.

1¢, 2nd, 3rd, 4th, 5th and 10th nearest neighbour (NN)
(dashed ling), respectivdy. We can see dealy tha when
4th NN interlayer interactions are included into cong-
deration, the degeneracy dong G-A line is lifted and it is
possible to get an accurate description of vaence band
gructure within the orthogonad TB formaism after 10th
NN cdculations.

32 SWMcC-model parameters of the pband bonding

As the present TB formdism is free from fitting parame-
ters and purdy determinigtic, it is intereting to deduce
from caculated band dructures the wel known seven
SWMcC interaction parameters for the hexagond graph-
ite (Sonczewski and Weiss 1955, 1958, McClure 1957).
Thee parameters ae determined  within - an  orthogond
TB representation using the atomic p orbitas as shown in
figure 4. While the parameter, @, represents the interac-
tion between neighbouring aoms in a grgphitic monolayer,
the parameters g (i =1-5) represent different interactions
between two neighbouring or next-neighbouring  grgphi-
tic planes. The g=D paameer is the chemicd-shift
between A and B aoms The SWMcC modd extends the
linear digperson law of the grgphic monolayer to the 3D
cax. This modd is vdid in some regions of the Brillouin
zone, such as the neighbouring of the six verticd edges
H-K-H. Along a veticd axis (HK-H or H¢KEHG, the
eigenvaues of Hamiltonian are given by

of =D+gG+3 e, ©
0 1 2

& =D- gG+2 0., ®
0 1 2

& =20,G" ®

where G=2cogk,Cco/2) and the wave vector, k, is mess
ured from the K point. At the edge H-K-H of the Bril-
louin zone, in the plane A-H, the eigenvadues ae given
by

LDA orbital-projected bands for hexagonal graphite.
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Figure 3. Third generation LMTO band structure calculations for INN, 2NN, 3NN, 4NN, 5NN and 10NN (solid line)
compared with the LDA energy bands (dashed line) for hexagona graphite.
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Figure 4. The SWMcC TB parameters between individua
atomsin the graphite lattice.
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Table 1. Values of the SWMcC-model parameters (in V) for
hexagonal graphite from the present work in comparison with
the plane-wave pseudopotential calculations and with a collec-
tion of the best experimental evaluations (Charlier and Miche-
naud).

Present Plane-wave
Parameter work method Experimental
® 3442 2698 3%6 + 0%5
o 0411 0,864 0589 £ 01
[ -0018 -0014 —002 + 0002
o) 0810 05819 05815 + 0015
(o 0042 0477 0044 + 0024
% 0043 0036 0038 + 0005
% —-0015 —0.026 —0008 + 0002

where Nn=2(g/g)cosk,co/2). Table 1 presents a set of
cdculaed vaues of the SWMcC paameges from 3rd-
generation LMTO method and compares it with the theo-
reticd planewave ab initio mehod and experimenta
data from diffeeent messurements of the Fermi  surface
(Charlier and Michenaud 1992). Our vaues ae in excd-
lent agreement with experimenta data.

4. Transferable parametersfor carbon

As it has been emphaszed in 82, the new bass s&t of 3rd
generdion LMTO scheme is more accurate due to the
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introduction of a sat of hard sphere radii, ag.. In this sec-
tion, we use the vaues of as=D1®4au, ap=183 au
and the fixed energy of ,=-0¥7Ry which is condd
eed as centre of vdence band as the three man parame-
ters for cdculating €eectronic energy bands of different
crystdline structures.

4.1 Transferability between graphite and diamond

Study of the dectronic band sructure for graphite and
diamond-like carbon plays a crucid role in understanding
the relationship between sp?> and sp® bonding. On the
other hand, there is a wel known transformation path
from rhombohedrd grephite to diamond which mini-
mizes the energy a each vdue of the bond length bet-

ween layers (Fahy et al 1986). We dlow the Hamiltonian
metrix to extend to 12th NN digance of the diamond
sructure as it is found from previous investigation for S
that with sp® basis set it is certain to obtan an accurate
first-principles band gructure from the present TB
sheme (Séha Dasgupta et al 2000). Figure 5 shows a
comparison of band dructure of hexagond graphite, dia-
mond and rhombohedrd grgphite cadculated with the
above fixed paameaes For the diamond sructure, we
use the ldtice parameter a=6%754au. which has been
found from firg-principles cdculations within  FLAPW
method (Nguyen-Manh et al 2001). The red-space clus
ter corresponding to 12th NN distance for diamond-like
cabon has the radius, R, of 11%6625au. The figure dem-
ondrates a remarkable agreement between the TB and the

Figure 5. Third generation LMTO energy bands calculated with as= 164 a.u., a, = 183 au., E, = 0¥7 a.u.

and R; =

1156625 au. for hexagona graphite (a), diamond (b) and rhombohedral graphlte (c) (solld line) and

compared with the corresponding LDA calculations (dashed line).
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Figure6. Thesameasin figure5 for smple cubic (a), bcc (b), fce (c) and hep (d) structures.
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LDA cdculations not only for description of dl vaence
bands but dso for lowest conduction band in three con-
sidered structures.

4.2 Transferability to higher coordination numbers

It is very important for transferability of TB scheme that
its environmenta dependence of two-centre Hamiltonian
matrix can be extended to describe properly the higher-
coordinated  (metalic) dructures in addition to the
grephite  and diamond ructures (Tang et al  1996;
Nguyen-Manh et al 2000). We use the diamond structure
& the refeence dgructure for carbon with the four
parameters. as, ap, E, and R.. Figure 6 shows the elec-
tronic band dructure cdculation for smple cubic (a=
32810au), bcc (a=44058au.), fcc (a=5%074au.)
and hcp (@a=30251, c=6x097au) with dl latice
parameters obtained from the FLAPW results (Nguyen-
Manh et al 2001). In figue 6, the TB cdculdion
reproduces very well dmogt dl the metdlic bands within
the present sp° basis set.

5. Conclusions

We have employed the third generation LMTO method to
sudy various tight-binding €ectronic energy bands of
cabon in different sructure types. For the ground-state
hexagond graphite dructure we have cdculated, within
the SWMcC modd for the pbands, sx TB paameers
which ae in excdlent agreement with experimenta
measurements of Fermi surface. By usng the orthogond
representation, we have shown that the hard-sphere radii,
as ad a, and the fixed linearized energy, E,, ae the
important parameters to reproduce the correct eectronic
enagies not only for grgphite and diamond-like carbon
but aso for higher-coordinated metalic sructures. This
preliminary study being free from any fitting procedure,
provides a powerful base for invedigaing the transfer-
aility of TB Hamiltonian (and overlgp) matrices within
the third genertion LMTO or more accurate NMTO
(Andersen et al 2000) schemes.
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