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This article presents insight into the stability check for members loaded in a combination of 

compression and bending, in which - due to 2nd-order effects - also torsion occurs. A key 

decision in the opinion of the authors is the introduction of the stability parameter n* as the 

ratio of the total displacement and the 2nd-order part of displacement. They believe that this 

quantity can fulfill an 'alarming function' when judging the stability of structural members. 

An iteration procedure in a number of clearly distinct steps results into a general formula for 

n*, in which all necessary data concerning member properties and load cases are covered.  

The member safety is inspected by a unity check, which relates occurring stresses to strength 

requirements. Also checks on displacement limits are described.  

This new method for compressive-flexural-torsional buckling is applicable for all existing 

building materials in structural engineering as long as elasticity is involved.  

Essentially, the calculations can be done in a short time using a pocket calculator, without 

the use of other utilities. It has been deliberately chosen not to elaborate the derived 

formulas too far, in order to preserve a clear view on cohesion and procedure.  
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1  Introduction 
 

The assessment of the stability, stiffness and strength of members loaded in bending and 

compression mostly yields complicated analyses, in which an effective combination of 

simplicity and accuracy often is not possible. In the course of years several advanced 

                                                           
  1  This article is based on the doctoral thesis of the first author, which he completed in 2006 at 

Delft University of Technology under supervision of the two other authors [14].  
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methods have been developed, which facilitate the simulation of the flexural-torsional 

buckling and/or column buckling of (members of) structures.  

Early studies were done in the USA by Timoshenko [1], Timoshenko and Geere [2], Bleich 

[3], later on followed by a fundamental work of Chen and Atsuta [4] and an even more 

recent American/Italian work of Bazant and Cedolin [5]. Part of the book of Chen and 

Atsuta was contributed by the Australian author Trahair, who himself also wrote a book 

on flexural-torsional buckling [6]. Series of German studies can be reported, written by 

Brüninghoff [7], Blass [8], Pauli [9], and Lohse [10] as well as a Norwegian contribution 

from Eggen [11], the contribution from Van der Put to the Dutch timber code [12] and a 

Dutch contribution from Van Erp [13]. Some of studies referred to are based on a more or 

less complete set of differential equations; others start from virtual work considerations 

and series development of displacement fields. Some result in closed-form solutions, 

others apply numerical methods.  

In case differential equations are used, they are in great majority linear ones. One of the 

rare exceptions is reported by Trahair [6] and also in Chen et al. [4], where nonlinear 

equations appear to yield improved results, which are in most cases more efficient than 

achieved by the linear equations. The nonlinear equations take account of the effect of the 

displacement in the direction of the major cross-section axis. The linear approach is 

conservative for members with a major stiffness direction, which is dominant over the 

stiffness in the minor direction and the twisting stiffness. As a consequence, timber beam 

sections and I-shaped or H-shaped steel sections can safely be studied by the linear 

approach. So, this will be done in the present study. The advanced nonlinear approach 

only needs to be applied in case of more or less square box sections, which are out of scope 

here. For such sections displacement in the major stiffness direction is not small if 

compared to the lateral displacement, hence, therefore its effect can not be neglected 

anymore. 

 

In view of so many studies based on the classic linear starting points, why, yet, a new 

approach to this issue? The answer to this question results from the experience that 

application of tools, supplied by others, like computer programs, complicated formula, 

tables and graphs, indeed can rapidly yield results, but seldom provide good insight in the 

real behavior of spanning structures. One reason is that some studies just produce a 

formula for the critical load of perfectly straight members, which does not offer a helping 

hand in the assessment of members in practical situations for a given load. Another reason 

is the way in which formulas are elaborated. In many publications and design codes the 
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working-out in detail unpleasantly hides from view the background of the formulas, hence 

insight is obstructed. Moreover, the working-out is different for different materials, very 

confusing for structural engineers who design structures in all existing building materials. 

Apart of that, the common calculation methods are mainly fit for checking purposes, 

without offering assistance how to optimize the structural design. There is a need for an 

analysis type, as simple and conveniently-arranged as possible, which also can serve as a 

design instrument. 

It is expected that a simple, reliable analysis method, not requiring special tools, contributes to 

insight in structural behavior and time saving in design and analysis of structures and members 

thereof. 

 

The present study started with an attempt to make stability formula’s in the Dutch code for 

timber engineering accessible through tables and graphs. At a closer look, most other codes 

of practice appear, regardless of big differences, to be based on the same starting points. 

However, often they are elaborated in so much detail that the resulting formulas can only 

be applied by the use of computers, and, as a consequence, the logic of the formulas and 

the related factors and coefficients has completely disappeared. The designers can not see 

anymore the wood for the trees. 

This justifies the fresh analysis to again clarify stability behavior of members and timely stop 

elaboration of the formula at stake in too much detail, before they become too complicated. 

As a result the doctoral thesis “New vision on flexural-torsional buckling, stability and 

strength of structural members” has been written [14]. If here is written ‘new’, this does not 

particularly regard the reformulation of starting points or the derivation of the differential 

equations, though they were anew derived from scratch in the dissertation. Evenly, it is not 

claimed that all results are obtained for the first time, though a number indeed are original. 

Rather, it is believed that the alternative handling of the relations and the way in which 

solutions have been obtained is innovative, refreshing, revealing and alerting. 

 

2  Starting points 
 

2.1 Member types, loading and member end conditions 

We start from a straight prismatic member of double-symmetric rectangular or I-shaped 

cross-section. The member axis coincides with the x-axis of an orthogonal set of axes x,y,z. 

The y-axis is in the ‘weak’ direction of the cross-section and the z-axis in the ‘strong’ 

direction.  
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These members are supported by fork supports at the ends and are loaded by a 

homogeneously distributed load qz (whether or not applied eccentrically), alternatively 

combined with an axial compressive force Fc in the x-direction, see Figure 1.  

 

                       
Figure 1:  Structural member on two supports 

 

In [14] also clamped members, members continuing over supports and cantilever beams 

are discussed, as well as other types of loading. 

Flexural-torsional buckling may occur at a combination of a small stiffness in the lateral-to-

load direction and small torsion stiffness. However, to the opinion of the authors, such 

structures can only responsibly be applied if no external torque load or load in the weak 

direction occurs. Therefore, they choose not to include such load types and purposely have 

restricted to load application in the major stiffness direction only. 

The response of the members is studied in a spread sheet program, in which the interaction 

of deflections, loads and 2nd-order effects is investigated in nine steps and finally is 

computed in an iterative way. The iteration method offers interesting possibilities to 

analyze several member types and load combinations in a rather simple and conveniently-

arranged way. To the knowledge of the authors no such method was applied before to 

examine the flexural-torsional buckling of members. Options of spread sheet programs to 

visualize results in graphs have extensively been used, timely revealing unrealistic results 

due to errors in programming if present. This visual check, in combination with each 

wanted number of iterations, is a guarantee for a big accuracy.  

 

2.2 Sign conventions 

For the used notations see Appendix. 

The chosen sign conventions are shown in Figure 2. 
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Figure 2:  Sign conventions 

 

-  Moment My around the y-axis causes a tensile bending stress at the positive z-side of 

the cross-section; corresponding deflection w in the direction of the z-axis. 

-  Moment Mz around the z-axis causes a tensile bending stress at the positive y-side of 

the cross-section; corresponding deflection v in the direction of the y-axis. 

-  In a section face with the normal in the positive x-direction: 

-  the vector of the twisting moment Mx is parallel to the positive x-axis, 

-  the shear force Vz acts in the direction of the positive z-axis. 

 

2.3  Assumptions  

1. The classical beam theory is presupposed, including the statement of plane cross-

sections after loading. A linear relationship exists between strains and displacements. 

2. Only deflection due to bending and rotation due to torsion are accounted for. Shear 

displacement is neglected.  

3. The influence of geometric imperfections and inhomogeneous effects are taken into 

account by assuming an initial sine-shaped deflection diagram. The amplitude (top-

value) of this initial deflection is taken from the applying design code. 

4. Initial rotation is not supposed here, because apparently twisted members can be 

rejected at construction or can be mounted to the fork supports in such a way that the 

starting rotation at mid-span is practically zero. For the rest, if wished, nonzero 

rotations can be easily included. 

5. Two limit states are considered at which the effect of the applied loads and the 

response of the structure do not exceed the set of relevant requirements: 

-  SLS (serviceability limit state), with requirements to the displacement of the 

structure at supposed usage. 

-  ULS (ultimate limit state), with requirements to structural safety. 
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6. Interaction of load, stiffness and displacements causes 2nd-order stresses and 

displacements (deflections and rotations), which influence each other. 

7. Because the studied structures are considered inapt for external (1st-order) torque load 

or load in the minor direction these loads are not applied. Nevertheless, nonzero 

torsion moments Mt2 and bending moments Mz2 will occur as 2nd-order moments due 

to load in the major direction.  

8. The following general relations follow from elastic beam theory: 
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   herein each prime indicates a derivative with respect to x. 

 

The bending stiffnesses EIy and EIz can be simply borrowed from classic elastic beam 

theory and need no further explanation. The torsion stiffness GIt needs more attention, 

because the torsion moment exists of three components, and so does the torsion 

stiffness: 

a. One is the torsion stiffness according to De St. Venant; only shear stresses act in 

the member.  

b. The second is the influence of the normal force Fc on the torsion (Wagner effect). 

c. The third one is the warping resistance of the member, due to the flexural 

stiffness of the flanges, at which both shear stresses and bending stresses occur in 

the cross-section. 

 

The total torsion moment can be written as:  

t tor tF twM M M M= + +                  (3) 

 

ad a.   Herein the 'pure' torsion component is:  

   'tor tor tor torM GI Wϕ σ= =                 (4) 

 

      The torsion second-order moment Itor and torsion section modulus Wtor are of 

particular interest for members. In case of circular and strip-like cross-sections they 

can be calculated in an easy way, otherwise tables or approximation formulas must 

be applied. 
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ad b.  The Wagener effect implicates a reduction of the square of the critical beam 

buckling moment with a factor (1-Fc/Ft,) where Fc is the normal force and Ft the 

torsion buckling force, see Trahair in [4] and [6]. The influence of the Wagner effect 

is of interest only in case of large normal forces. High compressive stresses reduce 

the torsion stiffness substantially. This will be the case for short wide members, 

because the compressive stress in slender members must be small in order to avoid 

column buckling. For the practical cases of timber beams and steel section of I- and 

H-shape considered in this study, the reduction is in the order of 1 percent or less. 

Therefore, we do not consider this effect in the present study. 

 

ad c.  The third component of the torsion moment is due to the couple of two flange shear 

forces, see Figure 3. 

                             
Figure 3:  Displacements due to bending of the flange and warping of the profile 

  

In each flange a bending moment Mfl occurs, which can be calculated from: 

( );
''

'''fl flz fl
fl fl fl

d EI vdM
V EI v

dx dx

−
= = = −  

In case of a non-deformable cross-section it holds:  
0, 5

fl

fl

v
z

ϕ =  hence:  

''' 0,5 '''fl flv z ϕ=  

Choosing the approximation: 0,5flz zI I≈ , and flz h≈   

we obtain the warping component of the twisting moment: 

 20,5 ''' 0,25 ''' '''tw fl fl fl z wM V z EI h h EI h EIϕ ϕ ϕ= ≈ − × = − = −         (5) 
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where: 20,25w zI I h=  

Hence, summing up equation (4) and (5), the twisting moment can be written as: 

'''' ''' ' 1
'

w
t tor w tor

tor

EIM GI EI GI
GI

ϕϕ ϕ ϕ
ϕ

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
            (6) 

 

Correct determination of the warping component implies substitution of the term 

ϕ'''/ϕ' in the differential equation and solving it. In [14] this is worked-out for a large 

number of cases, at which it appeared that this term can practically be considered 

constant, which simplifies the analysis remarkably. To give an example, for the case of 

the frequently occurring sine-shaped distribution of the rotation, it holds for a 

member span l:  
2

2

'''
' l

ϕ π
ϕ

= −  

After introduction of: 
2

2
w

tw
tor

EIC
l GI
π=                    (7) 

the effective total torsion stiffness GIt can be simply written as:  

( )1t tor twGI GI C= +                   (8) 

 

This formula is sufficiently accurate for most occurring load cases and members on 

two supports in design practice and is in concordance with the approach in some 

codes of practice. 

 

The authors are attached to underline their awareness that many of the starting 

assumptions in this section have been previously made by other researchers. A number of 

them are the basis of many a code of practice. Furthermore, not all assumptions are serious 

restrictions. To mention a few, initial imperfections for the rotation could easily be inserted 

in the procedure if wanted. The same holds true for load in the minor stiffness direction 

and a torque load. Otherwise, putting a requirement to the displacement in the minor 

direction in the serviceability limit state will not occur in many codes of practice, for 

example the Eurocode for timber structures. So, if not relevant, one may quickly step-over 

such an item in the present article. 
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3 Basis equations and method of analysis  
 

3.1  Displacements 

The total displacement field exists of displacements w in the z-direction, displacements v in 

the y-direction and rotations ϕ around the x-axis. For reasons of simplicity we first have a 

closer look at the displacement v. The total displacement v exists of three components, 

shown in Figure 4: 

                                   
Figure 4:  1st – and 2nd order displacements 

v   = v0 + v1 +v2                   (9) 

where: 

v0  =  initial deflection, 

v1  = 1st-order displacement due to the external load, 

v2  = 2nd-order displacement due to interaction of loads and final displacement.  

 

In classic studies it is common practice to define, as a starting point, the ratio n = FE /Fc, 

where FE is the critical Euler buckling load and Fc the occurring compressive load. 

From this definition one easily derives, as a consequence, the relations: 

( )0 11
nv v v
n

= +
−

, ( )2 0 1
1

1
v v v

n
= +

−
, 2

1v v
n

= .            (10) 

The last relationship in (10) refers the total displacement to the second-order 

displacement v2, in which the latter is an important quantity in determining the 

bending moment in the minor direction.  

 

It appears appropriate to exchange the starting point and the consequence. In the present 

article we introduce the newly defined stability parameter: 

 

= =
2

'top value'  of the total displacement*
'top value' of the 2nd-order part of the total displacement

vn
v

     (11) 
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The asterisk superscript is purposely added to n in order to distinguish it from the 

commonly used definition of n as the ratio of the critical load and the occurring load in 

column buckling theory. It is true, this definition is not common, but this adaptation of the 

definition turns out to be the key to a very efficient and orderly calculation of the 2nd-order 

effects. In (9) no bars have been used on top of the displacement symbols, which suggests 

that the relationships are true for each position along the member. This is true if we start 

form sine-shaped initial displacements v0 and first-order displacements v1. In case of 

general loading types this will not be the case, reason why the amplitudes are used. In fact, 

we can further refine (10), because it is appropriate to distinguish between: 

*

2
y

wn
w

=  and  *

2
z

vn
v

=                  (12a), (12b) 

The reader is reminded here of the definitions for displacements and moments.  

The displacement v is in the direction of the y-axis due to a moment Mz around the 

z-axis. Similarly, the displacement w in the z-direction is due to a moment My 

around the y-axis, see Figure 2. 

In case exclusively 2-D Euler column buckling occurs, n* and n are equal to each other. It is 

shown in [14] that the influences of the displacement w and n*y are practically negligible for 

3-D buckling cases, a confirmation of Trahair’s work in [4] and [6]. However, the 2nd-order 

displacements v2 and the connected moments Mz2 are of big importance.  

So, attention is exclusively paid to the determination of the stability parameter *
zn  and its 

consequences. The general relation between the displacements v0, v1, v2 and v is now easily 

derived from the end state, according to the scheme in Table 1: 

 

  Table 1:   Relations between 1st- and 2nd-order displacements  

 - start (1st-order): 0 1v v+   

 
- additional (2nd-order): 2 *

vv
n

=          (13) 

 
- total: 0 1 *

vv v v
n

= + +   

 
- end state:   

*

0 1 *( )
1

= +
−
nv v v
n

         (14) 

 

The derived amplification factor  n*/(n* - 1) in the scheme is the factor, familiar to structural 

engineers, to calculate the increase of the initial value to the end value as a consequence of 

the second-order effect, as earlier occurred in the first relationship of (10). 
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It is common practice to use a sine shape for the v0-diagram. The shape of the v1-diagram is 

fully dependent on the applied load and follows from the elastic beam theory. The shape of 

the v2-diagram results from the second-order moments, which, in their turn, are due to the 

interaction of the occurring forces and the v-diagram, itself in its turn the resultant of all 

mentioned displacements. 

 

From what precedes it may be clear that the displacement diagrams (v0, v1, v2 and v) have 

seldom the same shape. As a consequence, the problem mostly becomes too complicated 

for a closed-form mathematical solution. However, because of the here introduced 

definition of n*, it is sufficient to know the ratio of the top values of the v2- and v-diagram 

for an accurate calculation of the occurring 2nd-order effects. 

 

3.2 Interaction of forces, moments and displacements 

Here we study the relation between bending moments, axial compressive force and 

deflections and also the relation between torsion moments and rotations, and their 

interaction by 2nd-order effects. As was argued before (section 2.4 sub 7) no external 

twisting load and lateral load in the weak direction are taken into account. 

 

The total moments to account for in a loaded member are composed of: 

- My1: 1st-order moments, directly due to the loads,  

- My2, Mz2, Mt2: 2nd-order moments, due to the total displacements w, v and ϕ. 

 

The total displacement field (deflections and rotations) of the considered member is 

composed of:    

- w0, v0: initial displacements (supposing a stress-less member, hence: M0 = 0), 

- w1: displacements due to 1st-order moments,      

- w2, v2, ϕ2: ditto, due to 2nd-order moments.  

 

Therefore, a complicated interaction pattern comes into being: 

- displacements 

- moments 

- hence 2nd-order displacements 

- hence 2nd-order moments 

- etcetera  ............,  

as shown in the scheme of Figure 5. 
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Figure 5:  Interactions of displacements and moments 

 

All displacements cause a (very small) rotation of the considered cross-section: 

A rotation around the x-axis causes the cross-section to 

rotate in its plane over an angle ϕ. It holds: 

 

   sin ϕ = tan ϕ  = ϕ       cos ϕ = 1 

A deflection v in the direction of the y-axis (bending 

around the z-axis) causes the cross-section to rotate over 

an angle v'. It holds: 

 

 

   sin v' = tan v' = v'        cos v' = 1 

A deflection w in the direction of the z-axis (bending 

around the y-axis) causes the cross-section to rotate over 

an angle w'. It holds: 

 

 

   sin w' = tan w' = w'     cos w' = 1 

 

In case of a member on two fork supports forces, moments and deflections can occur as 

depicted in Figure 6: 

                
Figure 6:  Simply supported member 
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Due to the 3-D deflections and rotations of all cross-sections, the moments can be resolved 

in the directions parallel and perpendicular to the member axis. The relations between 

moments, deflections and rotations are shown in Figure 7. 

    
Figure 7:  Components of moments in directions w’, v’ and ϕ 

 

From this figure it is read: 

-  deflection  w  causes  2nd-order bending moment  Mz2  and twisting moment  Mt2 

-  deflection  v   causes  2nd-order bending moment  My2  and twisting moment  Mt2 

-  rotation     ϕ   causes  2nd-order bending moment  My2  and bending moment  Mz2 

 

Hence, the resolved moment vectors and the eccentrically acting axial force (due to the 

displacements) cause the next 2nd-order moments: 

2

2 1

2 1 2' *)

y c

z c y

t y x

M F w
M F v M
M M v M

ϕ
= +⎧

⎪ = + +⎨
⎪ = + +⎩

            (15) 

*) The component Mx2 is due to the combination of the (possibly eccentric) load in z-

direction and the displacement v and rotation ϕ, which will be elaborated later on.  

 

These moments cause displacements (deflections and rotations) of the 2nd-order, which on 

their turn again influence the moments (jointly with the displacements of the 1st-order). No 

stresses are associated with the initial deflections, hence no 1st-order moments. The 

elementary relationships between on the one hand curvatures and twists and on the other 

hand bending and twisting moments are as follows: 

( )
( )
( )

; 1 2 1 2

; 2 1 2

; 2 2

'' ''
'' ''

'

y tot y y y

z tot z z

t tot t t

M M M EI w w
M M EI v v
M M GI ϕ

⎧ = + = − +
⎪ = = − +⎨
⎪ = =⎩

            (16) 

 

The relations between moments and displacement can be written as a set of coupled 

differential equations as shown in Table 2: 
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Table 2:  Relations between moments and displacements  

external moments  internal moments 
  

1st-order 2nd-order  1st-order 2nd-order 

bending around  y-axis  My;tot  = My1 +Fcw = -EIyw1" -EIyw2" 

bending around  z-axis  Mz;tot  =  Fcv + My1ϕ =  -EIzv2" 

rotation around  x-axis  Mt;tot   =  My1v' + Mx2 =  GItϕ2' 

 

 

    (17) 

 

Now an important decision can be taken. The internal and external 1st-order terms are 

completely equal and cancel-out. In solving the equations just the 2nd-order and total 

displacements are kept:  

2 2

2 1 2

2 1 2 2

''
''

' '

y c y

z c y z

t y x t

M F w EI w
M F v M EI v
M M v M GI

ϕ
ϕ

= = −⎧
⎪ = + = −⎨
⎪ = + =⎩

            (18a) 

 

These relationships may look simple, but it is practically impossible to find solutions 

without help of numerical methods. These relationships will be the basis of the subsequent 

elaboration in this article. The resting mutual relations between displacements and 

moments have been remarkably reduced as is easily seen from a comparison of the new 

scheme in Figure 8 with the preceding scheme in Figure 5.  

 

    
Figure 8:  Reduced interaction scheme of displacements and moments 

 

It is concluded that the displacement w in the strong direction and its connected 2nd-order 

effects have no influence on the flexural-torsional buckling and can (if wanted) be 
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calculated independently of v and ϕ. The displacement v in the weak direction and the 

rotation ϕ keep dependent on each other, but are not influenced by displacements w, which 

simplifies their calculation. Hence only the second and third equation of (18a) are relevant 

and they can be written as:  

2 1

1 2 2

'' 0
' ' 0

z c y

y x t

EI v F v M
M v M GI

ϕ
ϕ

+ + =⎧⎪
⎨ + − =⎪⎩

               (18b) 

 

3.3 Analysis methods 

In spite of the simplification a pure mathematical closed-form solution of the derived 

equations is only possible in a limited number of special load cases, such as the 

combination of an axial compressive force Fc and a homogeneous bending moment My1 

due to two equal opposite moments at the member ends.  

Therefore, we look for a good approximation for the most occurring load cases in real 

practice. The application of numerical methods, with aid of spread sheet programs, is an 

effective instrument for the purpose. The interaction between the moments and 

displacements will be analyzed by the execution of an iteration process, consisting of: 

- Assumption of the shape of the displacement diagram, 

- Calculation of the consequences thereof (moments), 

- Calculation of the 2nd-order displacements due to the moments, 

- Check the match of the resulting and assumed displacements, 

- Repetition, if necessary, up to satisfactory match. 

 

In the consulted literature critical loads (eigenvalues of the system) usually are derived 

from differential equations. In fact, it is less interesting to choose the critical load as our 

goal; one better can focus onto a reliable prediction of the structural behavior at increasing 

load. 

If one starts from an initial displacement, at first no stability problem does exist at all, but 

the material strength is always decisive for the load bearing capacity of the member. It then 

is important not to base the calculation on theoretical straight members, but to presuppose 

a certain measure of imperfection as occurring in practical circumstances. Many codes of 

practice provide relevant information for this initial deflection.  

 

For a simple and unambiguous prediction of the flexural-torsional buckling behavior of 

straight members three phases must be considered: 
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1. By way of an iteration method the value of the stability parameter *
zn  is calculated. 

2.  The influence of this quantity *
zn  to the amount of the 2nd-order effects is investigated. 

3.  Finally, the decisive stress to be expected is calculated and checked upon the applying 

code of practice. 

 

 

4  Iteration method – scheme steps  
 

The investigated cases have been elaborated with the spread sheet program Quattro-Pro 9, 

which was also used for the graphs of results. For the detailed set-up of the produced 

spread sheets it is referred to [14].  

Here the main lines of the process are discussed. 

-  The procedure starts with an estimate of the deflection v and its derivative v'. 

-  Then the twisting moment Mt2, the twist ϕ' and the rotation ϕ are computed from the 

rotation equation.  

-  The 2nd-order moment Mz2 and curvature v2'' are computed from the bending equation. 

-  Two times integration yields the displacement v2. 

-  Finally, the quantity *
zn  is obtained as the ratio of v and 2v . 

 

The match in shape of starting and final displacements can be checked automatically by 

performing the computations iteratively. Each next iteration starts from the results of the 

preceding one, hence the results become increasingly more accurate. The process can stop 

if the results of successive iterations are sufficiently close. See Table 3 and Figure 9. 

 

In the case of a constant moment all displacement components are sine-shaped (or cosine-

shaped) and in fact no iteration is needed because v and ϕ can be solved directly from the 

governing differential equations. 

 

On basis of the obtained value of *
zn  the 2nd-order effect can be derived, after which the 

total stress can be determined and checked against the applying strength data. 
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Table 3:   Scheme iteration steps 

1. estimate 
deflection 
diagram: 

v = total displacement 
     (almost sine shaped) 
 at start: ϕ= 0 

2. from this: twisting moment Mt2   
3. from this: rotation ϕ around x-axis: 

2

0

= ∫
x

t

t

M d
GI

ϕ ξ  

4. from 1 and 3: 2nd-order moment Mz2: 

2 1z y cM M F vϕ= +  

5. from this: curvature around z-axis:  

2
2 '' z

z

Mv
EI

= −   

6. from this: displacement 2nd-order: 

2 2
0 0,5

'' .= ∫ ∫
x

l

v v d d
ζ

ξ ζ  

now the primes indicate 
derivatives with respect to 
ξ and ζ 

7. new: total displacement: 

( )0 1 2v v v v= + +  

8. comparison 
and 
repetition: 

the process of steps 2 up to 
8 is executed iteratively 
until shape and size of v 
and v2 do not change 
anymore. 

9. finally: stability parameter:   

*

2
z

vn
v

=  

 

 

Figure 9:  Iteration process in 9 steps 

 

In this article we elaborate the case of a member on two fork supports, loaded by a 

homogeneously distributed load qz in combination with an axial load Fc,. 

The load qz is applied eccentrically at a distance e from the member axis and keeps vertical 

during rotation and transverse displacement of the cross-section, and moves in y-direction. 

The forces Fc at both ends do not change of direction either nor displace in y-direction, , see 

Figure 10: 
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Figure 10:  Simply supported beam under uniform loading 

 

The calculation of the twisting moment in the second step of the scheme in Table 3 and 

Figure 9 follows from the last equations of (15) and (18a) and (18b): 

( )22 2
0,5 0,5

'' '+= =∫ ∫
x x

y xt t
l l

M v MM M d dξ ξ   

The derivative of this twisting moment is: ( )2 1 2 1 1 2' ' ' ' '' ' ' 't y x y y xM M v M M v M v M= + = + +  

In [14] it is derived that: 2' 'x z zM V v q eϕ= − +   wherein: 1'z yV M= − .  

So the derivative of the twisting moment can be calculated from: 

2 1' ''t y zM M v q eϕ= +                   (19) 

This ‘increase’ of the twisting moment is used in the second step of the scheme in order to 

calculate by (numerical) integration the distribution of the twisting moment over the 

length of the member.  

The other steps in the scheme need no further explanation.  

The systematic development is in the 9 following steps as shown in Table 4.   

 

Table 4:  Iteration process in nine steps  

1.  Deflection: 

 
  Figure 11a: 0v  

It is started with ϕ = 0 and a sine shape deflection 

diagram:  0 0 sin xv v
l

π=         (20) 

In the next iterations a 2nd-order deflection v2 is added, 
which will become increasingly more accurate, and the 
rotation ϕ will have become unequal zero. The 
calculation result is obtained (after sufficient iterations): 

0 2 1 sina
xv v v k v
l

π= + =         (21) 

With the auxiliary functions kij the ratio of the real 
deflection shape (and later on the real twisting moment, 
the rotation and bending moment shapes) and a pure 
sine shape is approximated. 
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2.  Twisting moment: 

 
Figure 11b: tM  

2tM is calculated by integration of M't2  - see  (19).  

( )2
0,5

''= +∫
x

t yi z
l

M M v q e dϕ ξ         (22) 

With the auxiliary functions kij this can be written as: 

2
1

2 1 1 22 2
0,5

sin
x

y
t b y a

l

M
M k M v k e d

l l l
π πξϕ ξ

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
∫  and results 

in: 

1
2 1 1 2 cosy
t c y b

M xM k M v k e
l l l
π πϕ

π
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

     (23) 

3.  Rotation of the cross-section: 

 
Figure 11c: ϕ 

ϕ  can be calculated by integration: 

1 1 2 12

0 0

' sin
−

= = =∫ ∫
x x

d y c yt

t t

k M v k M eM xd d
GI GI l

ϕ πϕ ϕ ξ ξ   (24) 

with top value at: x = 0,5l: 

1 1 2 1 1 1

2 1

d y c y d y

t t c y

k M v k M e k M v
GI GI k M e

ϕ
ϕ

−
= =

+
    (25) 

In Figure 11c it can be seen that the rotation shape 
accurately agrees with a pure sine shape.                   

4.  2nd-order moment: 

 
Figure 11d: 2zM  

Mz2 is obtained by: resolving of the moment My1, so: My1ϕ 

                  axial force × deflection,            so: Fcv 

( )2

1 1
2 1 1

2 1

   sine y
z y c a c

t c y

k M xM M F v k F v
GI k M e l

πϕ
⎛ ⎞
⎜ ⎟= + = +
⎜ ⎟+
⎝ ⎠

 (26) 

In Figure 11d the divergences are showed between the 
2nd-order moment shape and a pure sine shape that has 
to be taken into account.  

5. Curvature around the z-axis: 

 

The general relation between moment and curvature is: 

( )2

1 12
2 1

2 1

'' sine yz
a c

z t c y z

k MM v xv k F
EI GI k M e EI l

π⎛ ⎞
⎜ ⎟= − = − +
⎜ ⎟+
⎝ ⎠

  (27)  

6. 2nd-order deflection: 

 

v2 is obtained from two times integration of the 
curvature:  

( )2
2

1 1
2 2 1 2

2 10 0,5

'' . sin
⎛ ⎞
⎜ ⎟= = +
⎜ ⎟+
⎝ ⎠

∫ ∫
x

f y
a c

t d y zl

k M l xv v d d k F v
GI k M e EI l

ζ πξ ζ
π
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7. The new deflection:  

 
Figure 11e: v 

Because in the analyzed case k1a ≈ 1 and the other 
auxiliary functions finally can be written as constant 
factors : k1 respectively k2, the 2nd-order deflection 
becomes: 

( )2
2

1 1
2 2

2 1

siny
c

t y z

k M l xv F v
GI k M e EI l

π
π

⎛ ⎞
⎜ ⎟= +
⎜ ⎟+
⎝ ⎠

     (28) 

Finally the total deflection is:  0 2v v v= +  

8. Check on similarity: In spite of the in step 4 (Figure 11d) founded divergences 

between the 2nd-order moment shape and a pure sine 

shape it appears that (after two times integration) the 

final deflection shape closely agrees with the supposed 

deflection as started in step 1. Compare the Figures 11a 

and 11e.         

9.  The wanted quantity of the 
stability parameter *

zn :  

 

The ratio of 2v and v is now most easily written in 
reciprocal form:  

( )2
2

1 12
* 2

2 1

1 y
c

z t y z

k Mv lF
n v GI k M e EIπ

⎛ ⎞
⎜ ⎟= = +
⎜ ⎟+
⎝ ⎠

       (29) 

 

From (14) it follows that the amplification factor runs to infinity for *
zn  =1. The situation 

then has become critical. We will consider three cases for which *
zn  = 1 applies: 

 

a.  If the member is just loaded by an axial force Fc , a critical state is obtained, for which:  
2

; 2
z

c cr
EIF
l

π=                     (30) 

In this way the well-known Euler’s buckling formula is derived from the displacements. It 

can be written: 

;c cr E zF F=                     (31) 

 

b. If the member is just loaded by a constant moment My the factor k1 = 1 and a critical 

state is obtained, for which:  
2

2
1; 2

z t
y cr E z t

EI GIM F GI
l

π= =    or: 
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1;y cr E z tM F GI=                    (32) 

In the classical literature this is called the theoretical elastic flexural-torsional buckling 

moment, which often is written as:  

cr z tM EI GI
l
π=                    (33) 

 

c.  At a combination of a constant bending moment and an axial force the stability 

parameter *
zn  can most easily be written with two (serially chained) components:  

* * *

1 1 1

z zM zFn n n
= +                     (34) 

where: 

2
*

2
1

cr
zM

y

Mn
M

=   and:  * Ez
zF

c

Fn
F

=                   (35) and (36) 

If the moment will vary along the member and the load is applied eccentrically, the 

equations (34), (35) and (36) are still valid, however *
zMn  becomes: 

* * *
zM zMcr zMen n n= +                    (37) 

where: 
2

*

1 1

cr
zMcr

y

Mn
k M

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

  and:  
( )
2 1*

2

1 1

y Ez
zMe

y

k M eF
n

k M
=   or:  *

2 1
'
Ez

zMe
y

eFn
k M

=         (38a), (38b), (38c) 

where k1 and k2 are dimensionless constants.  

 

In [14] several member types and load cases have been investigated, resulting into 

adequate values for these constants, listed in Table 5. 

 

Table 5: Constants for the investigated member types and loads 

Member type Load k1 k2 k’2 

two fork supports constant moment  My1 

homogeneously distributed load  qz 

concentrated mid-span load  Fz 

1 

0,87 

0,73 

1 

0,81 

0,87 

1 

0,96 

0,61 

cantilever constant moment  My1  (e = 0) 

homogeneously distributed load  qz 

concentrated end-of-span load  Fz 

1 

0.24 

0.41 

1 

0.65 

0.57 

1 

0.09 

0.29 
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It is concluded that the influences of the loads qz and Fz (responsible for the moments 1yM ) 

and the eccentricity e act parallel, however the joint interaction of the compressive force Fc 

on the one hand and qz, Fz and e on the other hand are chained serially. This is 

schematically visualized in Figure 12. 

                  
Figure 12:  Scheme of serial and parallel interaction 

 

Also combinations of different types of load, like moments in rigid supports and several 

concentrated loads, are investigated by iteration processes. In those cases it was observed 

that they can be accounted for by way of superposition using (38a) and (38b): 

in the denominators of (38a) and (38b):   

1 1 1;case1 1;case1 1;case2 1;case2 .....y y yk M k M k M= + +             (39a) 

in the numerator of (38b):     

( )2 1 2;case1 1;case1 case1 2;case2 1;case2 case2.....y Ez y y Ezk M eF k M e k M e F= +          (39b) 

Herein the eccentricity for the member deadweight is zero. The signs in all terms must be 

well chosen. Negative support moments have (in case of dominantly positive span 

moments) favorable effect on the stability, therefore they are subtracted. If so wished also 

values of the factors k may be calculated by interpolation in proportion to the loads. In this 

way *
zn  can be determined for most practical cases in a surveyable and rather simple way.  

 

5  Check on strength and stiffness 
 

For the purpose of applications in design practice checking criteria are mostly extracted 

from applying codes of practice. Because these codes are changed on a regular basis, we 

will refer to them as few as possible and, in stead, develop an autonomous calculation 

method for compressive-flexural-torsional buckling of members. 

Having started from an initial deflection v0, the check is based on general principle for 

strength and stiffness, a simply to formulate, and applicable to structures in all kind of 

materials.  
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5.1  Checking procedure  

We distinguish two limit states when judging stability, strength and stiffness of structures:  

- ULS  (ultimate limit state)    for strength, 

- SLS  (serviceability limit state)  for normative displacement.  

 

The loads to account for in ULS (by way of load factors) are larger than in SLS, and the 

modulus of elasticity (dependent on the material) is sometimes smaller. As a consequence, 

the SLS-values of *
zn  are always larger than the ULS-values. In both limit states we can 

calculate the displacements with the same method. 

 

The idea of the checking procedure is simple:    

- ULS: it is investigated in which cross-section the normative design stress occurs, after 

which this stress is compared to the strength of the material (unity-check).  

- SLS:  it is investigated where the normative deflection occurs, after which this 

deflection is compared to the permissible one according to the applying 

requirements.  

 

The necessary components are: 

- external forces and moment:        follow from equilibrium, 

- geometric data:                                   follow from beam theory, 

- buckling stress:                    follows from Euler’s formula, 

- critical flexural-torsional moment: follows from lateral stiffness and torsion 

stiffness, 

- initial eccentricity: follows from the nature of the material or from 

the code at stake, 

- the quantity n* :                                 follows from the derived formulas in section 4, 

- 2nd-order moments: follow from the derived formulas in section 5. 

 

5.2   Check on strength in the ULS 

In case of the here considered members, mainly bending stresses and (to a smaller degree) 

compressive stresses are relevant. Because they all act in axial direction of the member, 

they can simply be superimposed, as long as Hooke’s law is applicable. See Figure 13.  
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Figure 13:  Superposition of stresses 

 

In the normative position of the cross-section the ULS-strength can be checked with aid of: 

1yc z

u uy uz

MF M
F M M

+ + ≤                             (40)  

The three quantities in the denominators are the respective ultimate design quantities. 

As a rule, the moment zM is a 2nd-order moment. In general it holds: 

2 2 ''z zM EI v= −                     (41) 

Hence from: (27) and (28) zM  can be short written as:  

2
2

2 22
3 3

z Ez
z

EI F vM v
k l k

π= =                  (42) 

where k3 is a dimensionless factor, dependent on the shape of the M-diagram. 

 

As commonly known, the shape and area of the moment diagram provides information on 

the size and the distribution of the deflections, and this holds true in the reversed direction 

as well. In case of a constant moment My1 and/or a preponderant axial force (and so a sine 

shape of the v2 diagram) the factor is: k3 = 1. If the moment My1 varies along the member, 

the factor has been studied for several load cases and support conditions in [14].  

It appears that for members on two fork supports the value of k3 is (practically) the same as 

the earlier calculated factor k1 and that for cantilevers k3 can be approximated with: 

3 1 20,8k k k≅ + . 

The calculation of 2zM starts with the determination of *
zn  according to (34).  
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The relations between the initial deflection, the 2nd-order deflections and the total 

deflection result from (12) and (13): 

0
2 * * 1z z

v vv
n n

= =
−

                   (43) 

The value of 0v  often can be extracted from the applying code of practice, and is – mostly - 

expressed in relation to the member length l  (order of magnitude 1/1000 until 1/300). 

So 2zM can be written: 

0
2 *

3 1
Ez

z
z

F vM
k n

=
−

                   (44) 

This result is substituted in the checking formula (40).  

This result is fine for rectangular cross-sections, but in members with an I-shaped cross-

section one must account for an additional term. Because of the warping component Mtw in 

the torsion moment, flange bending moments occur. In members on two fork supports the 

maximum value occurs at mid-span, and to calculate the stresses we must use the section 

modulus Wflz =0,5 Wz. Because the bending moments My1 en Mz2 are maximal at the same 

position as well, we best can consider Mz2;fl  to be a ‘supplement’ to Mz2. 

In [14] it is derived for a member on two fork supports: 
*

2;
*

2 14
z fl Ez z

z y zM

M F h n
M M n

=                    (45) 

In absence of an axial compressive force this formula can be simplified to: 

2;

2 14
z fl Ez

z y

M F h
M M

=                     (46) 

In total the moment in the middle of the member span can exist of two components: 

1.   A 2nd-order moment: 0
2 *

3 1
Ez

z
z

F vM
k n

=
−

       see (44) 

2.  An additional 2nd-order component for I-sections,  

due to flange bending: 

   (with section modulus Wflz =0,5 Wz)  

*

2; 2*
14

Ez z
z fl z

y zM

F h nM M
M n

=       see (45) 

 

After all necessary components have been calculated, they are substituted in the checking 

formula (40). 

Although it is a temptation to combine the foregoing formulas, we purposely abstain from 

that for easy reference. 
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5.3  Check on stiffness in the SLS 

Stresses in the serviceability limit state are lower than in the ultimate limit state, 2nd-order 

effects are (much) smaller and sometimes the elasticity modulus is larger (in case of timber, 

for instance). Yet, the same formula’s can be used. 

The admissible deflection can be extracted from: 

- applying codes of practice, 

- additional requirements, due to the nature of the structure or special circumstances. 

Mostly, these requirements regard the deflections in the direction of the load. It can be 

checked if the requirements are met with aid of *
yn  through a procedure in three steps: 

 

1.  Calculation of the stability parameter *
yn :  

*

1 c

y Ey

F
n F

=            (47) 

 (which is influenced exclusively by an axial compressive force, and not by flexural-
torsional effects) 

1. Calculation of the normative deflection 
       (in the middle of the member): ( )

*

0 1 * 1
y

y

n
w w w

n
= +

−
 + creep effects     (48) 

3.    Finally, checking by: w w≤ allowable = i.e.  0.004 l        (49) 

Dependent on the application, one could also distinguish between so called additional 

deflection (for variable load only) and total deflection (for both permanent and 

variable load). 

 

A possible check on the deflections in the weak direction can be executed with the same 

calculation procedure in three steps: 

 

1.    Calculation of the quantity *
zn : 

* * *

1 1 1

z zM zFn n n
= +          see (34) 

2.    Calculation of the normative deflection: *

0 * 1
z

z

nv v
n

=
−

 + creep effects      (50) 

3.    Finally, checking by: v v≤ allowable = i.e.  0.004 l        (51) 

Also here again, possibly distinguishing between the additional and total deflection. 

 

5.4   Sensitivity and accuracy 

If structures become so slender that stresses due to 2nd-order effects start to be dominant, 

the state can become seriously dangerous. This is the case for values n* = 2 à 3 or lower. As 

follows from (13) and all formula’s derived thereof, the final deflections and stresses will 
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increase disproportionately at further increasing (variable) load and (as a consequence 

thereof) smaller values of n*. 

The determination of the stability parameters *
zn  and/or *

yn  provides good information 

about the 2nd-order effects and, therefore, is a valuable contribution to the design and 

construction of reliable structures. 

  

6.  Applications 
 

The strength and stiffness of laterally supported members can be checked according to a 

conveniently-arranged procedure: 

1. Collecting of data on the geometry of the considered member and the loads.  

2. Choice of (reduction) factors, dependent on member type and load. 

3. Determination of the needed components, dependent on member type and load. 

4. Check if requirements for ULS and SLS are met. 

 

6.1 Overview  

In the overview below the procedures and formula’s, derived in this article, are collected. 

For a more complete overview for other cases like members continuing over several 

supports and cantilever members, it is referred to [14]. 

 

a. Collection of data 

items notations explanation 

normative moment: 1yM  
in the middle of the member. 

 

0 0vv k l=  

initial deflection:  

in the weak direction 

 

also in the strong direction: 

(if necessary) 

 

0 0w v=  

to be extracted from material 

properties and/or applying 

codes of practice. Order of 

magnitude: 

kv0 = 1/1000 à 1/300. 

properties of the cross-section: A  b  h  Iy  Iz  Itor   Wy  Wz  

etc. 

to be extracted from structural 

mechanics formula’s or tables. 

material properties: E  G   fc   fm  etc. dependent on material. 

eccentricity of the load: e positive in direction of load. 
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b. Choice of constants, depending on member type and load: 

member type  loaded by   k1   k2 k’2   k3 
member on two  
fork supports:  

constant moment                (e =0) 
homogeneously distributed load     qz 
concentrated load at mid-span    Fz   

  1      
  0.88 
  0.73 

  1      
  0.81 
  0.87 

1   
0.96 
0.61 

 1      
 0.88 
 0.73 

cantilever: constant moment  My1    (e = 0) 
homogeneously distributed load    qz 
concentrated end-of-span load    Fz 

1 
0.24 
0.41 

1 
0.65 
0.57 

1 
0.09 
0.29 

 1      
 0.79 
 0.85 

 

 

c. Involved quantities and formulas: 

Euler buckling load:
2

2
z

Ez
EIF
l

π=  
ditto in strong direction  
(if wanted) 

2

2
y

Ey

EI
F

l
π

=  

torsion stiffness:: ( )1t tor twGI GI C= +
 

for rectangular cross-sections:
 
for I-sections: 

 0twC =  

 
2 2

24
z

tw
tor

EI hC
GI l

π=  

critical flexural-
torsional moment: 

cr Ez tM F GI=  

components 
related to 
moment: 

 
* * *
zM zMcr zMen n n= +

 
 

2

*

1 1

cr
zMcr

y

Mn
k M

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

* 2
2 '

1 1 2 1

Ez Ez
zMe

y y

k eF eFn
k M k M

= =

 
stability parameter: * * *

1 1 1

z zM zFn n n
= +  

component 
related to 
axial force: 

* Ez
zF

c

Fn
F

=  

combination of different loading types 
(substitute with correct sign) 

1 1 1; 1;y i y ik M k M=∑  

2 2 2; 2;y i y ik M e k M e=∑  

i = case 1, case 2, etc. 
respectively 

2nd-order moment: 

 

; 2 2;2z tot z z flM M M= +

 

bending moment: 
flange bending moment: 

(for I-sections only)  
  section modulus  
  Wflz = 0,5Wz) 

( )
0

2 *
3 1

Ez
z

z

F vM
k n

=
−

 

*

2; 2*
14

Ez z
z fl z

y zM

F h nM M
M n

=  

  

stability parameter (if wanted) in 
'strong' direction: 

* * Ey
y yF

c

F
n n

F
= =  
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d. Checking 

ULS strength: 
calculation for ULS-load 

1 ; 1y z totc

u uy uz

M MF
F M M

+ + ≤  

deflection: 
calculation for  
SLS-load  

in the 'strong' 
direction: ( )

*

0 1 * 1
y

y

n
w w w

n
= +

−
 where: *

1 c

y Ey

F
n F

=  

w w≤ allowable = i.e. 0.004 l 

SLS 

possibly distinguishing 
between additional and 
total deflection 

if wanted  
in the 'weak' 
direction:  

*

0 * 1
z

z

nv v
n

=
−

 where: * * *

1 1 1

z zM zFn n n
= +  

v v≤ allowable = i.e.  0.004 l 
 
 
6.2   Calculation example 

To illustrate the procedure a calculation example will be shown. We consider a steel 

member on two fork supports under a homogenously distributed load and axial 

compressive force, see Figure 14. 

 

The calculation exists of two parts: 

-  one that has to be executed regardless of the chosen method, whatsoever, and 

-  one that is specifically focused to the method developed in this article. 

 

                 
Figure 14  I-beam under representative uniform loading 

 
6.2.1  a .  Data 

member length: 

section HE600A: 

initial deflection: 

l  =  10                                   [m]

h  =    0.590  and  b = 0.300    ,, 

0 10 / 500 0.020v = =     ,, 

 Section data, extracted from 

tables for steel sections: 



  194

loads:  

 deadweight: 

 variable, distributed:  

       compressive force: 

in the SLS: 

qw =        2 

qz =       28     

Fc =    200 

in the ULS:  

    2.4    [kN/m]

  42       [kN/m]

300  [kN] 

eccentricity of load e   = - 0.590/2 = - 0.295   [m] 

(here for variable load only) 

material data: E =             210×106         [kN/m2]

G = 0.4E =  84×106                 ,, 

    A   =   22646 × 10-6       [m2] 

    Iy   =     1412 × 10-6       [m4] 

    Iz    =      113 × 10-6       [m4] 

    Itor   =       3.5 × 10-6        [m4] 

    Iw    =          9 × 10-6        [m6] 

    Wy  =    4787 × 10-6        [m3] 

    Wz  =      751 × 10-6    [m3] 

ULS total stress: tot yf f≤  = 0.235×106   [kN/m2] checking criteria: 

 
SLS  total deflection: 

  additional deflection:  
0 1 2

0 2

0.004
w w w w

l
v v v

− = + ⎤
≤ =⎥− = ⎦

 

             0.0040 10 0.040 [m]= × =  

 

b. Elaboration 

SLS  ( ) 2
1;

1 2.0 28 10 25 350 3758y repM = + = + =      

  280.295 0.275
2 30

e = − × = −
+

 

[kNm] 

 

[m] 

design values 

moments and 

eccentricities : 

ULS  ( ) 2
1;

1 2.4 42 10 30 525 5558y repM = + = + =  

  420.295 0.279
2.4 42

e = − × = −
+

 

[kNm] 

 

[m]  

ultimate normal 

force  

and moments: 

Fu      = 0.235 × 22646 = 5322

Myu  = 0.235 ×   4787 = 1125

Mzu   = 0.235 ×     751 =   176  

[kN] 

[kNm 

[kNm]  

Euler buckling 

load: 

torsion stiffness: 

warping stiffness: 

 

 
effective torsion 
stiffness: 
critical flexural-
torsional moment:

2 6 6

2
210 10 113 10 2342

10EzF
π −× ⋅ × ⋅= =  

6 684 10 3.5 10 294torGI −= ⋅ × ⋅ =  

210 9 1890wEI = × =  

2

2
1890 0.63

10 294twC
π ×= =

×
 

( )294 1 0.63 480tGI = + =  

2342 480 1060= × =crM  

 

[kN] 

 

[kNm2] 

[kNm4] 

[--] 

 

[kNm2] 

[kNm] 

 

So far the calculation does not differ from usual approaches in codes.  
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Now it is followed by a part for the calculation and checking of the strength and stiffness 

conform the method developed in this article.  
 
6.2.2  a .  ULS - strength 
factors: k1 = 0.88 k2 = 0.81  k’2 = 0.96    (from Table 5) 

stability parameter *
zn  2

*

*

1060 0.275 2342 3.5
0.88 555 0.96 555

2342 7.8
30

zM

zF

n

n

⎡ − ×⎛ ⎞= + =⎢ ⎜ ⎟× ×⎝ ⎠⎢
⎢

= =⎢
⎢⎣

  

alternative: 

( )
( )

2

* 2

*

0.88 5551 1
1060 0 0.81 525 0.295 2342 3.5

1 300 1
2342 7.8

zM

zF

n

n

⎡ ×
= =⎢

+ − × × ×⎢
⎢
⎢ = =
⎢⎣

 

*

1 1 1 1
3.5 7.8 2.4zn

= + =  

comment, alarming function: This size of the stability parameter *
zn  definitely requires 

reconsidering the design critically, because the 2nd-order 
amplification factor of 

2.4 1.71
2.4 1

=
−

 is rather large.  

2nd-order bending moment: 
( )2

2342 0,020 38
0.88 2.4 1zM

×= =
−

 
 kNm] 

flange bending moment: 
2;

2342 0.590 2.4 38 16
4 555 3.5z flM ×= × × =

×
                          [kNm] 

Seldom attention is paid to the flange bending moment Mz2;fl, that roughly is related to the 

2nd-order moment  Mz2 by the warping factor Ctw . This moment must be carried per flange, 

so half the section modulus in the weak direction is used. 

check: 300 555 38 16 0.06 0.50 0.21 0.18 0.95 1
5322 1125 176 0.5 176

+ + + = + + + = <
×

 

comment: the extra stress due to the 2nd-order contribution is: 
0,21 0,18 70%
0,06 0,50

+
⇒

+
 

which agrees well with the amplification factor 1.67, found 
before.     

Indeed, the checking result 0.95 <1 is satisfactory, but the size of *
zn  yet is a reason to be 

wakeful. The safety may seem 5%, however this is very relative, for an increase in load 

would yield a disproportionate raise of the checking value 0.95. An increase of the load of 

5% makes the checking value 1.04, which is an increase of 9%, almost the double. 
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For reasons of illustration it is investigated in which way the checking value develops at 

increasing load. The result is shown in Figure 15.  

 

                           
Figure 15:  Increasing check result for increasing loading 

 

The axes indicate: 

 - horizontal:  ratio of the load and the design load 

 - vertical:   the checking value. 

The circled point marks the result of the preceding calculation with checking value 0.95.  

 

From the graph the following conclusions are drawn: 

-  A safe result is found for small loads. 

-  The checking value grows progressively for increasing loads. 

-  Therefore, thinking in terms of a linear relation is dangerous. 

 

b.  SLS - 1.  stiffness in the strong direction 

The deflections can be calculated according section 5.3  

First determination of Euler 
buckling force: 
and deflection 1st-order: 

2 6 6

2

210 10 1412 10 29265
10EyF

π −× ⋅ × ⋅= =  

2

1 6 6

5 375 10 0.013
48 210 10 1412 10

w −

× ×= =
× ⋅ × ⋅

 

 
[kN]  
 
[m]  

stability parameter *
yn : * 29265 146

200yn = =    

normative deflection: ( ) 1460.020 0.013 0.033
146 1

w = + =
−

 [m] 

check: 0 0.033 0.020 0.013 0.040w w− = − = ≤  [m] 
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2.  stiffness in the weak direction 

This calculation will not be often necessary, but can be executed (if wanted) with: 

 

stability parameter *
zn : 

 

2
*

*

1060 0.279 2342 8.5
0.88 375 0.96 375

2342 11.7
200

zM

zF

n

n

⎡ − ×⎛ ⎞= + =⎢ ⎜ ⎟× ×⎝ ⎠⎢
⎢

= =⎢
⎢⎣

 

alternative: 

( )
( )

2

* 2

*

0.88 3751 1
1060 0 0.81 350 0.295 2342 8.5

1 200 1
2342 11.7

zM

zF

n

n

⎡ ×
= =⎢

+ − × × ×⎢
⎢
⎢ = =
⎢⎣

 

*

1 1 1 1
8.5 11.7 4.9zn

= + =  

normative deflection: 
4.90.020 0.025

4.9 1
v = × =

−
 [m] 

check: 0 0.025 0.020 0.005 0.040v v− = − = ≤  [m] 

 

 

7 Conclusions and recommendations 
 

7.1 Conclusions 

1.  The developed stability parameter n* can have a very important 'alarming function' in 

the assessment of the stability behavior of members. Therefore, it is strongly 

recommended to pay careful attention to the size of *
zn , and take care that it does not 

become smaller than 2 à 3. 

 

2.  It’s true, this role of n* is not completely unknown, but was not given a place in 

regulations on flexural-torsional buckling in the consulted building codes and 

literature. At increasing load approaching the critical value, sudden loss of stability 

(and failure of the structure) may occur. Clearly, the 'unsuspecting' application of 

checking rules which do not show this is dangerous. 

 



  198

3.  A method for compressive-flexural-torsional buckling has been derived, applicable to 

all existing building materials in structural engineering for which plasticity 

considerations do not influence the beam-column buckling load to a substantial 

extent.  

 

4.  Essentially the calculations can be done in a short time using a pocket calculator, 

without the use of other utilities. 

 

5.  It has been deliberately chosen not to elaborate the derived formulas too far, in order 

to preserve a clear view on the cohesion and procedure.  

 

7.2  Recommendations 

1.  It is desirable and possible to apply to all building materials the same calculation 

system for the checking regulations regarding stability, stiffness and strength of 

members, which are loaded in bending and compression. 

 

2.  Apart of the cases mentioned in [14], larger applications should be investigated which 

adaptations are necessary for: 

  - other than straight, prismatic members (i.e. curved and/or tapered members), 

members with other cross-section shapes, sloped frames and also cracked 

reinforced concrete cross-sections. 

  - materials for which the theory of elasticity does not apply, for instance plastic 

behavior. 
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 Appendix 
 

Notations 
In this article the following symbols are used: 
 
Geometry of member 
l length  [m] 
A area of cross-section [m2] 
Afl area of flange [m2] 
b width of cross-section [m] 
h depth of cross-section [m] 
e eccentricity of load  in z-direction [m] 
x,y,z variables along the coordinate axes [m] 
ξ, ζ auxiliary variables (along the x-axis)  [m] 
 
Static properties 
Iy, Iz second moment of cross-section for bending  [m4] 
          corresponding with My and Mz 
Itor second moment for torsion at no restrained warping [m4] 
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It idem, restrained warping included [m4] 
Iw bimoment of cross-section [m6] 
W section modulus for bending [m3] 
 
Material properties 
E modulus of elasticity [N/m2] 
G shear modulus  [N/m2] 
fc compressive strength [N/m2] 
fm strength in bending [N/m2] 
 
Stiffness and strength 
Ctw dimensionless quantity for the influence of the warping stiffness [--] 
FE  Euler buckling load [N] 
Fu  ultimate compressive strength Fc [N] 
Mcr critical moment M at flexural-torsional buckling [Nm] 
Mu ultimate moment M at bending [Nm] 
n stability parameter (applied in classical theory of Eulerian buckling)  [--]  
n* stability parameter (newly introduced in this article) [--] 
   
Loads, moments and shear forces 
qz  load per unit length (in z-direction) [N/m] 
F concentrated load [N] 
Fc  axial compressive force in x-direction [N] 
Mx twisting moment in cross-section around the x-axis [Nm] 
My bending moment in cross-section around the y-axis [Nm] 
Mz bending moment in cross-section around the z-axis [Nm] 
Mt twisting moment in cross-section around member axis [Nm] 
V shear force in cross-section [N] 
  
Stresses 
σc compressive stress [N/m2] 
σm bending stress [N/m2] 
τ shear stress [N/m2] 
 
Displacements 
w  displacement in z-direction [m] 
v  displacement in y-direction [m] 
v0  initial displacement in y-direction [m] 
v1  first-order displacement in y-direction [m] 
v2  second-order displacement in y-direction [m] 
ϕ rotation of a member cross-section around the x-axis [rad] 
ϕ' torsion = rotation per unit length [rad/m] 
 
Auxiliary quantities 
k constant, factor, coefficient  [--] 
ki. reduction factor  ( i = 1, 2, 3, ..... ) [--] 
f  in general: a dash on top of a symbol indicates the maximum value of the 

considered function in case of moments, stresses and displacements. 
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