Analysis of hollow-core slab floors
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This paper provides a procedure for finite element analysis of hollow-core slab floors, which may
be necessary in case of large floor openings. Formulas for homogenisation of the floor properties
are presented. Finite element modelling is discussed. Formulas for stress recovery are presented.

As an example a floor is analysed with a 3 x 3.6 m opening.
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1  Introduction

Openings in hollow-core slab floors occur often. The short slabs are supported by a trimmer
that is supported by the adjacent continuing slabs (Fig. 1). Special calculations are not required
if the opening has a size of one or two times the slab width. However, sometimes larger
openings are needed, for example for large flight of stairs. These openings are preferably
constructed without expensive and obstructive support structure. The strength and stiffness of
such a design can be determined by linear elastic finite element analyses for which this paper

presents a practical procedure.
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Figure 1: A large opening in a hollow-core slab floor
A computational method for homogenisation of plate stiffness properties has been developed
by A. Kok [Kok 2002]. It has been successfully applied to hollow-core slab floors. However, this

method does not provide a way to check whether the computed section moments and section
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forces exceed the floor capacity. Therefore, in the present paper a method is proposed to
calculate the stresses that are caused by the section moments and section forces in critical points
of a floor. This is referred to as stress recovery. Subsequently, theses stresses are checked against

the material strengths.
Finite element modelling

The stresses in a hollow-core slab floor depend on the way the floor is constructed. In the
beginning of construction the slab joints are not filled and the slabs are mainly loaded by self-
weight. The prestressing force is already present and one or more trimmers carry the loading of
the short slabs to the continuing slabs. Subsequently, when the joints have been filled and cured,
the live load is applied. The live load is distributed over multiple slabs by the joints. Therefore,

the floor has two stiffnesses, a stiffness without the joints and a stiffness with the joints.

At first sight a non-linear analysis seems to be necessary to account for the changing stiffness.
However, since the stiffness does not depend on the deformation or the loading the analysis can
be performed by two linear elastic finite element computations. In the first analysis the joints
are left out and the floor is loaded by self-weight and prestress only. In the second analysis the
joints are filled and the floor is loaded by the live load only. Subsequently, the loading,

displacements and sections forces of the two computations are superposed. (Fig. 2).
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Figure 2: Computation of a hollow-core slab floor in two steps

The finite element model consists of plate elements and beam elements. The plate elements
have to be approximately as wide as the center-to-center distance of the channels. The length of
the elements is approximately the thickness of the slab. At the support of the trimmer the
elements need to be as long as the width of the support platen. Smaller elements are
inconvenient because they would show peaks in the force flow that do not occur in reality.
These peaks occur because the plate theory is not accurate near concentrated loading that
occurs due to the trimmer ends. The trimmer is modelled with beam elements. The joints are

also modelled with plate elements, which are as wide as the joints, for example 30 mm.



Homogenisation of the slab properties

Hollow-core slab plates can be modelled as orthotropic plates using the Reissner-theorie. We
choose the x-axis in the direction of the channels and the z-axis upwards. In this case the

following set of constitutive equations holds
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where E, G and v are Young’s modulus, the shear modulus and Poisson’s ratio.
m.m, i q,4, are section forces per unit of length as drawn in Figure 3. KK, K, are

curvatures and ¢,,¢, are shear deformations. If the channel cross-sections are approximated by a

rectangular shape (Fig. 3) the following plate properties can be derived [Span 2002].

The area per unit length of a section in the y-direction is
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The joints usually are of poor concrete quality and not reinforced. Therefore, a joint can crack in
the longitudinal direction. This causes a hinging connection between the slabs!. Therefore, the
joints are modelled with a material that has no bending stiffness in lateral direction?

L,=0" ©)

The other stiffness properties of the joints can be the same as those of the hollow core slabs.
Actually, this is not correct because the joints are solid while the slabs are hollow. However, the
effect of the thin joints on the force flow in the floor is negligible. The advantages are that less
typing is needed to prepare the program input and no peaks in the shear force occur, which

makes it easier to interpret the computational results.

1 Floors often have edge reinforcement. Therefore, the slabs cannot shift when rotation in a joint occurs. As a
consequence, the joint can carry a transverse moment. Unfortunately, it is not easy to quantify this situation.
Therefore, the joints are conservatively modelled as perfect hinges.

2 Instead of joint elements it is also possible to leave out these elements and connect the vertical displacements
of the slab edges by tyings. However, this cannot be realised easily in many finite element programs.



Figure 3: Section forces and approximated representative volume of a hollow-core slab
Recovery of stresses
The section forces are computed by a finite element program, for example KOLA [Lamers 1995].

Obviously the section forces cause stresses in the material of the hollow-core slab. The

distribution of these stresses can be estimated with some accuracy. (Fig. 4).

Figure 4: Approximated stress distributions in a representative volume of a hollow-core slab
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From the stress distributions the stress in the middle of the top flange can be derived (Fig. 5).
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Figure 5: Stress state in the middle of the top flange

The stresses that are not mentioned are equal to zero. The stress state in the middle of a web is

(Fig. 6).
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The latter formulas are valid for the interior of a floor. At a supported or free edge other
formulas hold. In this we distinguish between positive and negative edges. An edge is positive
if the outward directed normal vector points in the direction of the y-axis. An edge is negative if
this normal vector points in the opposite direction of the y-axis (Fig. 1). The stress state in the

middle of a web of a positive edge is



Figure 6: Stress state in a web
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For negative edges it holds
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The stress distribution at the supports of the slabs cannot be determined with a simple formula.

However, experiments show that in practical situations failure does not occur at the supports

[Aswad 1992]. From the stresses the principal stresses are calculated. These are the eigenvalues

of the matrix

(14)
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Subsequently, the principal stresses are checked against the design values of the concrete
stresses. This is done in a number of critical locations of the continuing slabs, namely, next to

the opening at the support, at the support of the trimmer and in the middle of the span.
5 Example

As an example the hollow-core slab floor of Figure 7 is analysed. The selected slab type is N200
produced by Dycore, Oosterhout, Netherlands (Fig. 8) [Dycore 2001]. The design value of the
compressive strength of the concrete is -39 MPa and the design value of the tensile strength is
2.1 MPa. Young’s modulus E = 30000 MPa and Poisson’s ratio v = 0.15. The self-weight is 2.7
kN/m?. A safety factor of 1.2 for the ultimate limit state is used. The slabs are maximally
prestressed by 710 kN at 30 mm from the bottom. The design value of the failure moment of the
slab is -143 kNm. The live load on the floor is 3.0 kN/m? with a safety factor of 1.5 for the

ultimate limit state.
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Figure 7: Dimensions and finite element mesh of the floor
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The plate stiffnesses are calculated using Eq. 2 to 8.

I, =480 107* m?

_4
A =31316 10* m
I,=438 104 m? M
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=434 0% m® VY

The support area of the trimmer is 0.15 m wide. The trimmer has the following moments of

inertia.

I,=65.06 10°m*
I, = 082 10°° m*

The finite element program KOLA computes the deformation and the force flow in the floor
(Fig. 10, 11). In the first analysis the slabs are not connected and the plate is loaded by self-
weight only. The prestress loading is calculated manually. In the second analysis the joints are
connected by hinges and the plate is loaded by live load only. In eight elements the stresses are
checked. These elements have a dark grey colour in Figure 7. The stresses are checked at some
distance of the slab support because there the prestress is completely developed. The Appendix
shows the average section forces of the eight elements. The moments in the continuing slab are

smaller than the moment capacity of the cross-section ( | -104 kNm | < | -143 / 1.2 | ).
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Figure 8: Cross-section of hollow-core slab N200

Subsequently, the local stress state is computed in the flanges, webs and edges using Eq. 10 to
13 (Table 1). It is shown that largest tensile stress (1.98 MPa) occurs in the web at the location of
element 2895. This is smaller than the design value of the concrete tensile strength (2.10 MPa).
All compressive stresses are sufficiently small. Consequently the floor design is sufficient. The

floor is loaded up to 94% of its capacity.
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Figure 9: Detail of a re-entrant corner of the element mesh

S

Figure 10: Deformation of the floor due to self-weight in step 1 of the analysis

¢

Figure 11: Deformation of the floor due to live load only in step 2 of the analysis
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Table 1: Principal stresses [MPa] in the elements of Figure 7

element top flange web or edge
number largest smallest largest smallest
principal stress principal stress principal stress principal stress

1688 0.17 -13.99 0.21 -6.92
1712 0.19 -4.07 0.54 -7.40
1725 0.81 -25.41 1.31 -7.53
1726 1.50 -21.00 1.43 -6.97
2882 0.51 -6.54 1.45 -8.28
2895 0.91 -15.73 1.98 -8.61
2896 1.17 -13.99 1.25 -6.91
2948 0.09 -10.47 0.15 -6.90

6 Conclusions

A method has been presented for finite element analysis of hollow-core slab floors. The method

includes formulas for homogenisation of the slab properties and formulas for stress recovery.

The principal stresses are calculated and checked at critical locations of the floor.

It is shown that large openings in hollow-core slab floors can be possible without extra beams

or columns. The proposed method is a practical way to check the floor capacity.

It is planned to develop a program for analysis of hollow core slab floors based on the

procedure presented in this paper. The program will do the finite element modelling, structural

analysis and stress recovery. Therefore, the structural designer will just need to enter the floor

geometry and loading after which the program computes the largest stress. It is expected that

this program will be a useful design tool.
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Appendix

Moments [kNm/m] en forces [kN/m] in eight critical elements

1688 | self-weight | prestress live load total

mxx -54.099 41.420 -26.820 -39.499
myy 0.064 -0.105 0.041
mxy -2.014 -4.156 -6.170
qx 7.931 4.394 12.325
qy -0.249 4404 4155
nx -591.670 -591.670
1712 | self-weight | prestress live load total

mxx -12.196 41.420 -12.462 16.762
myy -0.165 -0.227 -0.392
mxy 1.746 2.133 3.879
qx -49.214 -51.558 -100.772
qy 2.578 3.468 6.046
nx -591.670 -591.670
1725 | self-weight | prestress live load total

mxx -65.009 41.420 -80.30 -103.889
myy 1.432 -5.819 -4.387
mxy 1.270 -10.092 -8.822
qx -90.410 -127.901 -218.311
qy -21.328 -23.616 -44.944
nx -591.670 -591.670
1726 | self-weight | prestress live load total

mxx -62.960 41.420 -55.032 -76.572
myy 1.517 -0.357 1.160
mxy -2.057 -15.333 -17.390
qx 104.122 -72.254 31.868
qQy -18.708 -23.523 -42.231
nx -591.670 -591.670
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2882 | self-weight | prestress live load total

mxx -12.196 41.420 -24.728 4.496
myy -0.165 -0.773 -0.938
mxy -1.753 -6.742 -8.495
qx -49.271 -112.959 -162.230
qy -2.583 12327 -14.910
nx -591.670 -591.670
2895 | self-weight | prestress live load total

mxx -64.901 41.420 -26.289 -49.770
myy 1.436 -1.753 -0.317
mxy -1.289 -1.694 -2.983
qx -90.773 -145.013 -235.786
qy 21.415 15.880 37.295
nx -591.670 -591.670
2896 | self-weight | prestress live load total

mxx -62.877 41.420 -18.466 -39.923
myy 1.522 0.489 2.011
mxy 2.050 1.094 3.144
qx 103.909 -91.425 12.484
qy 18.828 18.614 37.442
nx -591.670 -591.670
2948 | self-weight | prestress live load total

mxx -53.952 41.420 -7.298 -19.830
myy 0.065 -0.292 -0.227
mxy 2.025 2.014 4.039
qx 7.932 -2.907 5.025
qy 0.257 2.955 3.212
nx -591.670 -591.670
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