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The use of aluminium as a construction material has been increasing since its first invention.

At present, limited knowledge of the behaviour of aluminium beams in fire gives rise to

excessively high insulation demands, decreasing its competitiveness. An explorative study is

presented here that aims to assess the potential for improvement in the existing design

standards for aluminium in fire conditions. At present, fire design for aluminium alloy beams

is performed using the same system of cross-sectional slenderness classes as is employed at

room temperature. Identical width-over-thickness ratio limits are used to define the

boundaries between the classes. These limits are known (and demonstrated) to be

conservative, but may in fact be over-conservative. Especially for tempered alloys, the

geometric limits may be relaxed considerably, allowing cross-sections to be upgraded in class

for fire design calculations.
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1 Introduction

The design of aluminium bending members in fire according to the European standard for

structural fire design in aluminium structures (EN 1999-1-2, 2007) follows the same

cross-sectional classification system as the standard for room temperature

design (EN 1999-1-1, 2007). The two standards also share a single set of geometric limits to

the boundaries between the four classes. This is a conservative assumption, but it is

over-conservative in many instances as the resistance to local buckling increases and the

required curvature to achieve redistribution of forces decreases with an increase in

temperature. In this paper a study is performed to increase the geometric limits of the

different cross-sectional boundaries. Failure is considered to occur through local buckling
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of the constituent plates only; tensile failure and lateral torsion buckling are assumed to be

prevented by the choice of material and support conditions.

To introduce the reader to a number of concepts pertaining to this study, an introduction is

given into aluminium and its alloys, and the concepts of cross-sectional classification and

rotation capacity. Class 2, 3 and 4 cross-sections in fire conditions are then discussed in

section 2. For class 1, a phenomena called ‘curvature localization’ plays a significant role.

This phenomena and its effect on the geometrical limits of class 1 cross-sections is dealt

with in section 3. To demonstrate the significance of the concepts discussed in this article, a

worked out example is given in section 4. Lastly, conclusions are offered in section 5.

1.1 Aluminium alloys

Aluminium is often alloyed with other elements to improve properties such as its strength.

A four digit number issued by the Aluminum Association is used to designate the different

alloys, where the first number indicates the mayor alloying element. In the (marine)

construction industry, mainly AA5xxx and AA6xxx alloys are used. In these industries, one

of the most popular alloys for sheet products is AA5083, and for extrusions AA6060 or

AA6082.

Work and precipitation hardening

Aluminium alloys are often treated mechanically or by means of heat to increase their

strength. These two processes are explained hereafter.

• Work hardening or ‘cold working’ of a material is a process where the material is

deformed plastically to generate additional defects or dislocations in the metal

structure, these dislocations pile up and impede further plastic deformation which

results in a higher yield strength of the material. When an aluminium product has

received such a treatment or temper, this is indicated by an ‘Hxxx’ behind the four

digit designation of the alloy used, where ‘xxx’ is a number indicating the amount of

work hardening applied.

• Precipitation hardening is a temper that is only possible for alloys specifically

engineered for this purpose. One or more of the alloying agents is added in a

quantity that is completely soluble in aluminium when the aluminium is liquid, but

has to precipitate out partially when the alloy is cooled to room temperature. This

precipitation process forms clusters of alloying atoms that hamper deformation
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much like the defects of the work hardening process. The precipitation process takes

time to complete however, and this is why naturally aged, precipitation hardened

alloys (as designated with a ‘T4’ behind the alloy number for example) increase in

yield stress over time. The process can also be finished during production in a matter

of hours by heating the material to a temperature in the range of 120◦C-180◦C. A

temper designation ‘T6’ or ‘T66’, amongst others, indicates that an alloy has received

such an artificial aging heat treatment.

If the alloy did not receive a temper, or if it has been subjected to a temperature above the

recrystallization temperature after tempering, the alloy is said to be in an annealed

condition, or as having a ’0-temper’.

1.2 Cross-sectional classification

The European standard for aluminium design (EN 1999-1-1, 2007), like many other modern

design standards, employs a system of cross-sectional classification for members in

bending. Based on the geometry of the cross-section, expressed as the width-over-thickness

ratio (b/t or β) of the constitutive plates, members are classified to be of class 1, 2, 3 or 4.

The maximum allowable stress and the possibility for plastic design depends on the class of

the cross-section.

• Class 4, the most slender class of cross-section. The conventional elastic moment M0.2

is not reached. The maximum moment Mrd is reduced following an effective area

approach.

• Class 3, semi compact sections. M0.2 is reached, but not the plastic moment a0 M0.2.

The moment Mrd is equal to the elastic moment M0.2.

• Class 2, compact sections. The plastic moment a0 M0.2 is reached, but the moment

decreases too fast at greater curvatures to allow plastic design. Mrd is equal to a0 M0.2.

• Class 1, ductile sections. The plastic moment a0 M0.2 is reached and the moment stays

above the conventional elastic moment M0.2 for at least a certain specified rotation

capacity. This allows for plastic design rules and the redistribution of forces. The

normative part of (EN 1999-1-1, 2007) sets Mrd equal to a0 M0.2.

a0 is the geometric shape factor equal to the quotient of the plastic- and the elastic-section

modulus. A graphical representation of the four cross-sections is given in figure 1a.
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(b) Stable and total rotation capacity

Figure 1: (a) Classification of aluminium cross-sections after (EN 1999-1-1, 2007). The numbers
in the circles indicate the cross-sectional class. (b) Difference between stable and total rotation
capacity, after: (Mazzolani and Piluso, 1995).

1.3 Rotation capacity

As mentioned in the previous section, the boundary between sections of class 1 and 2 is

defined on the basis of their rotation capacity. With regard to rotation capacity some

ambiguity exists in nomenclature and the relevant terms are defined here therefore. The

stable rotation capacity R0 is the rotation where the calculated ultimate moment Mu is

reached, decreased by, and normalized to, the elastic rotation capacity, as given in

equation (1) and as demonstrated in figure 1b.

R0 ≡
φu

φ0.2
− 1. (1)

The ‘regular’ rotation capacity R is based on the rotation where the moment, after

local-buckling has occurred, dips below the elastic moment again. This definition deviates

from steel design where the plastic moment is commonly set as the second boundary.

The answer to the question whether the stable rotation capacity R0, or the total rotation

capacity R should be used to define the boundary between classes 1 and 2, depends on the

plastic design rules used afterwards. The actual minimum required capacity according to

either limit is always somewhat arbitrary, as it depends on how inefficient a structure with

regard to plastic design we are willing to consider. The use of the total rotation capacity R

as a limit is most appropriate when we do not take into account strain hardening and
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assume a constant plastic moment. The stable rotation capacity R0 should be used if an

increase in moment past the plastic moment is considered in the subsequent strength

calculations. The Eurocode (EN 1999-1-1, 2007; EN 1999-1-2, 2007) is implicitly based on a

stable rotation capacity R0 equal to 3 (De Matteis et al., 2003; Mazzolani et al., 1996), but

does not consider the increase in moment past the plastic moment in the formal part of the

standard. In its informative Annex F however, a procedure is given which does take this

increase into account. The moment used in the plastic strength calculation according to

either method may be calculated through

Mu = aM,1Wel fd, (2)

where aM,1 is equal to the generalized shape factor a0 according to the formal part of the

standard. The informative annex (EN 1999-1-1, 2007, Annex F) sets it equal to a5 or a10,

depending on the tensile ductility class of the alloy, as defined in the before mentioned

informative annex.

a5 = 5− 3.89 + 0.00190 n
a0.270+0.0014 n

0

, (3)

a10 = a0.21 log (1000 n)
0 100.0796−0.0809 log ( n

10 ). (4)

Equations (3) and (4) were derived by Cappelli et al. (1987) from a curve fit of ‘... numerical

simulation to a wide range of cases’.

The moment curvature relationship is a convenient tool to study the behaviour of bending

members. For aluminium alloy bending members an approximation formula is given

in (EN 1999-1-1, 2007, Annex G) and (Cappelli et al., 1987):

κ

κ0.2
=

M
M0.2

+ k
(

M
M0.2

)m
, (5)

where κ0.2 and M0.2 denote the curvature and moment, respectively, where the 0.2% proof

stress is first reached in any part of the cross-section.

m =

log
(

10− a10

5− a5

)
log
(

a10

a5

) , (6)

k =
5− a5

am
5

=
10− a10

am
10

. (7)

289



2 Classes 2, 3 and 4 in fire conditions

As already stated in the introduction, the geometrical limits to the boundaries of the four

cross-sectional classes at room temperature (EN 1999-1-1, 2007), are used for the elevated

temperatures associated with fire as well (EN 1999-1-2, 2007). This was shown to be a

conservative approach by Lundberg (2003) for all but one alloy tested, for which a

negligible degree of un-conservativeness was found. The influence of the temperature on

the geometrical limits to the cross-sectional classes can be calculated by taking the

expression for the width-over-thickness ratio (b/t or β) of the plates constituting the

cross-section at room temperature:

β ≡ b
t
= Cε̂, (8)

where C is an empirical constant for the given cross-sectional class limit and ε̂ is a constant

expressing the influence of the material defined as

ε̂ ≡
√

250
f0.2

, where f0.2 is in MPa , (9)

where, to avoid ambiguity, the Eurocode notation ε = ε̂ is avoided. The constant 250 is a

linear function of the Young’s modulus E and ‘the different constants used for calculating

the slenderness parameters’ (Lundberg, 2003). The value of β at elevated temperatures is

denoted by βθ and may be expressed by

βθ = β
ε̂θ

ε̂
, (10)

where ε̂θ is the value of ε̂ at elevated temperatures. The ratio between the two constants is

given in (Lundberg, 2003) as

ε̂θ

ε̂
=

√
250kE,θ E

70000k0.2,θ f0.2√
250E

70000 f0.2

=

√
kE,θ

k0.2,θ
, (11)

where kE,θ and k0.2,θ are reduction factors given in (EN 1999-1-2, 2007), expressing the value

of the Young’s modulus and 0.2% proof stress at elevated temperatures, respectively,

normalized to their value at room temperature. Combining equation (10) and (11) yields:

βθ

β
=

ε̂θ

ε̂
=

√
kE,θ

k0.2,θ
. (12)

Unlike steel, the ratio ε̂θ/ε̂ is almost invariably greater than unity for aluminium alloys,

which is caused by kE,θ being equal to, or larger than k0.2,θ , for all but one of the researched
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Figure 2: The ratio ε̂θ / ε̂ as a function of the temperature for the aluminium alloys as given
in (EN 1999-1-2, 2007, Table 1a). Among the alloys drawn are the AA 5083-0/H12/H22/H32,
AA 6060 T6/T66 and AA 6082-T4/T6 alloys. The lowest value is found for AA 5005-0; 0.927 at
200◦C. The lowest value, when not taking into account this alloy, is 0.97.

aluminium alloys. This means that a cross-sectional classification system based on the room

temperature derived limits to β is conservative for fire design, but may be

over-conservative, as is shown in figure 2, for all alloys in (EN 1999-1-2, 2007, Table 1a).

Figure 2 demonstrates the increase in stability of aluminium alloys at elevated

temperatures. A notable exception is aluminium alloy AA5005-0, which has a 7% reduction

in β at around 200◦C. While the increase in maximum β can be relatively modest for

0-temper alloys (between 8% and 46% at 300◦C), a distinct increase is present for work and

precipitation hardened alloys (between 46% and 106%). An exception to this is AA6082-T4,

which has a lower increase in β due to its high values for f0.2 at temperatures in the range of

200◦C to 300◦C. This is caused by the naturally aged T4 temper effectively receiving an

artificial heat treatment by the fire. Given the increase in maximum β for work and

artificially aged precipitation hardened alloys, it is feasible to derive a scheme to increase

the geometric limits for these particular alloys at elevated temperatures. A simple and

conservative approximation for these alloys as present in figure 2 is given by

βθ

β
=

ε̂θ

ε̂
=

0.16 + 0.0042 θ, for 200 ≤ θ ≤ 350◦C

1, for θ < 200◦C
(13)
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3 Class 1 in fire conditions

The geometrical limit to class 1 cross-sections at room temperature was derived from stub

column compression tests such as described in (Mazzolani et al., 1996) and (Faella et al.,

2000) for square and rectangular hollow members. The ratio of the local buckling strain

over the elastic strain was found to behave according to (Faella et al., 2000)

εcr

ε0.2
=

0.905 k

β̂C1+C2 β̂
, (14)

where β̂ is defined as

β̂ =
b
t

√
f0.2

E
, (15)

and k is equal to 4. The constants C1 and C2 are equal to 2.28 and 0.16, respectively. This is

close to the analytical solution, for which C1 is equal to 2 and C2 to 0. The theoretical

buckling strain equation is given below, which is subsequently rewritten to β.

εcr =
kπ2

12 (1− ν2)

(
1
β

)2
⇒ β =

√
ε0.2

εcr

√
1

ε0.2

√
kπ2

12 (1− ν2)
. (16)

Using equation (12), this is rewritten to a temperature dependent form, and then the

quotient of the value for β at elevated temperatures to its room temperature value is

obtained.

β =

√
kE(θ)

k0.2(θ)

1√
εcr(θ)
ε0.2(θ)

√
E
f0.2

√
kπ2

12(1− ν2(θ))
⇒ βθ

β
=

√
1− ν2√
1− ν2

θ︸ ︷︷ ︸
ν part

√
kE,θ

k0.2,θ︸ ︷︷ ︸
k part

√√√√√ εcr
ε0.2(
εcr
ε0.2

)
θ︸ ︷︷ ︸

req. capacity

. (17)

It is noted that equation (17) represents the theoretical case for which C1 is equal to 2 and C2

is 0 in equation (14). It is not possible to derive an analytical solution with the empirically

derived constants C1 and C2 equal to 2.28 and 0.16. It is however possible to solve the

equations numerically and the behaviour is very close to the analytical case.

The Poisson’s ratio was assumed to be equal to 0.5 for buckling in the plastic range.

Especially for slender sections, this value may be too high. It is known the Poisson’s ratio

increases for aluminium alloys at elevated temperatures (Maljaars, 2008; Maljaars et al.,

2010), but exact data is scarce and is characterized by a significant spread. We may set the

‘ν-part’ of equation (17) equal to unity, incurring a maximum degree of

over-conservativeness of 10% based on a Poisson’s ratio equal to 0.3 at room temperature

and 0.5 in fire conditions. This simplification is never unconservative.
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The k-part of equation (17) expresses the influence of the decrease in stiffness and strength

at elevated temperatures relative to each other. In this part we recognize equation (12), and

therefore figure 2 and equation (13) hold within the same set of conditions. The influence of

the k-part is thus generally positive and can be described by equation (13) for work and

precipitation hardened alloys with the exception of naturally aged varieties.

The required rotation capacity part of equation (17) describes the influence of a changing

deformation demand at elevated temperatures. Class 1 alloys are different to the other

classes in the sense that plastic design rules may be employed without further verification

of ductility. As was described before, this was done by specifying a value for the stable

rotation capacity R0. This value corresponds to a structure with a certain degree of

inefficiency with regard to plastic design. As will be shown hereafter, the required amount

of ductility necessary for a plastic mechanism to be able to form is highly dependent on the

strain-hardening potential of the alloy through a phenomenon known as curvature

localization. This will be discussed below, after describing the increase in strain hardening

potential of aluminium alloys at elevated temperatures first.

3.1 Strain hardening at elevated temperatures

The stress-strain law of round-house materials like aluminium alloys are commonly

described by the well known Ramberg-Osgood (Ramberg and Osgood, 1943) equation.

ε =
σ

E
+ εe

(
σ

f0.2

)n
, (18)

where the exponent n expresses the amount of strain hardening. Work- and

precipitation-hardened alloys receive their increase in 0.2% proof stress f0.2 at the expense of

their strain-hardening potential, leading to high values for n. In fire conditions, however,

the strain-hardening potential is regained as the different tempers all tend to the annealed

condition. This leads to a lower value for n, as was demonstrated by Maljaars et al. (2010)

for both a work- and a precipitation-hardened alloy, AA5083-H111 and AA6060-T66,

respectively. The value for n is given by

n =

8.8− 0.016θ, for AA5083-H111 and 175 ≤ θ ≤ 350◦C

19− 0.04θ, for AA6060-T66 and 175 ≤ θ ≤ 350◦C
(19)

The room temperature values are given by (EN 1999-1-1, 2007) as equal to 5 and 16-18,

respectively.
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3.2 Curvature localization

Bending members subjected to a non-constant moment, such as the simply supported beam

with a single central load as depicted in figure 3a, suffer from a phenomenon known as

‘curvature localization’ (Moen, 1999); which is the tendency of the bulk of the curvature to be

concentrated into small regions of the beam. The effect is strongest for materials without

strain hardening (n = ∞, or elastic perfect-plastic, as steel is often modelled to behave as,

within the scope of stability calculations) and these theoretically localize all plastic

curvature into hinges of an infinitely small linear dimension. For materials with an

increasing amount of strain hardening, the effect of curvature localization decreases, and

both the localization zone and the curvatures are finite. This difference in behaviour, and

the consequences this has for the required rotation capacity of a beam under a varying

moment, is discussed below.

All plates comprising a total cross-section have a strain ε lb, for which local buckling occurs,

from this a certain maximum curvature can be derived, at which the first plate starts to

buckle. The local buckling strain, and hence curvature, are higher for a material with more

strain hardening potential. To illustrate the effect of curvature localisation, we will assume

an equal local buckling curvature κlb however. In reality, the effect of curvature localization

will be amplified by the mentioned increase in maximum curvature. Figure 3c shows the

moment distribution for a weak strain-hardening material with n = 30 and a strong

strain-hardening material with n = 5. The ultimate moments Mu,n = 5 and Mu,n = 30 relative to

an equal value for M0.2, were obtained from equation (5) as a function of the assumed

curvature κlb relative to the elastic curvature κ0.2 value of 5 and an assumed geometrical

shape factor a0, equal to 1.5.

From this figure it is clear that, as the strain hardening is increased, the maximum allowable

moment goes up as well. A more dramatic effect can be seen in the curvature distribution

as shown in figure 3b, which is also derived from equation (5). Due to the effect of

curvature localization, the weak strain hardening material is restricted to elastic values for

most of its length, with a narrow zone of plastic behaviour only, while the strong strain

hardening material is able to plastically deform along a far greater length. Integrating these

curvature profiles yields the deformation of both members, along with the rotation at the

supports, as shown in figure 3d. From this figure it is apparent that the maximum rotation

at the supports, and thus the (stable) rotation capacity is much larger for beams with an

increased amount of strain hardening in case of a variable moment across the beam.
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Figure 3: The principle of localization and its effect on the rotation capacity of a beam under a
moment gradient, for a heat treated aluminium alloy with n = 30 with little strain hardening,
and an aluminium alloy without heat treatment (n = 5) and a considerable amount of strain
hardening.

It was already shown in the previous section that the strain-hardening potential is increased

at elevated temperatures. In this section it was found that the effect of curvature localization

is less for materials with a greater amount of strain-hardening. For structures at elevated

temperatures, the required ductility is thus less, and the influence of the required capacity

part of equation (17) is a positive one. To quantify this effect, we will take a look at a more

complex structure; the three span continuous beam, which is argued to be able to describe a

wide range of structural types. Before this, the concept of curvature capacity is introduced.

3.3 Curvature capacity

For an elastic perfect-plastic material, the (stable) rotation capacity is directly proportional

to the rotation in the first appearing plastic hinge because all the plastic curvature is

restricted to infinitely small hinges. This makes rotation capacity a convenient way of

describing the required ductility of a beam; it has a constant, material and cross-section

independent, value for a given beam and load geometry, and it has a direct relationship to

the rotation in the first appearing plastic hinge. For round-house materials, this is no longer

the case. It is exceeding a certain maximum curvature with associated cross-sectional plate

strains which leads to local buckling. The plastic deformation capacity is thus expressible

by a curvature capacity, which is a cross-sectional property only.
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Figure 4: The elastic moment distribution in a three-span continuous beam due to a single
concentrated force at the centre of the middle span.

The required curvature for a certain beam and load geometry is, for round-house materials,

not an exclusive beam/load combination property, but is also dependent on the

strain-hardening potential of the alloy through the effect of curvature localization; beams

with less localized hinges require a lower maximum curvature. A way of comparing

between bending members of equal ductility demand is the curvature capacity Rκ which is

defined as

Rκ ≡
κlb

κ0.2
− 1. (20)

3.4 Curvature distribution in a 3-span continuous beam

To study the required rotation capacity of real life structures, a model structure is required

which needs multiple plastic hinges to develop before collapse occurs. A versatile type of

structure, capable of simulating a wide range of structures is the 3-span continuous beam of

figure 4. In this figure, the elastic moment distribution due to a single concentrated force at

the centre of the middle beam is shown. The ratio between the elastic moments |M1/M2| is

identical to the ratio between the rotations in the first occurring plastic hinge to the second,

in case all rotations are assumed to be restricted to plastic hinges. The ratio |M1/M2| is

therefore expected to have an approximately linear relation to the required rotation capacity.

The ratio |M1/M2| itself is a function of the geometry, and can be modified by changing the

ratio between the lengths of the centre and the side spans through∣∣∣∣M1

M2

∣∣∣∣ = 1
3
4

L1
L2

+ 1. (21)
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Figure 5: Influence of moment ratio |M1/M2| as defined in figure 4, on the rotation and curvature
capacity requirements for a symmetric three-span continuous beam.

Similar equations were derived for other structural types, and through the |M1/M2| ratio

we can represent them all. A numerical procedure is employed to derive the moment and

curvature distribution of the before mentioned 3-span continuous beam, based on

equation (5). When we vary the ratio |M1/M2|, the required rotation capacity R reacts

approximately linear as predicted. This is shown in figures 5a and 5b. There appears to be

little influence of the exponent n or the geometrical shape factor a0 (a geometrical shape

factor of 1.15 is a typical value for an I-profile and 1.5 for a solid beam).
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A different picture arises when we do not look at the rotation capacity R, but rather at the

curvature capacity Rκ . Figures 5c and 5d, show the same results as in figures 5a and 5b, but

now in terms of the curvature capacity. A distinct influence of the strain-hardening

potential is present, especially for the more optimized cross-sectional shapes as common for

aluminium design and as indicated with a low value for the generalized shape factor a0.

Because the curvature is less localized for aluminium alloys at elevated temperatures which

have a greater strain hardening potential, a lower maximum curvature is required for a

plastic mechanism to form.

4 Example

To demonstrate the effect of the phenomena described in this article, we may take a look at

figure 5a and lookup the |M1/M2| ratio belonging to a stable rotation capacity of R0 = 3 as

specified by (EN 1999-1-1, 2007). The maximum |M1/M2| is equal to approximately 4.

Aluminium alloy 6060-T66 has a minimum quoted value of n = 16 at room temperature,

and this is reduced to nθ = 5 at a temperature of 350◦C. If we look up the curvature capacity

requirements for |M1/M2| = 4 in figure 5c, the curvature requirement is reduced from

Rκ ≈ 13 to Rκ ≈ 5 as the temperature is increased from room temperature to 350◦C.

Through equation (17) and (20), it can then be calculated that the limit for the b/t ratio β is

increased by 53% due to the diminished ductility demand, and a further 42% due to the

increased k-part of equation (17). These numbers are obtained for the analytical form of

equation (14). A similar increase is observed for the numericaly solved, emperical form.

Then the b/t limit for a class 1 internal plate of AA6060-T66 is equal to 12.2, which is

increased to 17.5 at 350◦C due to the decreased ductility demand. The increased stiffness

over strength ratio at elevated temperatures further increases the limit for class 1 of this

specific alloy at 350◦C to 24.9, which is higher than the limit for class 3 at room temperature.

298



5 Conclusions

An explorative study has been performed to investigate the potential for a cross-sectional

classification system for beams in fire that better reflects the actual behaviour of such beams

in practice as compared to the current design rules as given in the Eurocode for fire

design (EN 1999-1-2, 2007). It has been found that such potential exists and a simple

equation is given to increase the geometric limits of class 2 and 3 sections, such that beams

may be considered to be of a higher class in fire design. This is caused by the stiffness

decreasing more slowly at an increase in temperature than the strength.

The rotational capacity requirements of class 1 sections have been investigated and it has

been found that the curvature capacity demand is decreased at elevated temperatures due

to the increase in strain-hardening potential and the decrease in curvature localization. At

the same time the curvature resistance is actually increased due to the increase in stability,

which is again caused by the stiffness decreasing more slowly at an increase in temperature

than the strength. Cross-sections that are of class 2 or higher at room temperature may thus

be able to sustain sufficient plastic deformation to allow a plastic calculation according to

the rules of class 1 as defined by (EN 1999-1-1, 2007).
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List of symbols

ε Strain

ε0.2 Strain at the 0.2% proof stress

εcr Critical elastic strain

ε lb Strain at local buckling (inelastic)

κ Curvature

κ0.2 Curvature at conventional elastic moment

κlb Curvature at local buckling (inelastic)

σ Stress

ν Poisson’s ratio

a0 Geometrical shape factor (Wpl/Wel)

b Plate width

f0.2 0.2% proof stress

fd Design value of 0.2% proof stress

M0.2 Conventional elastic moment

M1 Elastic moment at the place of the first yielding plastic hinge(s)

M2 Elastic moment at the place of the yielding of a second (set of) plastic hinge(s)

Mu Ultimate moment

Mrd Design value for moment resistance

n Exponent in Ramberg-Osgood equation, expressing strain-hardening ability

R Rotation capacity

R0 Stable rotation capacity

Rκ Curvature capacity

t Plate thickness

Wel Elastic section modulus

Wpl Plastic section modulus
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